
Visible Surfaces Visible Surfaces

DeterminationDetermination

HLHSR

� Assumptions

� objects are made of polygonal patches

� all patches are opaque

� Goal

visibility from a view point

Computer Graphics

� visibility from a view point

OpenGL
� Very simple, you need to do only two things

� Prepare buffer

� glutInitDisplay(GLUT_DEPTH | …);

� distance to the view point is recorded

� glClear(GL_DEPTH_BUFFER_BIT);

� clear to the far clipping plan distance (1.0)

� Enable depth comparison

Computer Graphics

� Enable depth comparison

� glEnable(GL_DEPTH_TEST);

� Tell OpenGL how to do the depth comparison

� glDepthFunc(); default is GL_LESS (in front of the far

clipping plane)

� Visible z values are negative, but distance (depth) is positive

Depth comparison
� at 3D

� before projection

� after modeling, normalization, etc. transform

�Perspective

Y Y

�Parallel

Computer Graphics

X

Z

X

Z

21

2121)&&(

ZandZcompare

YYXXif ====

21

2

2

1

1

2

2

1

1)&&(

ZandZcompare

Z

Y

Z

Y

Z

X

Z

X
if ====

General Approaches

� Image Space

for (each pixel in the image) {

determine the object closest to the viewer

draw the object at that particular pixel }

� Object Space

Computer Graphics

� Object Space

for (each object in the scene) {

determine which parts of the object whose

views are unobstructed

draw those parts of the object }

� Hybrid

Useful techniques

� Coherence

� parts of an object or an environment exhibit local
similarity

� Bounding volumes

� simplifies intersection tests

� Hierarchy

Computer Graphics

� Hierarchy

� e.g., hierarchical bounding volumes

� Spatial partitioning

� exploit spatial coherency

� Back face culling

� e.g. convex objects viewing from outside

Scan-line Algorithm

� Image space

� Exploit scan-line coherency

� Image is generated one scan line at a time

� keep all active polygons (edges)

� determine their Z-ordering

Computer Graphics

� determine their Z-ordering

� ordering can change when cross edges

� Edge table
- sorted by smallbest y into buckets (scan lines)

- x coor at smallest y

- y coor at largest y

- x increment

- polygon ID

�Polygon table
- coefficients of plane equation

- shading and color info

- IN/OUT flag

Computer Graphics

�Active Edge table
- At each scan line

- delete edges no long intersect current scan

- update x coordinates of active edges

- add new edges from the current bucket

- sort x coordinates of all active edges

Y

Computer Graphics

X

� Scan in none - background

� Scan in one - paint

� Scan in multiple - order test

X

Z

X

Z

Don’t care

Computer Graphics

� Non-intersecting polygons

- order change at edges

- re-compute when scan leaving occluding

polygons

� Intersecting polygons
- order change at edges & intersections

- splitting polygons may be necessary

Z Buffer

� Simplest (and most widely used) Object space

� Amenable to hardware implementation
Initialization

ZB<- most distant Z;

IB <- background color;

for each polygon {

Computer Graphics

for each polygon {

for each pixel in polygon {

compute Z(x,y);

if Z(x,y) is closer then ZB(x,y) {

ZB(x,y) = Z(x,y);

IB(x,y) = polygon color;
}

}
}

Depth-Sort (List-Priority)
� Hybrid
Initialization

sort polygons in order of decreasing distance

Resolve Ambiguity

Pick the polygon (P) at the front (most distant) of the list

and for all polygon (Q) whose Z-extent overlap that of P’s

1. Do the polygons’ x extent not overlap?

Computer Graphics

1. Do the polygons’ x extent not overlap?

2. Do the polygons’ y extent not overlap?

3. Is P entirely on the opposite side of Q’s plane from the viewpoint?

4. Is Q entirely on the same side of P’s plane as the viewpoint?

5. Do the projections of the polygons not overlap?

Switch P and Q if all above fail

Scan Conversion

X

Z

X

Z

Q

P

P

Q

R

Computer Graphics

X

Z

Q

P

X

Z

Q

P

BSP-Tree (Object Space)

� Based on a simple observation

� if the space is divided in half, then polygons on

the side that does not contain the observer

cannot obscure polygons on the same side as

the observer

Computer Graphics

the observer

� Record the spatial adjacency info in a tree
� choose a scene polygon and use its plane to partition the

space into two halves

� scene polygons are put in one half

� split polygons that straddle the partition plane

� recursively apply the algorithm until no more polygons can

BSP Tree (cont.)

Computer Graphics

� recursively apply the algorithm until no more polygons can
be used

� good for

� static scene structures

� moving observer locations

� e.g. fly-through, walk-through

32

5

b5a5
3

2 4
4

5

Example of BSP Tree

Computer Graphics

1

3

4

2
3

2

a5 b51

1

IN OUT IN OUT

IN OUT IN OUT

1

2

3

4

1

2

3

4

5

6

Original

Computer Graphics

� Iterate through the list of vertices

� Output vertices based on IN/OUT relations

Rendering

� An in-order traversal

� At each node

� traverse the subtree not containing the observer

� render polygons at the node

traverse the subtree containing the observer

Computer Graphics

� traverse the subtree containing the observer

Area Sub-division

� Divide-and-Conquer

� Divide an image region until it is easy to

decide which polygon or polygons are

visible

Computer Graphics

Surrounding

Intersecting Contained Disjoint

� Disjoint

� render background color

� One intersecting or contained

� render background then polygon

� One surrounding

render polygon color

Area Sub-division

Computer Graphics

� render polygon color

� More than one surrounding, intersecting,
contained

� if the surrounding polygon is in front

� Otherwise, recursive subdivision

Visible Surface Ray Tracing
for (each scan line) {

for (each pixel in scan line) {

compute ray direction from COP (eye) to pixel

for (each object in scene) {

if (intersection and closest so far) {

record object and intersection point

Computer Graphics

record object and intersection point

}

set pixels color to that at closet object intersection

}

}
}

Compute Intersection

� A (low-order) implicit representation

(f(x,y,z) =0) can be useful

� >0 (outside), =0 (surface), <0 (inside)

� Two examples

Computer Graphics

� Spheres (implicit representation)

� Polygons (parametric representation)

)(2)(

)(2)(

0222

:

0)()()(:

22

22

2222222

2222

++∆+−∆+

++∆+−∆+

=−+−++−++−









∆+=

∆+=

∆+=

=−−+−+−

bYtYbYtY

aXtXaXtX

rccZZbbYYaaXX

ZtZZ

YtYY

XtXX

ray

rcZbYaXsphere

oo

o

o

o

Computer Graphics

0)(2)(

)(2)(

222

22

=−+∆+−∆+

++∆+−∆+

rcZtZcZtZ

bYtYbYtY

oo

oo

0)()()(

)}()()({2

)(

2222

2222

=−−+−+−

+−∆+−∆+−∆

+∆+∆+∆

rcZbYaX

tcZZbYYaXX

tZYX

ooo

ooo

−=∆=++

=−−+−+−

+−∆+−∆+−∆

+∆+∆+∆

40

0)()()(

)}()()({2

)(

22

2222

2222

ACBCBtAt

rcZbYaX

tcZZbYYaXX

tZYX

ooo

ooo

Computer Graphics









<∆

=∆

>∆

−=∆=++

nginsersectinon 0

grazing0

nginsersecti0

40

t

ACBCBtAt

ZcYbXa

dcZbYaX
t

dZtZcYtYbXtXa

ZtZZ

YtYY

XtXX

ray

dcZbYaXplane

ooo

ooo

o

o

o

∆+∆+∆

+++
−=

=+∆++∆++∆+









∆+=

∆+=

∆+=

=+++

0)()()(

:

0:

Computer Graphics

ZcYbXa ∆+∆+∆

� There will be a reasonable t value, unless the denominator

is zero (the line and the plane are parallel)

� But is the intersection point actually inside the polygon?

Y

� Point-in-polygon test (point must be on the

inside relative to all polygon edges)

� Can be done in 2D

Computer Graphics

X

Y

Z

Avoid intersection computation

� Bounding volume

� Object hierarchy

� Spatial partitioning

Computer Graphics

dcZbYaXSlab =+++ 0:

Bounding Volume

Computer Graphics

B

DA

ZcYbXa

dcZbYaX
t

ZtZZ

YtYY

XtXX

ray

dcZbYaXSlab

ooo

o

o

o

+
=

∆+∆+∆

+++
−=









∆+=

∆+=

∆+=

=+++

:

0:

A: per ray per slab set

B: per ray per slab set

D: per slab

Bounding Volume (cont.)
� All the maximum (circle) intersections must be after all the minimum

(square) intersections

Computer Graphics

Hierarchical Bounding Volume

Computer Graphics

Spatial Partitioning

� Ray can be advanced from cell to cell

� Only those objects in the cells lying on the path of

the ray need be considered

� First intersection terminates the search

Computer Graphics

