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HLHSR

� Assumptions

� objects are made of polygonal patches

� all patches are opaque

� Goal

visibility from a view point 

Computer Graphics

� visibility from a view point 



OpenGL 
� Very simple, you need to do only two things

� Prepare buffer

� glutInitDisplay(GLUT_DEPTH | …);

� distance to the view point is recorded 

� glClear(GL_DEPTH_BUFFER_BIT);

� clear to the far clipping plan distance (1.0)

� Enable depth comparison
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� Enable depth comparison

� glEnable(GL_DEPTH_TEST);

� Tell OpenGL how to do the depth comparison

� glDepthFunc(); default is GL_LESS (in front of the far 

clipping plane)

� Visible z values are negative, but distance (depth) is positive



Depth comparison
� at 3D

� before projection

� after modeling, normalization, etc. transform 

�Perspective 

Y Y

�Parallel
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General Approaches

� Image Space

for (each pixel in the image) {

determine the object closest to the viewer

draw the object at that particular pixel  }

� Object Space
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� Object Space

for (each object in the scene) {

determine which parts of the object whose 

views are unobstructed

draw those parts of the object  }

� Hybrid 



Useful techniques

� Coherence

� parts of an object or an environment exhibit local 
similarity

� Bounding volumes

� simplifies intersection tests

� Hierarchy
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� Hierarchy

� e.g., hierarchical bounding volumes

� Spatial partitioning

� exploit spatial coherency

� Back face culling

� e.g. convex objects viewing from outside



Scan-line Algorithm

� Image space

� Exploit scan-line coherency

� Image is generated one scan line at a time

� keep all active polygons (edges)  

� determine their Z-ordering
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� determine their Z-ordering

� ordering can change when cross edges



� Edge table
- sorted by smallbest y into buckets (scan lines)

- x coor at smallest y

- y coor at largest y

- x increment 

- polygon ID

�Polygon table
- coefficients of plane equation

- shading and color info

- IN/OUT flag

Computer Graphics

�Active Edge table
- At each scan line

- delete edges no long intersect current scan

- update x coordinates of active edges

- add new edges from the current bucket

- sort x coordinates of all active edges



Y
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X

� Scan in none - background

� Scan in one - paint

� Scan in multiple - order test
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� Non-intersecting polygons

- order change at edges

- re-compute when scan leaving occluding 

polygons

� Intersecting polygons
- order change at edges & intersections

- splitting polygons may be necessary



Z Buffer

� Simplest (and most widely used) Object space 

� Amenable to hardware implementation
Initialization

ZB<- most distant Z;

IB <- background color;

for each polygon {
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for each polygon {

for each pixel in polygon {

compute Z(x,y);

if Z(x,y) is closer then ZB(x,y) {

ZB(x,y) = Z(x,y);

IB(x,y)  = polygon color;
}

}
}



Depth-Sort (List-Priority)
� Hybrid
Initialization

sort polygons in order of decreasing distance

Resolve Ambiguity

Pick the polygon (P) at the front (most distant) of the list

and for all polygon (Q) whose Z-extent overlap that of P’s

1. Do the polygons’ x extent not overlap?
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1. Do the polygons’ x extent not overlap?

2. Do the polygons’ y extent not overlap?

3. Is P entirely on the opposite side of Q’s plane from the viewpoint?

4. Is Q entirely on the same side of P’s plane as the viewpoint?

5. Do the projections of the polygons not overlap? 

Switch P and Q if all above fail

Scan Conversion
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BSP-Tree (Object Space)

� Based on a simple observation

� if the space is divided in half, then polygons on 

the side that does not contain the observer 

cannot obscure polygons on the same side as 

the observer
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the observer



� Record the spatial adjacency info in a tree
� choose a scene polygon and use its plane to partition the 

space into two halves

� scene polygons are put in one half

� split polygons that straddle the partition plane

� recursively apply the algorithm until no more polygons can 

BSP Tree (cont.)
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� recursively apply the algorithm until no more polygons can 
be used

� good for 

� static scene structures

� moving observer locations 

� e.g. fly-through, walk-through
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� Iterate through the list of vertices

� Output vertices based on IN/OUT relations



Rendering

� An in-order traversal 

� At each node

� traverse the subtree not containing the observer

� render polygons at the node

traverse the subtree containing the observer

Computer Graphics

� traverse the subtree containing the observer



Area Sub-division 

� Divide-and-Conquer

� Divide an image region until it is easy to 

decide which polygon or polygons are 

visible 

Computer Graphics

Surrounding

Intersecting Contained Disjoint



� Disjoint 

� render background color

� One intersecting or contained

� render background then polygon

� One surrounding

render polygon color

Area Sub-division 
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� render polygon color

� More than one surrounding, intersecting, 
contained 

� if the surrounding polygon is in front 

� Otherwise, recursive subdivision



Visible Surface Ray Tracing
for (each scan line) {

for (each pixel in scan line) {

compute ray direction from COP (eye) to pixel

for (each object in scene) {

if (intersection and closest so far) {

record object and intersection point
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record object and intersection point

}

set pixels color to that at closet object intersection

}

}
} 



Compute Intersection

� A (low-order) implicit representation 

(f(x,y,z) =0) can be useful

� >0 (outside), =0 (surface), <0 (inside)

� Two examples

Computer Graphics

� Spheres (implicit representation)

� Polygons (parametric representation)
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ZcYbXa ∆+∆+∆

� There will be a reasonable t value, unless the denominator 

is zero (the line and the plane are parallel)

� But is the intersection point actually inside the polygon?



Y

� Point-in-polygon test (point must be on the 

inside relative to all polygon edges)

� Can be done in 2D 
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Avoid intersection computation

� Bounding volume

� Object hierarchy

� Spatial partitioning

Computer Graphics
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Bounding Volume (cont.)
� All the maximum (circle) intersections must be after all the minimum 

(square) intersections
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Hierarchical Bounding Volume

Computer Graphics



Spatial Partitioning

� Ray can be advanced from cell to cell

� Only those objects in the cells lying on the path of 

the ray need be considered

� First intersection terminates the search
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