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Differential Equations
 Equations with derivative symbols :-)
 Ordinary differential equationsy q

 initial value problems 
 Partial differential equations

 boundary value problems, initial-boundary value problems
 Exact solutions

 guess work guess work
 Numerical solutions

 guess work (but computer does it!) guess work (but computer does it!)
 Warning: This is not a course on numerical analysis! Take an appropriate 

course if interested
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Ordinary Differential Equationsy ff q
 Usually the independent variable is treated 

as time (t) ),( txfx ( )
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More Examples
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Intuition
 Imagine a vector field 

 field (flow) direction specified by field (flow) direction specified by 
 location, and 
 time time

 a particle in the vector field will drift according to 
the current flow direction where the particle isthe current flow direction where the particle is

 time independent - dropping something in a river 
and watching it flowsg

 time dependent - dropping something in the ocean 
and watching ocean waves carry it
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Numerical Solutions
 Advance a particle from its initial location  through 

(discrete) time steps
M i Many issues
 accuracy
 stability stability
 efficiency

 Many solutionsy
 Euler (explicit, implicit, modified)
 Midpoint and Runge-Kutta

M l i di Multistep, predictor-corrector
 Adaptive step size
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Roadmap
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Issues
 Accuracy 

How close is the discrete solution going to be to g g
the continuous solution?

 Stability Stability
Numerical error unavoidable 
Error accumulation to grow or decay?Error accumulation to grow or decay? 

 Efficiency
H f t f h ti t ?How fast for each time step? 

How large can each time step be?  
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(Explicit) Euler Method
 Go in the tangent direction with distance 

controlled by time stepcontrolled by time step
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Questions
 Is Euler method accurate?

I E l th d t bl ? Is Euler method stable?
 How close are the the exact and Euler 

solutions?  

Exact solution Euler solutionExact solution Euler solution
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A graphical interpretation
kxx 

At large step sizes At even large step sizes

x x

t t
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Observations (Explicit Euler)
 Explicit Euler method can be made accurate - as 

long as you can tolerate (very) small step size 
 It can be made stable (not blowing up!) with 

(appropriate) small step size
 Explicit Euler is easy to understand 
 But it is seldom used in the real world (homework 

assignments are not real world but should beassignments are not real world, but should be 
treated as such )
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How Small Should Step Size Be?
 The larger the k, the smaller the step size

E ti f l k t f ti Equation of large k, or system of equations 
with large varying k, are stiff
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(Implicit) Euler Method(Implicit) Euler Method
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simulation second-30 
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Observations (Implicit Euler)

 Accuracy depends on step size
 Absolute stability, regardless of the step size
 A magic bullet for many “stiff” system 
 More complicated (not necessarily direct 

evaluation), try cbxaxf or  2 

 Linearization maybe needed 
xbxaf

f
sincos 

y
 Expensive, seldom used in the real world 

(think about system of equations)
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(Modified) Euler Method
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simulation second-30 
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Observations (Modified Euler)
 Use trapezoidal rule
 Accuracy depends on step size Accuracy depends on step size 

(Surprisingly: it is more accurate than either 
explicit or implicit method)explicit or implicit method)

 Absolute stability, regardless of the step 
sizesize

 More complicated (not necessarily direct 
evaluation)evaluation)

 Basis for other advanced techniques
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Accuracy of Euler Methods
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Accuracy of Euler Methods (cont.)
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Why Implicit Methods Don’t Blow Up?
0,  kkxx

x

kxx 

t t t

t t t

Computer Graphics



Stability=(?)Accuracy
 In general, you can get a stable solution by 

using a reasonably small step sizeusing a reasonably small step size
 To get high accuracy, step size needs to be 

ll ( ith d b th d )very small (with dumb methods)
 There are other techniques to increase 

accuracy at large step size
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Why not Higher Orders?
 If 

 the goal is to reduce the local approximation the goal is to reduce the local approximation 
error

Local approximation error is expressed in termsLocal approximation error is expressed in terms 
of Taylor series 

 Then Then 
Why not compute more terms in the expansion?
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Answer
 Only f(x,t) (or x’) is given explicitly 

f’( t) t ( ” ”’) b h d t f’(x,t), etc (or x”, x”’) can be hard to 
evaluate

 There are other methods to match the terms 
in Taylor series to achieve high-order of 
accuracy
 Single-step, Compounding methods
Mutli-step methods
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Midpoint Method 
(2nd order Runge-Kutta)(2nd order Runge-Kutta)

 Compound one-step method
E li it f ti Explicit for easy computing

 2nd order is very similar to trapezoidal rule 
 Caution: there are a number of 2nd order 

Runge-Kutta formulation, all with the same 
error bound
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Trapezoidal
 Modified Euler  Trapezoidal – similar to 

Modified Euler, but practical),(
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Example
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Facts
 accuracy

Explicit easy to compute but not absolute
)( 3tO 

Explicit, easy to compute, but not absolute 
stable

 Other compounding methods possible Other compounding methods possible 
 Compound can be done many many times, 

the most famo s is the 4th order R ngethe most famous is the 4th order Runge-
Kutta with )( 5tO 
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General Compounding Methods
 Evaluate the expression f(x,t) multiple times 

in a single stepin a single step
At different location (x) and different time (t)
B t ll li itBut all explicit

 2nd order (midpoint) actually corresponds to 
d i b i h f ll i idetermine a, b,c in the following expression
Evaluate the derivative at different place (b), 

diff i ( ) d diff i h i ( )different time (c), and different weighting (a)

EulerExplict for  ),(),( txfxcfctbxafx  
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Matching Process
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Matching Process
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General Compound Methods
 Successive recursions (many more times)

4th d i th t l 4th-order is the most popular
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Multi-Step Methods
 Utilize multiple past and present values 

instead of just one (at time n-1)instead of just one (at time n 1)
 Explicit, easy to compute

I li it l ibl f t bilit Implicit also possible for stability
 Can be made into arbitrary orders of 

accuracy (using enough terms)
 For smooth fields (f’, f’’, etc. should exist)(f f )
 Compare to 
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Comparison
 Compound methods
 Multiple evaluations

 Multi-step methods
 Single evaluation of f Multiple evaluations 

of f in a single step
 Do not use past values

 Single evaluation of f 
in a single step

 Use past values of f Do not use past values
 Do not assume 

smoothness over time

 Use past values of f
 Work best with 

smooth fields ( f’, f’’,smoothness over time
 Good accuracy (4th

order)

smooth fields ( f , f ,
f”’, etc. exist)

 Very high accuracy) y g y
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Multi-Step Methods
 Explicit (Adams-

Bashforth)
 Implicit (Adams-

Moulton)
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 Q: What should the coefficient c_p be?
A: Chosen to match as many terms in the Taylor expansion 
as possible
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Example - Explicit, 2nd order
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Observation:Multi-Steps
 Again

 implicit methods afford high accuracy with implicit methods afford high accuracy with 
good stability

 the cost is again in evaluating the extra term in the cost is again in evaluating the extra term in 
the implicit methods (pretty difficult if f is not 
linear!)

Good for smooth functions requiring high 
accuracy
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 Explicit Explicit
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Predictor-Corrector Method
 Use the explicit formula to predict a new *
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 Use       to evaluate the right side*
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Error Sources
 So far we concentrated on truncation error –

i e we didn’t use enough terms in Taylori.e., we didn t use enough terms in Taylor 
series

 A th i i l (10^ 16 f Another source is numerical (10^-16 for 
double due to limited machine precision)

 Eround: error in calculating derivatives
truncateround EEE 

 Etruncate: omission in Taylor expansion 
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Error Sources
 Reduce step size

 Truncation error
 Increase step size

 Truncation error Truncation error 
becomes smaller

 Numerical error 

 Truncation error 
becomes larger

 Numerical error 
accumulates faster 
from many steps

 Simulation becomes

accumulates slower 
from fewer steps

 Simulation becomes Simulation becomes 
smaller 

 Simulation becomes 
faster

EEE truncateround EEE 
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Error Sources (cont)
 Obviously, some trade-off exists with an 

optimial step sizeoptimial step size 
~(Eround/max(Etruncate))^0.5

 E i id th d Easier said than done
How to find Etruncate
Etruncate  is not a constant over the whole domain

 Adaptive step size is the key
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Adaptive Step Size
 To speed up simulation needs large step size

T i t i t bilit d i To maintain stability and improve accuracy 
need small step size

 The step size should be adapted depending 
on the required accuracy
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position
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2
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 Error can be estimated from the difference of two Euler 
steps

t

steps
 Steps can be enlarged or shrunk based on the desired 

accuracy
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Adaptive step sizes
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Higher accuracy than required, increase step size
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Last Word
 If you are a numerical analyst, this does not 

apply to youapply to you 
 Otherwise

’ li i l ( bl iDon’t use Explicit Euler (not accurate, blowing 
up)
D ’t I li it E l (t i )Don’t use Implicit Euler (too expensive)

 2nd or 4th order Runge-Kutta with step control is 
for ofor you
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Solver Structure
 Heart is dxdt (a function you supply)

W d d b fi d t E l Wrapped around by fixed step Euler, 
Midpoint, Runge-Kutta, etc.

 Wrapped around by a step size controller
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Solver Structure
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Example: 4th-order Runge-Kuta

yn
yn+1

hh
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Example: RK with Step Control

y

yn+1

yn

htry

yn+1

yn

yn+1

hdid
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Example: Other Options

I liFi l l

yn+1 yn+1

In realityFinal results

yn

n 1

h

yn+1

rkqs rkqs
yn

 Will advance by h (may take multiple steps, 
or multiple calls to rkqs)
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Example: Other Options

y d

Computer Graphics

ystart

yend

h1 h2 hn



Stiff SystemsStiff Systems
 Nightmare in numerical solutions
 Need small steps to maintain numerical 

stability
 But the interesting phenomena are really at 

large time scale
 Take a long time vs. blowing up
 May need implicit methods to achieve fast y p

simulation without blowing up
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Observations: stiff systems
 Whether the simulation blows up depends 

on 1|)1(|  n
iton

 If eigen values are of vast distinct sizes, a 
tiff t ltstiff system results 

 The most negative eigen value determines 
the speed of simulation

 It is also the part of the simulation that 
quickly dies out and not of interest
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Try this!
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( d

 Second order
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 What is the difference between 1st and 2nd 
order simulations?

1st order 2nd order1st order
specify location directly

2nd order
specify velocity instead 
of location
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 A simulation with a=d=-5, b=c=0 
 can be free of oscillation if step size is properly 

chosen
 cannot be made oscillation free without a 

damping term 
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