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Differential Equations
 Equations with derivative symbols :-)
 Ordinary differential equationsy q

 initial value problems 
 Partial differential equations

 boundary value problems, initial-boundary value problems
 Exact solutions

 guess work guess work
 Numerical solutions

 guess work (but computer does it!) guess work (but computer does it!)
 Warning: This is not a course on numerical analysis! Take an appropriate 

course if interested
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Ordinary Differential Equationsy ff q
 Usually the independent variable is treated 

as time (t) ),( txfx ( )
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More Examples
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Intuition
 Imagine a vector field 

 field (flow) direction specified by field (flow) direction specified by 
 location, and 
 time time

 a particle in the vector field will drift according to 
the current flow direction where the particle isthe current flow direction where the particle is

 time independent - dropping something in a river 
and watching it flowsg

 time dependent - dropping something in the ocean 
and watching ocean waves carry it
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Numerical Solutions
 Advance a particle from its initial location  through 

(discrete) time steps
M i Many issues
 accuracy
 stability stability
 efficiency

 Many solutionsy
 Euler (explicit, implicit, modified)
 Midpoint and Runge-Kutta

M l i di Multistep, predictor-corrector
 Adaptive step size
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Roadmap
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Issues
 Accuracy 

How close is the discrete solution going to be to g g
the continuous solution?

 Stability Stability
Numerical error unavoidable 
Error accumulation to grow or decay?Error accumulation to grow or decay? 

 Efficiency
H f t f h ti t ?How fast for each time step? 

How large can each time step be?  
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(Explicit) Euler Method
 Go in the tangent direction with distance 

controlled by time stepcontrolled by time step
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Questions
 Is Euler method accurate?

I E l th d t bl ? Is Euler method stable?
 How close are the the exact and Euler 

solutions?  

Exact solution Euler solutionExact solution Euler solution

kxx  kxx 

tkn
o

kt
o

extnx

exx








)( o
n

nnnn

xtk

xtktxkxx

)1(...

)1( 111



 

Computer Graphics

o)( o



simulation second-30 )1( o
n

n xtxxx 

Computer Graphics



A graphical interpretation
kxx 

At large step sizes At even large step sizes

x x
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Observations (Explicit Euler)
 Explicit Euler method can be made accurate - as 

long as you can tolerate (very) small step size 
 It can be made stable (not blowing up!) with 

(appropriate) small step size
 Explicit Euler is easy to understand 
 But it is seldom used in the real world (homework 

assignments are not real world but should beassignments are not real world, but should be 
treated as such )
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How Small Should Step Size Be?
 The larger the k, the smaller the step size

E ti f l k t f ti Equation of large k, or system of equations 
with large varying k, are stiff
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(Implicit) Euler Method(Implicit) Euler Method
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Observations (Implicit Euler)

 Accuracy depends on step size
 Absolute stability, regardless of the step size
 A magic bullet for many “stiff” system 
 More complicated (not necessarily direct 

evaluation), try cbxaxf or  2 

 Linearization maybe needed 
xbxaf

f
sincos 

y
 Expensive, seldom used in the real world 

(think about system of equations)
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(Modified) Euler Method
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Observations (Modified Euler)
 Use trapezoidal rule
 Accuracy depends on step size Accuracy depends on step size 

(Surprisingly: it is more accurate than either 
explicit or implicit method)explicit or implicit method)

 Absolute stability, regardless of the step 
sizesize

 More complicated (not necessarily direct 
evaluation)evaluation)

 Basis for other advanced techniques
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Accuracy of Euler Methods
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Accuracy of Euler Methods (cont.)
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Why Implicit Methods Don’t Blow Up?
0,  kkxx
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Stability=(?)Accuracy
 In general, you can get a stable solution by 

using a reasonably small step sizeusing a reasonably small step size
 To get high accuracy, step size needs to be 

ll ( ith d b th d )very small (with dumb methods)
 There are other techniques to increase 

accuracy at large step size
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Why not Higher Orders?
 If 

 the goal is to reduce the local approximation the goal is to reduce the local approximation 
error

Local approximation error is expressed in termsLocal approximation error is expressed in terms 
of Taylor series 

 Then Then 
Why not compute more terms in the expansion?
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Answer
 Only f(x,t) (or x’) is given explicitly 

f’( t) t ( ” ”’) b h d t f’(x,t), etc (or x”, x”’) can be hard to 
evaluate

 There are other methods to match the terms 
in Taylor series to achieve high-order of 
accuracy
 Single-step, Compounding methods
Mutli-step methods
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Midpoint Method 
(2nd order Runge-Kutta)(2nd order Runge-Kutta)

 Compound one-step method
E li it f ti Explicit for easy computing

 2nd order is very similar to trapezoidal rule 
 Caution: there are a number of 2nd order 

Runge-Kutta formulation, all with the same 
error bound
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Trapezoidal
 Modified Euler  Trapezoidal – similar to 

Modified Euler, but practical),(
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Example
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Facts
 accuracy

Explicit easy to compute but not absolute
)( 3tO 

Explicit, easy to compute, but not absolute 
stable

 Other compounding methods possible Other compounding methods possible 
 Compound can be done many many times, 

the most famo s is the 4th order R ngethe most famous is the 4th order Runge-
Kutta with )( 5tO 
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General Compounding Methods
 Evaluate the expression f(x,t) multiple times 

in a single stepin a single step
At different location (x) and different time (t)
B t ll li itBut all explicit

 2nd order (midpoint) actually corresponds to 
d i b i h f ll i idetermine a, b,c in the following expression
Evaluate the derivative at different place (b), 

diff i ( ) d diff i h i ( )different time (c), and different weighting (a)

EulerExplict for  ),(),( txfxcfctbxafx  
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Matching Process
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Matching Process
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Mid-point methods
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General Compound Methods
 Successive recursions (many more times)

4th d i th t l 4th-order is the most popular
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One evaluation on the left

Two evaluations in the middle
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Multi-Step Methods
 Utilize multiple past and present values 

instead of just one (at time n-1)instead of just one (at time n 1)
 Explicit, easy to compute

I li it l ibl f t bilit Implicit also possible for stability
 Can be made into arbitrary orders of 

accuracy (using enough terms)
 For smooth fields (f’, f’’, etc. should exist)(f f )
 Compare to 
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Comparison
 Compound methods
 Multiple evaluations

 Multi-step methods
 Single evaluation of f Multiple evaluations 

of f in a single step
 Do not use past values

 Single evaluation of f 
in a single step

 Use past values of f Do not use past values
 Do not assume 

smoothness over time

 Use past values of f
 Work best with 

smooth fields ( f’, f’’,smoothness over time
 Good accuracy (4th

order)

smooth fields ( f , f ,
f”’, etc. exist)

 Very high accuracy) y g y
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Multi-Step Methods
 Explicit (Adams-

Bashforth)
 Implicit (Adams-

Moulton)
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 Q: What should the coefficient c_p be?
A: Chosen to match as many terms in the Taylor expansion 
as possible
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Example - Explicit, 2nd order
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Observation:Multi-Steps
 Again

 implicit methods afford high accuracy with implicit methods afford high accuracy with 
good stability

 the cost is again in evaluating the extra term in the cost is again in evaluating the extra term in 
the implicit methods (pretty difficult if f is not 
linear!)

Good for smooth functions requiring high 
accuracy
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 Explicit Explicit
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Predictor-Corrector Method
 Use the explicit formula to predict a new *
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Error Sources
 So far we concentrated on truncation error –

i e we didn’t use enough terms in Taylori.e., we didn t use enough terms in Taylor 
series

 A th i i l (10^ 16 f Another source is numerical (10^-16 for 
double due to limited machine precision)

 Eround: error in calculating derivatives
truncateround EEE 

 Etruncate: omission in Taylor expansion 
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Error Sources
 Reduce step size

 Truncation error
 Increase step size

 Truncation error Truncation error 
becomes smaller

 Numerical error 

 Truncation error 
becomes larger

 Numerical error 
accumulates faster 
from many steps

 Simulation becomes

accumulates slower 
from fewer steps

 Simulation becomes Simulation becomes 
smaller 

 Simulation becomes 
faster

EEE truncateround EEE 

Computer Graphics



Error Sources (cont)
 Obviously, some trade-off exists with an 

optimial step sizeoptimial step size 
~(Eround/max(Etruncate))^0.5

 E i id th d Easier said than done
How to find Etruncate
Etruncate  is not a constant over the whole domain

 Adaptive step size is the key
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Adaptive Step Size
 To speed up simulation needs large step size

T i t i t bilit d i To maintain stability and improve accuracy 
need small step size

 The step size should be adapted depending 
on the required accuracy
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Adaptive step sizes
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Higher accuracy than required, increase step size
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Last Word
 If you are a numerical analyst, this does not 

apply to youapply to you 
 Otherwise

’ li i l ( bl iDon’t use Explicit Euler (not accurate, blowing 
up)
D ’t I li it E l (t i )Don’t use Implicit Euler (too expensive)

 2nd or 4th order Runge-Kutta with step control is 
for ofor you
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Solver Structure
 Heart is dxdt (a function you supply)

W d d b fi d t E l Wrapped around by fixed step Euler, 
Midpoint, Runge-Kutta, etc.

 Wrapped around by a step size controller
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Solver Structure
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Example: 4th-order Runge-Kuta
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Example: RK with Step Control
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Example: Other Options

I liFi l l

yn+1 yn+1

In realityFinal results

yn

n 1

h

yn+1

rkqs rkqs
yn

 Will advance by h (may take multiple steps, 
or multiple calls to rkqs)
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Example: Other Options

y d
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Stiff SystemsStiff Systems
 Nightmare in numerical solutions
 Need small steps to maintain numerical 

stability
 But the interesting phenomena are really at 

large time scale
 Take a long time vs. blowing up
 May need implicit methods to achieve fast y p

simulation without blowing up
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Example
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Observations: stiff systems
 Whether the simulation blows up depends 

on 1|)1(|  n
iton

 If eigen values are of vast distinct sizes, a 
tiff t ltstiff system results 

 The most negative eigen value determines 
the speed of simulation

 It is also the part of the simulation that 
quickly dies out and not of interest
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Try this!
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 What is the difference between 1st and 2nd 
order simulations?

1st order 2nd order1st order
specify location directly

2nd order
specify velocity instead 
of location
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 A simulation with a=d=-5, b=c=0 
 can be free of oscillation if step size is properly 

chosen
 cannot be made oscillation free without a 

damping term 
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