Differential Equations Basics

Differential Equations

<« Equations with derivative symbols :-)
< Ordinary differential equations
0 Initial value problems
<« Partial differential equations
0 boundary value problems, initial-boundary value problems
«» Exact solutions
0 guess work
< Numerical solutions
0 guess work (but computer does it!)

» Warning: This is not a course on numerical analysis! Take an appropriate

course If interested

Computer Graphics

Ordinary Differential Equations
« Usually the independent variable Is treated

as time (t) X=T(x1)
Example
; 100

X |X| N T N A Y A A A
' S N N U N Y A A A
o =5 k ’k>0 I T Y
y |y| 50&“&&\\\1.‘;’/1’/;—",—’
or— — — = - ST
l—" " 7 Sy N e e e T
L J S S NN
e
e L O
100 AR/ A A B A W W AN .
-100 -50 0 50 100

Computer Graphics

More Examples

sin(yt)

COS(Xt
[cos(xt)

X

y

L0770 77700 TAAAAANA Y
{77777 77 PV
7777770 YNNG

PV T
e e e e e e e

B T T

10

10

10

| !
N7
N\
T N N I gy
[T N N N N N T R i R |
7N
T\\ \i;/////i

! R Y =
A SR A A T N x\;/d_,-aﬂl
[N O N AN N Y
NN
b7V T ANN T TR
PSS /0O T /N
RN VAT ANV O TN Vg S g
L AN NSNS AN
NN YZANNINZINS
e N N P e N I b Y
N AN
“\\“//M \\, “\\“/N

-10

oy
-
B
=
G
~
2
s,
5
)

Intuition

<+ Imagine a vector field

a field (flow) direction specified by
> location, and
> time

2 a particle in the vector field will drift according to
the current flow direction where the particle Is

2 time independent - dropping something in a river
and watching it flows

a time dependent - dropping something in the ocean
and watching ocean waves carry it

Computer Graphics

Numerical Solutions

<« Advance a particle from its initial location through
(discrete) time steps

«» Many issues
0 accuracy

0 stability
0 efficiency

< Many solutions
2 Euler (explicit, implicit, modified)
0 Midpoint and Runge-Kutta
0 Multistep, predictor-corrector
0 Adaptive step size

Computer Graphics

Roadmap

Explicit Implicit
Euler Euler
| |
Modified
Euler
|
Multi-step Compound
Methods Methods
|
Pred‘ictor-
corrector
methods
|
Adaptive step
size

Computer Graphics

ISsues

« Accuracy

0 How close is the discrete solution going to be to
the continuous solution?

<« Stability
2 Numerical error unavoidable
2 Error accumulation to grow or decay?

<« Efficiency
2 How fast for each time step?
2 How large can each time step be?

Computer Graphics

(Explicit) Euler Method

<« GO In the tangent direction with distance
controlled by time step

X = f(x,1) X = —kX
(;—)t(: f(x,1) (;—)t(:—kx
Knsa = X0 Xnsa = Xn -
At i f(1 At L an

X . =X +At- f(x,t) X=X —kAtx =(1-kAt)x,

Computer Graphics

Questions

< |s Euler method accurate?
< |s Euler method stable?

< How close are the the exact and Euler
solutions?

Exact solution Euler solution
X = —kX X = —kxX
=X eKew X =X, —KAtx _, =(1-kAt)x

= X(nAt) =x e "™ =" ==KAb)"%,

Computer Graphics

X = —X X =(L-At)"x, 30-second simulation

k=1T=30Deltat= 0.10,n= 300

1- —— k=1,T=30,Deltat= 085, n= 35 k=1,T=30,Deltat= 150,n= 20
045 — 0, ——
04r nzk
0.35r a4tk
03r
ol
0.25¢
01F
02r
02F
0.15¢
01k -03F
0.05F 04r
, ,) , , 0 L | | L L | | 05 L L L)
0 50 100 150 200 250) 300 0 5 10 15 20 25 a0 35 0 5 10 15 20
k=1,T=30, Deltat= 250, n= 12 k=1,T=30Deltat= 300,n= 10
k=1T=30Deltat= 175, n= 17 180 — 00 - —
06 ——
100+
oar 100} ool
02r 00k

\/ U I
-04F
il

501
0B 00k

08 . . :)
0 -100

Computer Graphics

A graphical interpretation

X = —kX
At large step sizes At even large step sizes

»,

Computer Graphics

Observations (Explicit Euler)

<« Explicit Euler method can be made accurate - as
long as you can tolerate (very) small step size

<+ |t can be made stable (not blowing up!) with
(appropriate) small step size

<« Explicit Euler Is easy to understand

« But i1t Is seldom used in the real world (homework
assignments are not real world, but should be
treated as such ©) X = —kx

X ., =(1—kAt)"x,

= 1-kAt>-1

= kKAt <2

2
25N =
K Computer Graphics

How Small Should Step Size Be?

+ The larger the k, the smaller the step size

<« Equation of large k, or system of equations
with large varying k, are stiff

X = —kX

X, =(@—KkAt)" x,
=1-kAt>-1

= kKAt <2

:>At£g
K

Computer Graphics

(Implicit) Euler Method

X=f(Xx,1)
dx
s 1051
o (x,1)
X

N+, Xn f
= X
At (n+1

Kns1 — At-f (Xn+1’tn+1) = X,

1

n+1)

Aiu1 =X\ T At- f (Xn+1’tn+1)

X = —KX
dx
- =
X

—kx

— X
n+1 i _kxn+1
At

X, . +KAtX ., =X
1
Xn+1 :
1+ kAt

n

Xn

Computer Graphics

X = L X,
(1+ At)"

k=1,T=30 DReltat=_010.n= 300 k=1 T=30DRsltat=_150.n= 20
1r 04

30 -second simulation

0351
03r
0251

02r

0 5 10 15 20

100 150 200 250
k=1,T=30, Deltat= 500, n= &

k=1,T=20,Deltat= 200 n= 1%
' ! ee—— 018
0351

03F
025} 012k

02t 0Ar
008}
0.06
01t 004l

005 0.02f

Computer Graphics

Observations (Implicit Euler)

<« Accuracy depends on step size
<« Absolute stability, regardless of the step size
«» A magic bullet for many “stiff” system

«» More complicated (not necessarily direct
evaluation), try f =ax’+bx+c or

f =acosx+Dbsinx
<« LInearization maybe needed

«» EXpensive, seldom used in the real world
(think about system of equations)

Computer Graphics

(Modified) Euler Method

%= f (x1)

dx
—=f(xt
~ (X,t)

X a1

n+1

At
Xn1 _? f (X

n+1?

:—(f(xn AR ER SR

1:n+1) ii Xn +% f (Xn’tn)

X = —kX
O = —kx
dt
Xn+1 ~ Xn k
= — Wt A
At 2
X M= : AtX, ., = X —Exn
1_gm
Xn+1 — k Xn

1+ — At
2

Computer Graphics

 (1-0.5At)"

X, = ., 30-second simulation
(1+ 0.5At)"

>

k=1,T=30Deltat= 020,n= 150 k=1,T=30Deltat= 135 n= 22
097 03
025}
02t
015}
01¢
005}
50 100 150 00 5 10 15 20 25
k=1,T=30,Deltat= 3.00,n= 10 k=1,T=30 Deltat= 500,n= 6
005
ol
005}
04t
0.15
-0_20 5 p : : 7 '0'51 2 3 P 5 6

Computer Graphics

Observations (Modified Euler)

<« Use trapezoidal rule

<« Accuracy depends on step size
(Surprisingly: it 1Is more accurate than either
explicit or implicit method)

<+ Absolute stability, regardless of the step
Size

«» More complicated (not necessarily direct
evaluation)

<+ Basls for other advanced techniques

Computer Graphics

Accuracy of Euler Methods

(b + At) = x(t) + X(t) At + X(1) —t FX(D) A—t i

Explicit Euler : x(t + At) = x(t) + X(t) At
d| Error:0(At?)

Implicit Euler : x(t + At) = x(t) +H X(t + At)At

-
-
TR~ - -

X(t+ At) = X(t) + XA+ KA + K (1) 2 7 oy

Error : O(At%)

Computer Graphics

Accuracy of Euler Methods (cont.)

Modified Euler : x(t + At) = x(t) + % (X(t) + X(t + At))At

2

X(t+At) = Xx(t) + X(t) At + x'(t)Az_tl |

3

X(t+At) = x(t) + % X(t)At + i{)'((t)At + X(t)At® + ')'('(t)Az—tl +---}

= X(t) + X(t)At + ; X(t)At* + = L x(t)—+

Error : O(At®)

Computer Graphics

Why Implicit Methods Don’t Blow Up?

X=—kx,k>0

Computer Graphics

Stability=(?)Accuracy

<+ In general, you can get a stable solution by
using a reasonably small step size

<+ T0 get high accuracy, step size needs to be
very small (with dumb methods)

<+ There are other technigues to increase
accuracy at large step size

Computer Graphics

Why not Higher Orders?

o |If
2 the goal Is to reduce the local approximation
error

0 Local approximation error is expressed in terms

of Taylor series
<+ Then
2 Why not compute more terms in the expansion?
X(t + At) = x(t) + X(t) At +)'('(t)ATt!2 + X (t) A?tl?’ SIERE

2 3
X(t+At) = x(O)+ fAt+ £ A 4 AU

\‘2'/' 3l

Computer Graphics

Answer

« Only f(x,t) (or x’) Is given explicitly
+ f7(x,1), etc (or x’, X”’”) can be hard to
evaluate

<« There are other methods to match the terms
In Taylor series to achieve high-order of
accuracy

2 Single-step, Compounding methods

20 Mutli-step methods

Computer Graphics

Midpoint Method
(2nd order Runge-Kutta)

«» Compound one-step method
<« Explicit for easy computing
<« 2nd order Is very similar to trapezoidal rule

« Caution: there are a number of 2" order
Runge-Kutta formulation, all with the same
error bound

Computer Graphics

Trapezoidal

+» Modified Euler < Trapezoidal — similar to
X=f(Xt) Modified Euler, but practical
dx
— =1 (Xt
- (x,1)
X e =X Sl
=0 =—(f(x,t)+ f(x +AtF(x ,t)t .
At 2((n n) (n (n) 1))
X = f(x,1)
2L f(x,t)
dt | X =[x+ AtF (X ,t)
Xeny @ 7 ’
n+lAt . :E(f(xn;tn)_l_ f(xn+1’tn+1)) EXleCltI
Implicit!

Computer Graphics

Example

X = —kXx
DX B L) o AT))
dt aL—7 /
X =X 1
0= — = (kx +Kk(X, +Atkx))
At 2

X ., =X —Atkx_ —%Atzkzxn = (1- Atk —%Atzkz)xn

Computer Graphics

Facts

«» O(At’) accuracy

0 Explicit, easy to compute, but not absolute
stable

<« Other compounding methods possible

< Compound can be done many many times,
the most famous Is the 4th order Runge-
Kutta with o(at®)

Computer Graphics

General Compounding Methods

<« Evaluate the expression f(x,t) multiple times
In a single step

2 At different location (x) and different time (t)

2 But all explicit

<+ 2" order (midpoint) actually corresponds to
determine a, b,c In the following expression

0 Evaluate the derivative at different place (b),
different time (c), and different weighting (a)

X =af (Xx+b,t+c) cf x= f(x,t)for Explict Euler

Computer Graphics

Matching Process

. AT
X1 =X, +AtXn —I—7Xn+...

/ X =af (x+b,t+c)

Xyt = X, +ALT (X, t)+A2if'(xn,n)+ o

)
=X, + At f(x,,t)+ 2 (6f(2tt)+af(2:(’t)®

of (% ,t.) 8f(xn,t)

=X, +At f(x,,t,)+ 2(o @)+

AL Of (x,,t,) | A’ afx,n
=X, + AL F (X, t,)+ (at) - (a:(f (X t,)

X, ., =X, +aAtf (x+b,t+c)

of of
X ., =X +aAt[f (x,t)+—b+—C+---
n+1 n [() ax at]

X, .. =X +Ataf (x,t)+Atﬂab+At@ac+---]
OX ot

Computer Graphics

Matching Process

A OF (X,,t,) A Of (x,,t,)
2 ot 2 X

X .. =X +At f(x ,t)+ f(x,.t,)

Aexs 2 5014 24
2 2

Xn = X, +Ataf (x,t)+At@ab+Atiac+---]
OX ot

1:(Xn’tn))'(:af(x+b,t+C) /
At Al
= f(X+= f,t+r|')

Mid-point methods

Computer Graphics

General Compound Methods

<+ Successive recursions (many more times)

<+ 4th-order is the most popular

f, = f(X+Atf,, 1 + At)

X=af(X—|—b,t+C) At At
f.=AtF (X+— f,,t+—

:f(x+%f,t+%) 2 SRy ey
At At

foe A (O
2 (5l 2)

f, = Atf (X,1)
R e = & g e) R

One evaluation on the left 0 /[\

Two evaluations in the middle

One evaluation on the right

Computer Graphics

Multi-Step Methods

<« Utilize multiple past and present values
Instead of just one (at time n-1)

<« EXplicit, easy to compute
<« Implicit also possible for stability

<« Can be made into arbitrary orders of
accuracy (using enough terms)

<« For smooth fields (f’, f’’, etc. should exist)
« Compare to

Computer Graphics

Comparison

«» Compound methods <« Multi-step methods
< Multiple evaluations <+ Single evaluation of f

of f in a single step In a single step
< Do not use past values < Use past values of f
< Do not assume < Work best with
smoothness over time smooth fields (f*, 7,
» Good accuracy (4t ", etc. exist)

order) <« Very high accuracy

Computer Graphics

Multi-Step Methods

<« Explicit (Adams-

< Implicit (Adams-

i et » Jf

Bashforth) Moulton)
X = f(x,1) f at previous times
ady calculated, might as well use them
Pull 7 Mot o faE Y eSg="
Al
X=f(x1)
X..a—X
n+lAt = CO 1:n+1 IE Cl 1:n e C2 1:n—l

= Q: What should the coefficient c_p be?
= A: Chosen to match as many terms in the Taylor expansion

as possible

p n—p+l

Computer Graphics

Example - Explicit, 2nd order

2!

Xn+1 —X

At

= of (Xn,tn) a8 ,Bf (Xn—litn—l)

2
X =X +aAtf + BAHT — f' At+ fn"Az—t,—---}

3
X ., =X +(a+pB)f At—pf 'At? +,5‘fn"A2_tl_...
Error : O(At°)
a+ =1

1
e,

Computer Graphics

Observation:Multi-Steps

« Again
2 implicit methods afford high accuracy with
good stability

athe cost Is again in evaluating the extra term in
the implicit methods (pretty difficult if f is not
linear!)

0 Good for smooth functions requiring high
accuracy

Computer Graphics

« Explicit

stability error

Cy C, C, o,

threshold constant
O(At?) 1 -2 1/2
O(At’) 3/2 -1/2 -1 5/12
O(At*) 23/12 -16/12 5/12 -6/11 3/8

O(At’) 55/24 -59/24 37/24 -9/24 -3/10 251/720

— kAt > stability threhold

> stability threhold
3 —k

At

Computer Graphics

Predictor-Corrector Method

<+ Use the explicit formula to predict a new x,,,

KoL oo LA Tl T T,)

n+1

+ Use y - to evaluate the right side

fn+1* -~ f (tn+1’ Xn+1*)

Use fn+1*in the implicit formula to correct the new X, 4

X o= Kb AU(ChlIg ittt cJ f |+ o T 4)

n+1

Computer Graphics

Error Sources

< So far we concentrated on truncation error —
l.e., we didn’t use enough terms in Taylor
series

<« Another source Is numerical (10"-16 for
double due to limited machine precision)

E=E_, +E

roun

<« Eround: error in calculating derivatives
<« Etruncate: omission in Taylor expansion

truncate

Computer Graphics

Error Sources

<+ Reduce step size <+ Increase step size

0 Truncation error O Truncation error
becomes smaller becomes larger

2 Numerical error 2 Numerical error
accumulates faster accumulates slower
from many steps from fewer steps

0 Simulation becomes 0 Simulation becomes
smaller faster

E = Eround s Etruncate

Computer Graphics

Error Sources (cont)

<+ Obviously, some trade-off exists with an
optimial step size
~(Eround/max(Etruncate))”0.5
+ Easier said than done
2 How to find Etruncate
a Etruncate 1s not a constant over the whole domain

<« Adaptive step size Is the key

Computer Graphics

Adaptive Step

<+ T0 speed up simulation neec

Size

s large step size

<« To maintain stability and im
need small step size

OIrove accuracy

<+ The step size should be adapted depending

on the required accuracy

Computer Graphics

position

X = —KkX
X 1% F O(Atz)
X[1% F O(Atz)
Xou 1% F O(Atz)
Tt

< Error can be estimated from the difference of two Euler
steps

<« Steps can be enlarged or shrunk based on the desired
accuracy

Computer Graphics

Adaptive step sizes

true accuray
X1~ Kna |: O(Atz)

desired accuray change

1

—4
10°* 1078 (10]At 100At

10°8
1
-4\ >
10 1i3 10] At = .316At

Higher accuracy tfjan required, increase step size

Not enough accuracy, decrease step size

Computer Graphics

Last Word

<« If you are a numerical analyst, this does not

ap
< Ot

d

d

nly to you ©
Nerwise

Don’t use Explicit Euler (not accurate, blowing

up)
Don’t use Implicit Euler (too expensive)

0 2" or 41 order Runge-Kutta with step control is
for you

Computer Graphics

Solver Structure

<« Heart Is dxdt (a function you supply)

<+ Wrapped around by fixed step Euler,
Midpoint, Runge-Kutta, etc.

< \Wrapped around by a step size controller

Computer Graphics

Solver Structure

(Xn 1 1:n , AL, € desired ™) \

(Xn+1 ! 1:n+1’ At

optimal * *)

Computer Graphics

Example: 4th-order Runge-Kuta

ginclude "mrutil.h"

vold (sderivs)(float, float [], float [Ji3d

{
int 1i;
float xh,hh hé, +dym, #dyt +yt;

dym=vector (1,n);
dyt=vector(i,n);

yt=vectoril,m);
hh=h+0.E;
hé=h/&.0;
rh=x+hh;
for (i=1;i<=n;i++) yt[il=y[il+hh+dydx[i];
(*#darivs) (xh,yt ,dyt);
for (i=1;i<=n;i++) yt[il=y[il+hh+dyt[i];
(*#derivs) (xh,yt ,dym);
for (i=1;i<=n;i++) {

ytlil=y [i]+h*dym[i];

dym[i] += dyt[i];
+
(*deriva) (x+h,yt,dyt);
for (i=1;i<=n;i++)}

yout [1]1=y[i]+hE+ (dydx [i]+dyt [1]1+2.0*dym [1]3;
free_wactor(yt,1l,nj;
free_wactor(dyt,1,n);
free_wector(dym,1,n);

void rkd4{float y[], float dydx[], int n, fleoat x, float h, float yout[],.

Given values for the variables y [1. .n] and their derivatives dydx[1..n] known at x, use the
fourth-order Runge-Kutta method to advance the solution over an interval h and return the
incrementad variables as yout [1..n], which need not be a distinct array from y. The user
supplies the routine derivs(x, y,dydx), which returns derivatives dydx at x.

First step.
Second step.

Third step.

Fourth step.
Accumulate increments with propgr
weights.

Vi Vs

‘lllllllllllllll’

h

- Graphics

Example: RK with Step Control

#include <math.h>

#include "mnrutil.h"

#dafine SAFETY 0.9

tdofine POROW -0.2

#dafine PSHRIKE -0.25

tdofine ERRCON 1.89%9a-4

The wvalue ERRCON equals (E/SAFETY) raised to the power (1/PGROW), see use below.

void rkqs(flocat y[], float dydx[], int n, float *x, float htry, float eps,

float yscalll., float =*hdid, float *hnext,

wold (+derivs) (float, float []1, float []1232
Fifth-crder Runge-Kutta step with monitoring of local truncation error to ensure accuracy and
adjust stepsize. Input are the de pendent variable vector w[1. .n] and its derivative dydx [1. .l
at the starting value of the independent wariable . Alsc input are the stepsize to be attemptad
htry, the required accuracy eps, and the vector yescall[l..n] against which the error is
scaled. On output, ¥ and x are replaced by their new wvalues, hdid is the stepsize that was
actually accomplished, and hnext is the estimated next stepsize. derive is the user-supplied
routine that computes the right-hand side derivatives.
1

woid rkcki{float w[], float dydxz[], int n, float x, float h,

float yout[], fleat yerr[], woid (+deriwvs){float, fleoat []1, fleoat [133;
int i;
float errmax.h, htemp,Xnew,+yarr,+ytamp;

yarr=vector{l, n);
yromp=vactor(l,n;
h=htry;
for ¢;;3 {

rkckiy.,dydx.n,+x h, ytemp,yerr,derivs) ; Talke a st=p.

arrmax=0.0; Evaluate accuracy.

for (i=1;i<=n;i++) errmax=FMAX {errmax,fabs{yerr[il/y=cal [i]));

Srrmax /= aps; Scale relative to required tolerance.

if ferrmax <= 1.0) break; Step succeeded. Compute size of nect step.

htemp=SAFETY+h*pow{arrmax, FEHRNK) ;

Truncation error too large, reduce stepsize.

h=Ch »>= 0.0 ¥ FMAX(htemp,O.1=*h) : FMINChtemp,O.1+h)3};

Mo more than a factor of 10,

xnew=(*x)+h;

if (xnew == *xX) nrerror{"stepsize underflow in rkqgs"J;

Set stepsize to the initial trial waloe.

+
if (errmax > ERRCON} s+hnext=5AFETY*h*powl{errmax,PGROW) ;
alse *hnext=5.0+h; Mo more than a factor of & increase.
*¥ += (*hdid=h) ;
for (i=1;i<=n;i++) ylil=ytempli];
free_vector{ytemp,1.nl;
froc_vector{yerr.,l.nl;
}

yn+1
Yn

‘lllllllllllllll’

htry

yn+1
Yn

PR S
hdid
@rrrnnnnnnn P

h

. next
Computer Graphics

Example: Other Options

void rkckifloat y[], float dydx[], int n, float x, float h, float youtl[],

float yerr[], woid (sderivs) (float, float [], fleoat [1})
Given wvalues for n variables v [1..n] and their derivatives dydx [1. .n] known at x, use
the fifth-order Cash-Karp Runge-Kutta method to advance the solotion over an interval h
and return the incremented variables as yout [1..n]. Also return an estimate of the local
truncation error in yout using the embedded fourth-order methad. The user supplies the routine
derivsix, v,dyd=x), which returns derivatives dydx at x.

Final results In reality
e @)
Yn+1 Yn+1
yn yn € P Grrnnn >

IS JF ey > rkqs rkqs

« WIill advance by h (may take multiple steps,
or multiple calls to rkgs)

Computer Graphics

Example: Other Options

#include <math.h>

#include "nrutil.h"
#define MAXSTE 10000
fdefine TINY 1.0a-30

axtern int kmax,kount;

extern float =*xp,**yp,drsav;

User storage for intermediate results. Preset kmax and dxsav in the calling program. If kmax =
0 results are stored at approximate intervals dxsav in the arrays xp[l. . kount], yp[l. .nvar]
[1..kount] where kount is cutput by edeint. Defining declarations for these variables, with
memaory allocations xp[1. kmax] and ypll. .nvar] [1. . kmax] for the arrays, should be in
the calling program.

void odeint(float ystart[], int nvar, fleoat x1, float x2, float eps, float hi,
float hmin, int *nok, int *nbad,
void (+derivs) (float, float [], float [1),
void (+rkqgs) (float [], fleat [], int, float =*, float, float, float [],
float *, float =+, void (*) (float, float [], float []13))
Runge-Kutta driver with adaptive stepsize control. Integrate starting values ystart [1. .nvar]
from x1 to x2 with accuracy eps, storing intermediate results in global variables. hl should
be set as a guessed first stepsize, hmin as the minimum allowed stepsize {can be zero). On
output nok and nbad are the number of good and bad {but retried and fixed § steps taken, and
vatart is replaced by values at the end of the integration interval. derivs is the vser-supplied
routing for calculating the right-hand side derivative, while rlegs is the name of the stepper
routine to be used.

‘....."...I’.]...>‘.............>‘.............>
1 2 n

yend

Computer Graphics

Stiff Systems

< Nightmare in numerical solutions

+» Need small steps to maintain numerical
stability

<« But the Interesting phenomena are really at
large time scale

<« Take a long time vs. blowing up

«» May need implicit methods to achieve fast
simulation without blowing up

Computer Graphics

If A has eigen vect ors (u,,u,), and eigen valu es (4,, 4,)
= | + AtA has eigen vect ors (u,,Uu,), and eigen valu es (1+ AtA,,1+ AtA,)

> = C,U; +C,U,

= | " |=(+AtA)"(cu, +c,u,) =c, 1+ AtA)"u, +c, 1+ At2,)"u,

Computer Graphics

Observations: stiff systems

<« Whether the simulation blows up depends

M @A) k1

<+ If elgen values are of vast distinct sizes, a
stiff system results

<« The most negative eigen value determines
the speed of simulation

+ It is also the part of the simulation that
quickly dies out and not of interest

Computer Graphics

Try this!

|

a b
c d

]

4

X
Y,

X

:

y

i)

<« First order
Q convergent (e.g., a=d=-

|

5, ¢=0d=0) x| [cos® —sin@]x] [1 O x]
0 orbiting (a rotation, e.g. M_Line cos@}{y}_{O 1}{y_
a=d=0, b:2,d=-2) _|cosf-1 -—sing | x| |0 -6
0 spiral - combination of | sing 0059—1}{&{9 0 }
the above

a b
c d

X
¥

b

< Second order

Computer Graphics

< What 1s the difference between 1st and 2nd
order simulations?

1st order 2nd order
specify location directly specify velocity instead
of location
M: (%)
0

o Ll o

Vxn
\. Vy mel R Vxn Atf
@ " or pdlis | v, +Atf (X,)

Computer Graphics

<« A simulation with a=d=-5, b=c=0
2 can be free of oscillation if step size is properly
chosen

0 cannot be made oscillation free without a
damping term

Computer Graphics

