
Overview

3D Production Pipeline

 Story Character Design Art Direction

Storyboarding Vocal Tracks 3D Animatics

Modeling Animation Rendering Effects

 Compositing

 Basics : OpenGL, transformation

 Modeling : curves and surfaces

 Animation : kinematics (FK/IK), shape

interpolation

 Rendering : shader, file texture, raytracing

 Effects : pariticle systems, soft boy, rigid body, hair

Story

 CG vs. non-CG

 2D vs. 3D

 Mixtures (Lord of the Ring, Harry Potter,

Who Frames Roger Rabbit, Avatar) vs.

complete (Mr. Incredibles)

 Style, proportion, different poses and emotions, clay models,

anatomical study, behavior, etc. (Add life)

Character Development

 Visual style (realism, cartoon, abstract), color palettes, overall

complexity

Art Direction

 Tell the story visually (beats, flow, tightness), planning shots,

camera, layout, etc.

Storyboarding & Vocal Tracks

 Planning shots, camera, layout, layering with billboards and

simple geometry, only animate the camera

3D Animatics

 Characters, props, and background elements, low & high

resolution, models, 3D scanners

Modeling

 (Character rigging) : to setup IK or FK joints, skinning, blend,

shape, deformer, skinning

Character Setup

Rigging

skeleton

control

IK&FK control

Facial control

 Low resolution model, blocking, timing, details such as

secondary motion

Animation

 Shading, Texturing, Lighting, Rendering : writing shaders,

assigning materials, testing global illumination approaches,

baby sit rendering farm

Visual Effects (FX)

Compositing : multi-pass

http://www.macworld.com/2005/05/images/content/shake_big.jpg
http://www.macworld.com/2005/05/images/content/shake_big.jpg

Modeling

Animation

Rendering

FX

Assets Management System (Maya)

Character Setup

Vocal Tracks

Character Development

3D Animatics

Compositing

Movie Pipeline (Non-realtime)

 Art vs Game Engine

 Art pipeline is very similar to film production pipeline

 Game Engine

 Put together the animation and stages into the virtual world

 Mimic tools in 3D package (memory and performance constraints)

 Taking advantage of the state-of-art graphics hardware

 Using 3rd party game engine components

 Physics are important (Angry Bird, Bowling, Flight simulator, etc.)

Game Pipeline

Image Quality

 Minimize the amount of data being passed around (separating

model & animation)

 Use multiple 3rd party tools and internal tools (File format)

 Performance (File referencing : save only the changes, work at

different resolutions)

 Controlled access

 Handling blind data

 Data protection (Versioning system)

Pipeline Requirements

 Complete tool sets

 Modeling, Animation, Rendering, Cloth, Dynamics, Fluids,
Hair, etc.

 Graph architecture with node as black box

 Pull model and dirty propagation

 Refresh and getting an attribute to trigger graph evaluation

 Undoable commands

 Scripting language

 Run in interactive, prompt, and batch modes

 API (application programming interface)

 Powerful UI paradigm

 Interpreted via scripting, marking menu, hot key

 Alias/Wavefront (Maya), Autodesk (3D Studio Max)

3D Software

 CG Film Industry

 Pixar – Toy Story I & II, Monster Inc., Bug’s Life,
Incredible, Cars

 Pacific Data Image – Ants, Shrek, Madagascar

 DreamWorks – Shark Tale, Over the Hedge

 Disney – Chicken Little, Toy Story III

 Blue Sky – Ice Age, Robots

 FX House

 ILM (leader in FX) – Star Wars

 Weta – Lord of the Rings, King Kong

 SONY Image Works (animal, fur, motion capture) – Stuart
Little, Polar Express

 Game Industry $$

 Learning from film production, shorter time frame

 Electronic Arts (EA) sports games

 Activision, Microsoft, Nintendo, Sony, Lucas Arts

Who is Who

 Performance and memory issues with fluids (GPU?)

 Still way too much effort to make 3D animation

 Unified solver

 Build in intelligence so that the secondary animation is

handled automatically

Future

Graphics Hardware Pipeline
(input) triangles vertex transformation (output) transformed vertices

(input) transformed vertices rasterization (output) pixel location stream

(input) pixel location stream fragment process (output) frame buffer

Vertex shading with constant vertex color

Programmable vertex shader (Nvidia’s Cg)

Pixel shader (NVIDIA’s Cg)

Read Cg Tutorial Chapter 1, p.13 – p.20, available at

http://download.nvidia.com/developer/cg/Cg_Tutorial/Chapter_1.pdf

 Hardware graphics is super fast. However, its single precision is not sufficient

to handle large scene or give enough depth precision for compositing.

 The trend is hardware accelerated software rendering and GPU programming.

http://download.nvidia.com/developer/cg/Cg_Tutorial/Chapter_1.pdf

Programmable GPU

V
er

te
x

P
ro

ce
ss

in
g

F
ra

g
m

en
t

P
ro

ce
ss

in
g

For This Course

 Programming heavy

 Not a course that teaches you artistic

skills!

 Expect nitty-gritty details instead

 CS130A is essential

 CS130B is helpful

 Math: review your matrix theory

Vectors and Matrices

 Matrix and vector

 (L2-)norm of a vector

 Orthogonal vectors

 Norm of a matrix

 Matrix-vector multiplication

 Matrix-matrix multiplication

 Transpose of a matrix

 Inverse of a matrix

Orthogonal Matrices

 Square matrix

 AAT=I, ATA=I

 A-1=AT

 Has orthogonal rows and columns

 Does not change the norm of a vector

 Represent a rotation (determinant=1), a

reflection (determinant = -1), or a

combination

