
Assignment #3

 As a graphics engineer, can you implement 

a “skeletal” rendering pipeline? 
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Computer Graphics

glMatrixMode(GL_MODELVIEW);

glLoadIdentity(T1);

glMultiMatrixf(T2);

…

glMultiMatrixf(Tn);

draw_the_object(v);

v’ = IT1T2Tnv

Modeling Transform

 As a global system

 objects move but coordinates stay the same

 apply in the reverse order



Tasks

 Need a stack (CS16, 24)

 Push & pop

 Need to create matrices (4x4)

 Need to multiply matrices (4x4)
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Why 4x4 not 3x3? 

 Use of homogeneous coordinates

 [x,y] -> [wx,wy,w] 

 [wx,wy,w] -> [wx/w, wy/w, w] -> [x,y]

 [x,y,z] -> [wx, wy, wz, w]

 [wx, wy, wz, w] -> [wx/w, wy/w, wz/w] -

>[x,y,z]

 One dimension up (w!=0)
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Reason #1

 All operations (including translation) are 

now matrix operations

 Hierarchical transforms (multiple T, R, S) 

are computed once (top matrix in the stack) 

and applied 
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Euler Angle Rotation
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Transformations

 Translation  Scaling
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Modeling Transform Your Way

 Implement a stack with push and pop

 Replace OpenGL codes with your own 

codes
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Viewing Transform

 So the user specifies a lot of information 

Eye

Center

Up

Near, far, 

 Left, right top, bottom, etc.
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CENTER
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 What does a system programmer do with 
those numbers?

 Generate screen coordinates correctly and 
efficiently

 Inside/outside test

 Projection

 Here comes the part which contains math 
which you may not like

 But all you need to know is matrix 
operation

What does OpenGL do?
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Arbitrary View Volume
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Inside-Outside Test (Clipping)

 Intersection of 

A plane and 

A Line
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Clipping in Canonical Volumes
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Clipping with 6-bit outcode

 Perspective

 Above y>-z

 Below y<z

 Right x>-z

 Left   x<z

 Behind z<-1

 In front z >zmin

 Parallel

Above y>1

Below y<-1

Right x>1

Left   x<-1

Behind z<-1

 In front z >0
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Projection

 Again, an intersection of 

A plane and 

A Line

EYE
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Sidebar: Reason #2 

 A pin-hole model without inversion (f=1 in 

OpenGL) 
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Canonical Volumes
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Sidebar: Reason #2 

 Traditional Way  Matrix Way
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Computer Graphics

Problem

 Both clipping and projection can be done 

efficiently in a canonical volume

 But we do not have a canonical volume in 

general

 Solution: Normalization transform

A single matrix operation to bring objects in 

any arbitrary volume into a canonical volume

Cannot change what the user sees
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Normalization Transform
 A transformation to facilitate clipping and 

projection

X

Y

Z

An arbitrary view volume:

Expensive for clipping and projection
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X

Y

Z

The canonical view volume:

Simple clipping (six-bit outcode)

Simple projection (x/z, y/z)

Y

Z

y z 

y z

z  1

z z min

45o



Computer Graphics

OpenGL Terminology
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Normalization Transform
Perspective - OpenGL

 External parameters

 Translate EYE into origin

Rotate the EYE coordinate system such that
w (e-c) becomes z

 u becomes x

 v becomes y

 Internal parameters

 Shear to have centerline of the view volume 

aligning with z

 Scale into canonical truncated pyramid
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Existing Rendering Pipeline
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Rendering Pipeline with 

Normalization Transform
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Changes

 Modeling + Viewing + Normalization get 

concatenated into ONE transform before 

applying to any primitives

 Confusion: normalization does not just push 

the eye frame back to origin and line up 

with world frame, it pushes objects away 

too

 Purpose: to make clipping and projection 

much more efficient



Clipping? 

 Polygon clipping algorithm discussed 

earlier 

 For inside/outside determination



What Else?

 Start from polygon with vertices

 End with polygon with vertices

 Visible surface determination

 Painter’s algorithm (sort by depth)

 2D painting

 Interior: Scan conversion 

 Exterior: Line drawing (Bresemheim)

 That is!

Computer Graphics
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Viewing Normalization

 Line up (X-Y-Z) and (U-V-W)

 Initially, (U-V-W) are specified in (X-Y-Z) 

system (In fact, everything is specified in 

X-Y-Z system)

 Some point in time, want to specify things 

in (U-V-W) system, or U becomes (1,0,0), 

V becomes (0,1,0), W becomes (0,0,1) 

 Translation (easy) + Rotation (hard)



Hand-eye Coordination
 A common problem in graphics, robotics 

and vision

 The camera and effector are not co-located 
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 From camera to robot

 R and O are in camera’s frame

 Rows are robot’s frame in 

camera’s system 

Computer Graphics
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Translate EYE into the origin
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Viewing Normalization

 Three rotations

Rotate about Y

Rotate about X

Rotate about Z
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Viewing Normalization
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Rotate EYE coordinate to align w. world system

X

YZ

u

v

w
X

Y

Z

u

v

w



Computer Graphics

Shear
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Scale into canonical volume
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Example
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• Translate EYE into the origin
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• Shear
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• Scale into canonical volume

• scale in x and y 

• scale in z 
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Comparing Canonical Volumes

 One additional division is needed in perspective

Z
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Matrix Magic

 Try this:

Map perspective volume into parallel volume to 

save the division (note Zmin is NEGATIVE)
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Normalization Transform
Parallel (othographic) - OpenGL

 External parameters

 Translate EYE into origin

 Even though eye is not really where the viewer is

 Rotate the EYE coordinate system such that
 w (e-c) becomes z

 u becomes x

 v becomes y

 Internal parameters

 Translate to have centerline of the view volume 

aligning with z, and near plane at z=0

 Scale into canonical rectangular piped
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Viewing Normalization

 Line up (X-Y-Z) and (U-V-W)

 Initially, (U-V-W) are specified in (X-Y-Z) 

system (In fact, everything is specified in 

X-Y-Z system)

 Some point in time, want to specify things 

in (U-V-W) system, or U becomes (1,0,0), 

V becomes (0,1,0), W becomes (0,0,1) 

 Translation (easy) + Rotation (hard)
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Translate EYE into the origin

X

Y

Z

u

v

w

X

Y

Z

u

v

w



























1000

100

010

001

1

z

y

x

EYE

EYE

EYE

T



Computer Graphics

Viewing Normalization

 Three rotations

Rotate about Y

Rotate about X

Rotate about Z
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Viewing Normalization
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 Figuring out [u, v, w] in [x, y, z] system

 Applying a rotation to transform [x, y, z]

coordinates into [u, v, w] coordinates
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Rotate EYE coordinate to align w. world system
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Translation
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Scale into canonical volume
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Example
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• Translate EYE into the origin
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 Rotate EYE to align with the world system
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• Translation
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• Scale into canonical volume

• scale in x, y, and z 
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