Assignment \#3

* As a graphics engineer, can you implement a "skeletal" rendering pipeline?

Modeling Transform

: As a global system

\square objects move but coordinates stay the same
\square apply in the reverse order
glMatrixMode(GL_MODELVIEW);
glLoadIdentity $\left(\mathrm{T}_{1}\right)$; glMultiMatrixf(T_{2});
glMultiMatrixf(T_{n}); draw_the_object(v);
 $\mathbf{v}=\mathbf{I T}_{1} \mathbf{T}_{2} \mathbf{T}_{\mathrm{n}} \mathbf{v}$

Tasks

* Need a stack (CS16, 24)
\square Push \& pop
* Need to create matrices (4×4)
* Need to multiply matrices (4×4)

Why $4 x 4$ not $3 x 3 ?$

* Use of homogeneous coordinates
$\square[\mathrm{x}, \mathrm{y}]$-> [wx,wy,w]
- [wx,wy,w] -> [wx/w, wy/w, w] -> [x,y]
$\square[x, y, z]->[w x, w y, w z, w]$
a[wx, wy, wz, w] -> [wx/w, wy/w, wz/w] $>[\mathrm{x}, \mathrm{y}, \mathrm{z}]$
* One dimension up (w!=0)

Reason \#1

* All operations (including translation) are now matrix operations
* Hierarchical transforms (multiple T, R, S) are computed once (top matrix in the stack) and applied

Euler Angle Rotation

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
y \\
\hline
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
z
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
z^{\prime}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}
\end{aligned}
$$

Transformations

*Translation

* Scaling

$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{llll|l}1 & 0 & 0 & T_{x} \\ 0 & 1 & 0 & T_{y} \\ 0 & 0 & 1 & T_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccccc}S_{x} & 0 & 0 & 0 \\ 0 & S_{y} & 0 & 0 \\ 0 & 0 & S_{z} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z \\ 1\end{array}\right]$

Modeling Transform Your Way

* Implement a stack with push and pop
* Replace OpenGL codes with your own codes

Viewing Transform

* So the user specifies a lot of information
\square Eye
- Center
\square Up
\square Near, far,
\square Left, right top, bottom, etc.

What does OpenGL do?

* What does a system programmer do with those numbers?
* Generate screen coordinates correctly and efficiently
- Inside/outside test
\square Projection
* Here comes the part which contains math which you may not like
* But all you need to know is matrix operation

Arbitrary View Volume

Inside-Outside Test (Clipping)

* Intersection of
\square A plane and
\square ALine
plane : $a x+b y+c z+d=0$
line $:\left\{\begin{array}{l}x_{1}+t\left(x_{2}-x_{1}\right) \\ y_{1}+t\left(y_{2}-y_{1}\right) \\ z_{1}+t\left(z_{2}-z_{1}\right)\end{array}\right.$
$a\left[x_{1}+t\left(x_{2}-x_{1}\right)\right]+b\left[y_{1}+t\left(y_{2}-y_{1}\right)\right]+c\left[z_{1}+t\left(z_{2}-z_{1}\right)\right]+d=0$
$t=-\frac{a x_{1}+b y_{1}+c z_{1}+d}{a\left(x_{2}-x_{1}\right)+b\left(y_{2}-y_{1}\right)+c\left(z_{2}-z_{1}\right)}$
$0 \leq t \leq 1$
$\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right):$ end points of line

Clipping in Canonical Volumes

far plane=film

Clipping with 6-bit outcode

* Perspective
* Above y>-z
* Below $y<z$
* Right $\mathrm{x}>-\mathrm{Z}$
. Left $x<z$
* Behind $\mathrm{z}<-1$
* In front $\mathrm{z}>$ zmin
* Parallel
* Above y>1
- Below $y<-1$
* Right $\mathrm{x}>1$
* Left $\quad x<-1$
* Behind $\mathrm{z}<-1$
* In front $\mathrm{z}>0$

Projection

* Again, an intersection of
\square A plane and
\square ALine

Sidebar: Reason \#2

* A pin-hole model without inversion ($\mathrm{f}=1$ in OpenGL)

Canonical Volumes

Sidebar: Reason \#2

* Traditional Way

* Matrix Way

$$
\begin{aligned}
& x=f \frac{X}{Z} \\
& y=f \frac{Y}{Z}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Problem

* Both clipping and projection can be done efficiently in a canonical volume
* But we do not have a canonical volume in general
* Solution: Normalization transform
\square A single matrix operation to bring objects in any arbitrary volume into a canonical volume
\square Cannot change what the user sees

Normalization Transform

* A transformation to facilitate clipping and projection

Normalization Transform
 Perspective - OpenGL

* External parameters
\square Translate EYE into origin
\square Rotate the EYE coordinate system such that
$>$ w (e-c) becomes z
$>\mathrm{u}$ becomes x
$>v$ becomes y
* Internal parameters
\square Shear to have centerline of the view volume aligning with z
\square Scale into canonical truncated pyramid

Existing Rendering Pipeline

Rendering Pipeline with
 Normalization Transform

viewport
loeationaphics

Changes

* Modeling + Viewing + Normalization get concatenated into ONE transform before applying to any primitives
* Confusion: normalization does not just push the eye frame back to origin and line up with world frame, it pushes objects away too
* Purpose: to make clipping and projection much more efficient

Clipping?

* Polygon clipping algorithm discussed earlier
*For inside/outside determination

What Else?

* Start from polygon with vertices
* End with polygon with vertices
* Visible surface determination
\square Painter's algorithm (sort by depth)
* 2D painting
- Interior: Scan conversion
\square Exterior: Line drawing (Bresemheim)
* That is!

Viewing Normalization

* Line up (X-Y-Z) and (U-V-W)
* Initially, (U-V-W) are specified in (X-Y-Z) system (In fact, everything is specified in X-Y-Z system)
* Some point in time, want to specify things in (U-V-W) system, or U becomes $(1,0,0)$, V becomes $(0,1,0)$, W becomes $(0,0,1)$
* Translation (easy) + Rotation (hard)

Hand-eye Coordination

$\%$ A common problem in graphics, robotics and vision

* The camera and effector are not co-located

* From robot to camera
$\% \mathbf{R}$ and \mathbf{T} are in robot's frame
* Cols are camera's frame in robot's system

Translate EYE into the origin

Viewing Normalization

* Three rotations
- Rotate about Y
\square Rotate about X
\square Rotate about Z

Viewing Normalization

$\%$ Figuring out $[\mathbf{u}, \mathbf{v}, \mathbf{w}]$ in $[\mathbf{x}, \mathbf{y}, \mathbf{z}]$ system

* Applying a rotation to transform [$\mathbf{x}, \mathbf{y}, \mathbf{z}$] coordinates into $[\mathbf{u}, \mathbf{v}, \mathbf{w}]$ coordinates

$$
\begin{aligned}
& \boldsymbol{w}=\frac{\boldsymbol{e}-\boldsymbol{c}}{|\boldsymbol{e}-\boldsymbol{c}|} \\
& \boldsymbol{u}=\frac{\boldsymbol{u p} \times \boldsymbol{w}}{|\boldsymbol{u p} \times \boldsymbol{w}|} \\
& \boldsymbol{v}=\boldsymbol{w} \times \boldsymbol{u}
\end{aligned}\left[\begin{array}{c}
u \\
v \\
w \\
1
\end{array}\right]=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
w_{x} & w_{y} & w_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotate EYE coordinate to align w. world system

Shear

Scale into canonical volume

- scale in x and y

$$
S_{1}=\left(\frac{\text { near }}{\frac{\text { right }- \text { left }}{2}}, \frac{\text { near }}{\frac{\text { top }- \text { bottom }}{2}}, 1\right)
$$

- scale in z

$$
S_{2}=\left(\frac{1}{f a r}, \frac{1}{f a r}, \frac{1}{f a r}\right)
$$

Example

$E Y E=(10,10,10)$
CENTER $=(0,0,0)$ $U P=(0,1,0)$
$($ right, left $)=(20,0)$ (top, bottom $)=(20,0)$
$F=1$
$B=10$

- Translate EYE into the origin

$$
T_{1}=\left[\begin{array}{lll:c}
1 & 0 & 0 & 10 \\
0 & 1 & 0 & 10 \\
0 & 0 & 1 & 10 \\
O & 0 & 0 & 1
\end{array}\right]
$$

* Rotate EYE to align with the world system

$$
\begin{aligned}
& w=\frac{e-c}{|e-c|}=\frac{(1,1,1)}{\sqrt{3}} \\
& u=\frac{U P \times w}{|U P \times w|}=\frac{(0,1,0) \times(1,1,1)}{|(0,1,0) \times(1,1,1)|}=\frac{(1,0,-1)}{\sqrt{2}} \\
& v=w \times u=\frac{1}{\sqrt{6}}(1,1,1) \times(1,0,-1)=\frac{1}{\sqrt{6}}(-1,2,-1)
\end{aligned}
$$

- Shear
- Scale into canonical volume
- scale in x and y

$$
S_{1}=\left[\begin{array}{cccc}
\frac{1}{10} & \cdots & 0 & 0 \\
\ddots & \frac{1}{10} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- scale in z

Comparing Canonical Volumes

* One additional division is needed in perspective

Matrix Magic

Try this:

- Map perspective volume into parallel volume to save the division (note Zmin is NEGATIVE)

$$
\begin{aligned}
& M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{1+z_{\min }} & \frac{-z_{\min }}{1+z_{\min }} \\
0 & 0 & -1 & 0
\end{array}\right] \\
& N_{\text {per }}^{\prime}=M N_{\text {per }} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & \frac{-z_{\min }}{1+z_{\min }} \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
z_{\min } \\
z_{\min } \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
z_{\min } \\
0 \\
-z_{\min }
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{1+z_{\min }} & \frac{-z_{\min }}{1+z_{\min }} \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
-z_{\min } \\
z_{\min } \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-z_{\min } \\
0 \\
-z_{\min }
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]}
\end{aligned}
$$

Normalization Transform

Parallel (othographic) - OpenGL

* External parameters
- Translate EYE into origin
> Even though eye is not really where the viewer is
\square Rotate the EYE coordinate system such that
$>$ w (e-c) becomes Z
$>\mathrm{u}$ becomes x
$>\mathrm{v}$ becomes y
* Internal parameters
- Translate to have centerline of the view volume aligning with z , and near plane at $\mathrm{z}=0$
- Scale into canonical rectangular piped

Viewing Normalization

* Line up (X-Y-Z) and (U-V-W)
* Initially, (U-V-W) are specified in (X-Y-Z) system (In fact, everything is specified in X-Y-Z system)
* Some point in time, want to specify things in (U-V-W) system, or U becomes $(1,0,0)$, V becomes $(0,1,0)$, W becomes $(0,0,1)$
* Translation (easy) + Rotation (hard)

Translate EYE into the origin

Viewing Normalization

* Three rotations
- Rotate about Y
\square Rotate about X
\square Rotate about Z

Viewing Normalization

$\%$ Figuring out $[\mathbf{u}, \mathbf{v}, \mathbf{w}]$ in $[\mathbf{x}, \mathbf{y}, \mathbf{z}]$ system

* Applying a rotation to transform [$\mathbf{x}, \mathbf{y}, \mathbf{z}$] coordinates into $[\mathbf{u}, \mathbf{v}, \mathbf{w}]$ coordinates

$$
\begin{aligned}
& \boldsymbol{w}=\frac{\boldsymbol{e}-\boldsymbol{c}}{|\boldsymbol{e}-\boldsymbol{c}|} \\
& \boldsymbol{u}=\frac{\boldsymbol{u p} \times \boldsymbol{w}}{|\boldsymbol{u p} \times \boldsymbol{w}|} \\
& \boldsymbol{v}=\boldsymbol{w} \times \boldsymbol{u}
\end{aligned}\left[\begin{array}{c}
u \\
v \\
w \\
1
\end{array}\right]=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
w_{x} & w_{y} & w_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotate EYE coordinate to align w. world system

Translation

Scale into canonical volume

- scale in x, y, and z

$$
S=\left(\frac{1}{\frac{\text { right }- \text { left }}{2}}, \frac{1}{\frac{\text { top }- \text { bottom }}{2}}, \frac{1}{\text { far }- \text { near }}\right)
$$

Example

$E Y E=(10,10,10)$
CENTER $=(0,0,0)$ $U P=(0,1,0)$
$($ right, left $)=(20,0)$ (top, bottom $)=(20,0)$
$F=1$
$B=10$

- Translate EYE into the origin

$$
T_{1}=\left[\begin{array}{lll:c}
1 & 0 & 0 & 10 \\
0 & 1 & 0 & 10 \\
0 & 0 & 1 & 10 \\
O & 0 & 0 & 1
\end{array}\right]
$$

* Rotate EYE to align with the world system

$$
\begin{aligned}
& w=\frac{e-c}{|e-c|}=\frac{(1,1,1)}{\sqrt{3}} \\
& u=\frac{U P \times w}{|U P \times w|}=\frac{(0,1,0) \times(1,1,1)}{|(0,1,0) \times(1,1,1)|}=\frac{(1,0,-1)}{\sqrt{2}} \\
& v=w \times u=\frac{1}{\sqrt{6}}(1,1,1) \times(1,0,-1)=\frac{1}{\sqrt{6}}(-1,2,-1)
\end{aligned}
$$

- Translation

$$
\begin{aligned}
& S H=\left[\begin{array}{cccc}
1 & 0 & 0 & -10 \\
0 & 1 & 0 & -10 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right], \\
& a=\frac{\frac{\text { left }+ \text { right }}{2}}{\text { near }}=10, b=\frac{\frac{\text { top }+ \text { bottom }}{2}}{\text { near }}=10
\end{aligned}
$$

- Scale into canonical volume
- scale in x, y, and z

$$
S_{1}=\left[\begin{array}{cccc}
\frac{1}{10} & \ddots & 0 & 0 \\
0 & \ddots & \ddots & \\
\hdashline & \frac{1}{10} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

