
Assignment #3

 As a graphics engineer, can you implement

a “skeletal” rendering pipeline?

Computer Graphics

graphics

primitives

modeling

transform

viewing

transform
clipping

shading &

texture

projection
images in

Internal buffer

transform

matrix

Eye, lookat,

headup

material,

lights,

surface color

Parallel or

Persepctive

volume

images on

screen
viewport

transform

viewport

location

Computer Graphics

glMatrixMode(GL_MODELVIEW);

glLoadIdentity(T1);

glMultiMatrixf(T2);

…

glMultiMatrixf(Tn);

draw_the_object(v);

v’ = IT1T2Tnv

Modeling Transform

 As a global system

 objects move but coordinates stay the same

 apply in the reverse order

Tasks

 Need a stack (CS16, 24)

 Push & pop

 Need to create matrices (4x4)

 Need to multiply matrices (4x4)

Computer Graphics

Why 4x4 not 3x3?

 Use of homogeneous coordinates

 [x,y] -> [wx,wy,w]

 [wx,wy,w] -> [wx/w, wy/w, w] -> [x,y]

 [x,y,z] -> [wx, wy, wz, w]

 [wx, wy, wz, w] -> [wx/w, wy/w, wz/w] -

>[x,y,z]

 One dimension up (w!=0)

Computer Graphics

Reason #1

 All operations (including translation) are

now matrix operations

 Hierarchical transforms (multiple T, R, S)

are computed once (top matrix in the stack)

and applied

Computer Graphics

Computer Graphics

Euler Angle Rotation

X Y

Z

X
Y

Z

X

Y

Z

x

y

z

x

y

z

'

'

'

cos sin

sin cos

1

0 0

0 0

0 0 1 0

0 0 0 1 1

























































 

 

x

y

z

x

y

z

'

'

'

cos sin

sin cos

1

1 0 0 0

0 0

0 0

0 0 0 1 1


























































 

 

























































11000

0cos0sin

0010

0sin0cos

1

'

'

'

z

y

x

z

y

x





Transformations

 Translation  Scaling

X

Y

Z
z

x

y

X

Y

Z 2x

























































11000

100

010

001

1

'

'

'

z

y

x

T

T

T

z

y

x

z

y

x

























































11000

000

000

000

1

'

'

'

z

y

x

S

S

S

z

y

x

z

y

x

Modeling Transform Your Way

 Implement a stack with push and pop

 Replace OpenGL codes with your own

codes

Computer Graphics

Computer Graphics

Viewing Transform

 So the user specifies a lot of information

Eye

Center

Up

Near, far,

 Left, right top, bottom, etc.

X

Y

Z

UP

EYE

rightleft

bottom

top

bf

CENTER

Computer Graphics

 What does a system programmer do with
those numbers?

 Generate screen coordinates correctly and
efficiently

 Inside/outside test

 Projection

 Here comes the part which contains math
which you may not like

 But all you need to know is matrix
operation

What does OpenGL do?

Computer Graphics

Arbitrary View Volume

X

Y

Z

UP

EYE

rightleft

bottom

top

bf

CENTER

Computer Graphics

Inside-Outside Test (Clipping)

 Intersection of

A plane and

A Line

line of points end:),,(),,,(

10

)()()(

0)]([)]([)]([

)(

)(

)(

:

0:

222111

121212

111

121121121

121

121

121

zyxzyx

t

zzcyybxxa

dczbyax
t

dzztzcyytybxxtxa

zztz

yyty

xxtx

line

dczbyaxplane


























EYE

Computer Graphics

Clipping in Canonical Volumes

Z

Y

Y=-Z

Y=Z

Z=-1

Z=Zmin

45^o

Z

Y Y=1

Y=-1

Z=-1

(A,B,C)
(A,B,C)

far plane=film

near plane

Computer Graphics

Clipping with 6-bit outcode

 Perspective

 Above y>-z

 Below y<z

 Right x>-z

 Left x<z

 Behind z<-1

 In front z >zmin

 Parallel

Above y>1

Below y<-1

Right x>1

Left x<-1

Behind z<-1

 In front z >0

Computer Graphics

Projection

 Again, an intersection of

A plane and

A Line

EYE

Computer Graphics

Sidebar: Reason #2

 A pin-hole model without inversion (f=1 in

OpenGL)

f (v)

Z

X

x f
X

Z

y f
Y

Z





f (v) x

x

Computer Graphics

Canonical Volumes

Z

Y

Y=-Z

Y=Z

Z=-1

Z=Zmin

45^o

Z

Y Y=1

Y=-1

Z=-1

(A,B,C) (A,B) (A,B,C)
(A/C,B/C)

far plane=film

near plane

Sidebar: Reason #2

 Traditional Way  Matrix Way

Computer Graphics

x f
X

Z

y f
Y

Z




























































10100

1000

0010

0001

1

'

'

'

z

y

x

z

y

x

Computer Graphics

Problem

 Both clipping and projection can be done

efficiently in a canonical volume

 But we do not have a canonical volume in

general

 Solution: Normalization transform

A single matrix operation to bring objects in

any arbitrary volume into a canonical volume

Cannot change what the user sees

Computer Graphics

Normalization Transform
 A transformation to facilitate clipping and

projection

X

Y

Z

An arbitrary view volume:

Expensive for clipping and projection

Computer Graphics

X

Y

Z

The canonical view volume:

Simple clipping (six-bit outcode)

Simple projection (x/z, y/z)

Y

Z

y z 

y z

z  1

z z min

45o

Computer Graphics

OpenGL Terminology

X

Y

Z

UP

EYE

rightleft

bottom

top

bf

CENTER

Computer Graphics

Normalization Transform
Perspective - OpenGL

 External parameters

 Translate EYE into origin

Rotate the EYE coordinate system such that
w (e-c) becomes z

 u becomes x

 v becomes y

 Internal parameters

 Shear to have centerline of the view volume

aligning with z

 Scale into canonical truncated pyramid

Computer Graphics

Existing Rendering Pipeline

graphics

primitives

modeling

transform

viewing

transform
clipping

shading &

texture

projectionimages in

Internal buffer

transform

matrix

Eye, lookat,

headup

material,

lights,

surface color

Parallel or

Perspective

volume

images on

screen
viewport

transform

viewport

location

Computer Graphics

Rendering Pipeline with

Normalization Transform

graphics

primitives

modeling

transform

viewing

transform
clipping

shading &

texture

projectionimages in

Internal buffer

transform

matrix

Eye, lookat,

headup

material,

lights,

surface color

Parallel or

Perspective

volume

images on

screen
viewport

transform

viewport

location

normalization

transform

Computer Graphics

Changes

 Modeling + Viewing + Normalization get

concatenated into ONE transform before

applying to any primitives

 Confusion: normalization does not just push

the eye frame back to origin and line up

with world frame, it pushes objects away

too

 Purpose: to make clipping and projection

much more efficient

Clipping?

 Polygon clipping algorithm discussed

earlier

 For inside/outside determination

What Else?

 Start from polygon with vertices

 End with polygon with vertices

 Visible surface determination

 Painter’s algorithm (sort by depth)

 2D painting

 Interior: Scan conversion

 Exterior: Line drawing (Bresemheim)

 That is!

Computer Graphics

Computer Graphics

Viewing Normalization

 Line up (X-Y-Z) and (U-V-W)

 Initially, (U-V-W) are specified in (X-Y-Z)

system (In fact, everything is specified in

X-Y-Z system)

 Some point in time, want to specify things

in (U-V-W) system, or U becomes (1,0,0),

V becomes (0,1,0), W becomes (0,0,1)

 Translation (easy) + Rotation (hard)

Hand-eye Coordination
 A common problem in graphics, robotics

and vision

 The camera and effector are not co-located

Computer Graphics

 From camera to robot

 R and O are in camera’s frame

 Rows are robot’s frame in

camera’s system

Computer Graphics

x

yz

o

P=(xc,yc,zc)

P’=(xr,yr,zr)?

)(

'

'

'
'

OP

z

y

x

P 

























Computer Graphics

X Y
Z

o

P=(xc,yc,zc)

P’=(xr,yr,zr)?

TPOPOPOP

z

y

x

P 

































































































|||

|||

|||

|||

|||

|||

)(

|||

|||

)(

'

'

'
' ZYXZYXZYXZYX

T

 From robot to camera

 R and T are in robot’s frame

 Cols are camera’s frame in robot’s system

Computer Graphics

Translate EYE into the origin

X

Y

Z

u

v

w

X

Y

Z

u

v

w



























1000

100

010

001

1

z

y

x

EYE

EYE

EYE

T

Computer Graphics

Viewing Normalization

 Three rotations

Rotate about Y

Rotate about X

Rotate about Z

Computer Graphics

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

Y rotation

X rotation

Z rotation

UP

E-C

Computer Graphics

Viewing Normalization

w
e c

e c

u
up w

up w

v w u











 

| |

| |

u

v

w

u u u

v v v

w w w

x

y

z

x y z

x y z

x y z

1

0

0

0

0 0 0 1 1

























































 Figuring out [u, v, w] in [x, y, z] system

 Applying a rotation to transform [x, y, z]

coordinates into [u, v, w] coordinates

Computer Graphics

Rotate EYE coordinate to align w. world system

X

YZ

u

v

w
X

Y

Z

u

v

w

Computer Graphics

Shear

X

Y

Z

u

v

w
X

Y

Z

u

v

),
2

,
2

(near
bottomtoprightleft




),0,0(near

near

bottomtop

b
near

rightleft

a

b

a

SH

2,2

,

1000

0100

010

001







































w

Computer Graphics

Scale into canonical volume

-z

Y
2

bottomtop 

near far

-z

Y -1

45o

)1,

2

,

2

(1 bottomtop

near

leftright

near
S




)
1

,
1

,
1

(2
farfarfar

S 

• scale in x and y

• scale in z

2

bottomtop 


Computer Graphics

Example

10
1

)0,20(),(
)0,20(),(

)0,1,0(
)0,0,0(

)10,10,10(












B
F

bottomtop
leftright

UP
CENTER
EYE

X

Y

Z

Computer Graphics

• Translate EYE into the origin

T1

1 0 0 10

0 1 0 10

0 0 1 10

0 0 0 1



























 Rotate EYE to align with the world system

R 



 

























1

2
0

1

2
0

1

6

2

6

1

6
0

1

3

1

3

1

3
0

0 0 0 1

)1,2,1(
6

1
)1,0,1()1,1,1(

6

1
2

)1,0,1(

|)1,1,1()0,1,0(|

)1,1,1()0,1,0(

||

3

)1,1,1(

||






















uwv

wUP

wUP
u

ce

ce
w

Computer Graphics

• Shear

102,102

,

1000

0100

01010

01001









































near

bottomtop

b
near

rightleft

a

SH

Computer Graphics

• Scale into canonical volume

• scale in x and y

• scale in z
































1000

0100

00
10

1
0

000
10

1

1S

































1000

0
10

1
00

00
10

1
0

000
10

1

1S

Comparing Canonical Volumes

 One additional division is needed in perspective

Z

Y

Y=-Z

Y=Z

Z=-1

Z=Zmin

45^o

Z

Y Y=1

Y=-1

Z=-1

(A,B,C) (A,B) (A,B,C)
(A/C,B/C)

far plane=film

near plane

(1,-1)

(-1,-1)

(1,-1)

(-1,-1)

Matrix Magic

 Try this:

Map perspective volume into parallel volume to

save the division (note Zmin is NEGATIVE)

Computer Graphics





















































































































































































































1

0

1

0

0

0

1

0

0100

11

1
00

0010

0001

1

0

1

0

0

0

1

0

0100

11

1
00

0010

0001

0100

11

1
00

0010

0001

min

min

min

min

min

min

min

min

min

min

min

min

min

min

'

min

min

min

z

z

z

z

z

z

z

z

z

z

z

z

z

z

MNN

z

z

z

M

perper

Computer Graphics

Normalization Transform
Parallel (othographic) - OpenGL

 External parameters

 Translate EYE into origin

 Even though eye is not really where the viewer is

 Rotate the EYE coordinate system such that
 w (e-c) becomes z

 u becomes x

 v becomes y

 Internal parameters

 Translate to have centerline of the view volume

aligning with z, and near plane at z=0

 Scale into canonical rectangular piped

Computer Graphics

Viewing Normalization

 Line up (X-Y-Z) and (U-V-W)

 Initially, (U-V-W) are specified in (X-Y-Z)

system (In fact, everything is specified in

X-Y-Z system)

 Some point in time, want to specify things

in (U-V-W) system, or U becomes (1,0,0),

V becomes (0,1,0), W becomes (0,0,1)

 Translation (easy) + Rotation (hard)

Computer Graphics

Translate EYE into the origin

X

Y

Z

u

v

w

X

Y

Z

u

v

w



























1000

100

010

001

1

z

y

x

EYE

EYE

EYE

T

Computer Graphics

Viewing Normalization

 Three rotations

Rotate about Y

Rotate about X

Rotate about Z

Computer Graphics

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

Y rotation

X rotation

Z rotation

UP

E-C

Computer Graphics

Viewing Normalization

w
e c

e c

u
up w

up w

v w u











 

| |

| |

u

v

w

u u u

v v v

w w w

x

y

z

x y z

x y z

x y z

1

0

0

0

0 0 0 1 1

























































 Figuring out [u, v, w] in [x, y, z] system

 Applying a rotation to transform [x, y, z]

coordinates into [u, v, w] coordinates

Computer Graphics

Rotate EYE coordinate to align w. world system

X

YZ

u

v

w
X

Y

Z

u

v

w

Computer Graphics

Translation

X

Y

Z

u

v

w
X

Y

Z

u

v

),
2

,
2

(near
bottomtoprightleft




)0,0,0(

nearc
bottomtop

b
rightleft

a

c

b

a

T





























,
2

,
2

,

1000

100

010

001

w

Computer Graphics

Scale into canonical volume

-z

Y 2

bottomtop 

near Far-near

)
1

,

2

1
,

2

1
(

nearfarbottomtopleftright
S




• scale in x, y, and z

2

bottomtop 


-z

Y 1

near -1

1

Computer Graphics

Example

10
1

)0,20(),(
)0,20(),(

)0,1,0(
)0,0,0(

)10,10,10(












B
F

bottomtop
leftright

UP
CENTER
EYE

X

Y

Z

Computer Graphics

• Translate EYE into the origin

T1

1 0 0 10

0 1 0 10

0 0 1 10

0 0 0 1



























 Rotate EYE to align with the world system

R 



 

























1

2
0

1

2
0

1

6

2

6

1

6
0

1

3

1

3

1

3
0

0 0 0 1

)1,2,1(
6

1
)1,0,1()1,1,1(

6

1
2

)1,0,1(

|)1,1,1()0,1,0(|

)1,1,1()0,1,0(

||

3

)1,1,1(

||






















uwv

wUP

wUP
u

ce

ce
w

Computer Graphics

• Translation

102,102

,

1000

1000

10010

10001



































near

bottomtop

b
near

rightleft

a

SH

Computer Graphics

• Scale into canonical volume

• scale in x, y, and z



























1000

0
9

1
00

00
10

1
0

000
10

1

1S

