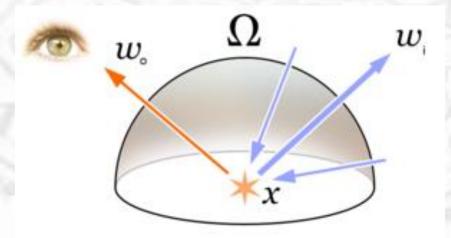
Rendering Equation

 $L_{\mathrm{o}}(\mathbf{x},\,\omega_{\mathrm{o}},\,\lambda,\,t)\,=\,L_{e}(\mathbf{x},\,\omega_{\mathrm{o}},\,\lambda,\,t)\,+\,\int_{\Omega}f_{r}(\mathbf{x},\,\omega_{\mathrm{i}},\,\omega_{\mathrm{o}},\,\lambda,\,t)\,L_{\mathrm{i}}(\mathbf{x},\,\omega_{\mathrm{i}},\,\lambda,\,t)\,(\omega_{\mathrm{i}}\,\cdot\,\mathbf{n})\,\,\mathrm{d}\,\omega_{\mathrm{i}}$

- Linear equation
- Spatial homogeneous
- Soth ray tracing and radiosity can be considered special case of this general eq.



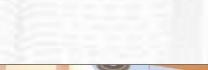
Reality (actual photograph)...

<u>Radiosity</u>

Minus Radiosity Rendering ...

Equals the **difference** (or error) image

http://www.graphics.cornell.edu/online/box/compare.html



Comparison

Ray tracing Radiosity

View point dependent Specular View point independent Diffuse

Radiosity

 Thermal heat transfer
 Light transport: transfer of energy from thermally excited surface

 Radiosity: rate at which energe leaves a surface

Emitted + reflected

Balance (equilibrium) determine the balance of incoming and outgoing flux

Radiosity

- * the amount of light (energy) that leaves a surface, including
 - □ self-emitting energy (source)
 - reflected and/or transmitted energy
 - radiosity = emission + bi-directional reflection
 - bi-directional reflection counts both reflection and transmission transport of both specular and diffuse components
 - □ bi-directional reflection is a function of
 - radiosities of all other objects in the environment
 - > how much received by the particular object

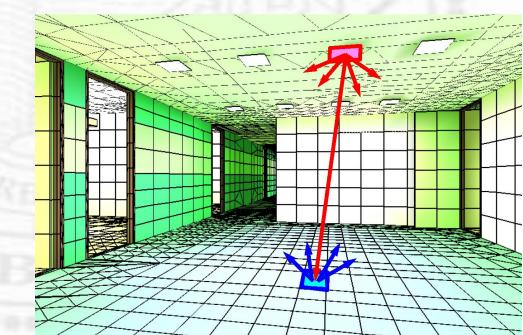
Mathematically

 $radiosity_i = emission_i + reflectivity_i \sum_j radiosity_j form_factor_{j \to i}$

 $B_i A_i = E_i A_i + \rho_i \sum_j B_j A_j F_{j \to i}$

 B_i, E_i : energy /(area · time)

 $F_{j \rightarrow i}$: $\frac{total \ energy \ received \ at \ patch \ i \ from \ path \ j}{total \ energy \ from \ patch \ j}$



$$B_{i}A_{i} = E_{i}A_{i} + \rho_{i}\sum_{j}B_{j}A_{j}F_{j \to i}$$

$$B_{i} = E_{i} + \rho_{i}\sum_{j}B_{j}F_{j \to i}\frac{A_{j}}{A_{i}}$$

$$B_{i} = E_{i} + \rho_{i}\sum_{j}B_{j}F_{i \to j} \quad (F_{j \to i}A_{j} = F_{i \to j}A_{i})$$

$$B_{i} - \rho_{i}\sum_{j}B_{j}F_{i \to j} = E_{i}$$

$$\begin{bmatrix} 1 - \rho_{1}F_{11} & -\rho_{1}F_{12} & \cdots & \cdots & -\rho_{1}F_{1n} \\ -\rho_{2}F_{21} & 1 - \rho_{2}F_{22} & \cdots & \cdots & -\rho_{2}F_{2n} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

Implementation Details

Reflectivity and emission may be functions of wavelength, hence, the equation may represent a family of equations (e.g., for red, green, and blue channels)
the form factors depend only on geometry

Implementation Details

In general

- the matrix can be very big (e.g., with 1000 patches the matrix is 1000x1000 or with one million entries)
- it is usually not sparse (nor tri-diagonal, nor banded limited, etc. etc.)
- □ iterative solution (e.g., Gauss-Seidal)

- Initially, all B's can be approximated by E's
- Order patches with sources first
- Patches adjacent to sources lit up, then they light up other patches ...
- Iterate until the numbers stablize

$$a_{11}B_1^{(n)} = -(a_{12}B_2^{(n-1)} + a_{13}B_3^{(n-1)} + \dots + a_{1n}B_n^{(n-1)}) + E_1$$

$$a_{22}B_2^{(n)} = -(a_{21}B_1^{(n)} + a_{23}B_3^{(n-1)} + \dots + a_{2n}B_n^{(n-1)}) + E_2$$

$$a_{ii}B_i^{(n)} = -(a_{i1}B_1^{(n)} + a_{i2}B_2^{(n)} + \dots + a_{i,i-1}B_{i-1}^{(n)} + a_{i,i+1}B_{i+1}^{(n-1)} + \dots + a_{in}B_n^{(n-1)}) + E_i$$

$$a_{nn}B_{n}^{(n)} = -(a_{n1}B_{1}^{(n)} + a_{n2}B_{2}^{(n)} + \dots + a_{n,n-1}B_{n-1}^{(n)}) + E_{n}$$

Standard radiosity methods

- Compute the form factors
- Solve the radiosity matrix equation using Gauss-Seidal method

Rendering

select viewing direction

 B_1

 B_{3}

determine visible surfaces

 \Box interpolate radiosity values

$$\begin{array}{c} b \\ B_{e} = \frac{B_{1} + B_{2} + B_{3} + B_{4}}{4} \\ B_{e} = \frac{B_{1} + B_{2} + B_{3} + B_{4}}{4} \\ B_{b} + B_{e} = B_{1} + B_{2} \\ B_{b} = 3\frac{B_{1} + B_{2}}{4} - \frac{B_{3} + B_{4}}{4} \\ \frac{B_{a} + B_{e}}{2} = B_{1} \\ B_{a} = 7\frac{B_{1}}{4} - \frac{B_{2} + B_{3} + B_{4}}{4} \end{array}$$

Form Factors

 Without being mathematically rigorous, form factors are affected by distance between two patches □ angles between two patches $\cos \phi_i \cos \phi_j$ $F_{dA_i \to dA_j} = H_{ij}$ $= dA_i$ N visible N_i not

dA

$$F_{dA_i \to dA_j} = H_{ij} \frac{\cos \phi_i \cos \phi_j}{\pi r^2}$$

$$F_{dA_i \to A_j} = \int_{A_j} F_{dA_i \to dA_j} dA_j = \int_{A_j} H_{ij} \frac{\cos \phi_i \cos \phi_j}{\pi r^2} dA_j$$

$$F_{A_i \to A_j} = \frac{1}{A_i} \int_{A_i} F_{dA_i \to A_j} dA_i = \frac{1}{A_i} \int_{A_i} \int_{A_i} H_{ij} \frac{\cos \phi_i \cos \phi_j}{\pi r^2} dA_j dA_i$$

$$F_{A_j \to A_i} = \frac{1}{A_j} \int_{A_j} F_{dA_j \to A_i} dA_j = \frac{1}{A_j} \int_{A_j} \int_{A_j} H_{ji} \frac{\cos \phi_j \cos \phi_j}{\pi r^2} dA_j dA_j$$

$$F_{A_i \to A_i} = \frac{1}{A_j} \int_{A_j} F_{dA_j \to A_i} dA_j = \frac{1}{A_j} \int_{A_j} \int_{A_i} H_{ji} \frac{\cos \phi_j \cos \phi_i}{\pi r^2} dA_i dA_j$$

Graphical interpretation

form factor = $\frac{area \ of \ the \ projection}{area \ of \ the \ base \ circle}$

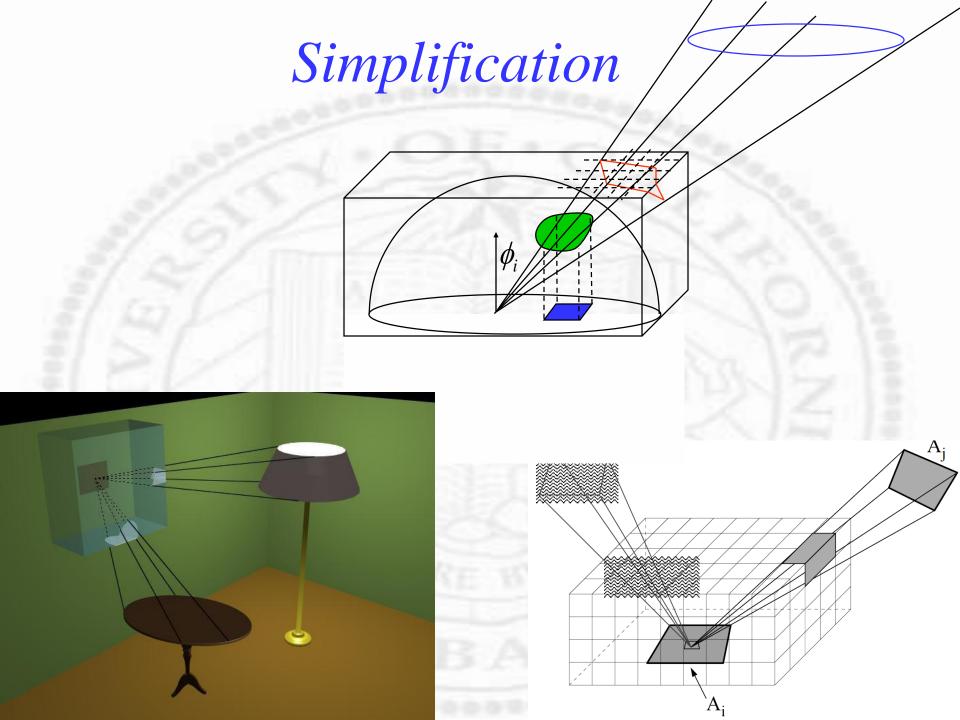
projection onto the hemisphere $\frac{\cos \phi_j}{r^2}$ projection down on the the base $\cos \phi_i$ divided by the area of the base $\frac{1}{\pi}$

Further simplification

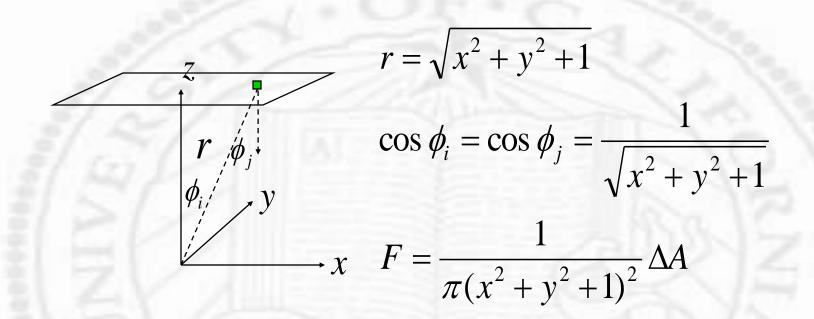
As long as the same projection is produced, all these surfaces have the same form factor

Simplification

- Instead of projecting onto a hemisphere, we can project onto a hemicube with planar surfaces (with traditional visible surface determination algorithm)
- The hemicube can be discretized and pixel radiosities tabulated in advance
- Then just count how many pixels a particular patch covers and add up individual radiosity values

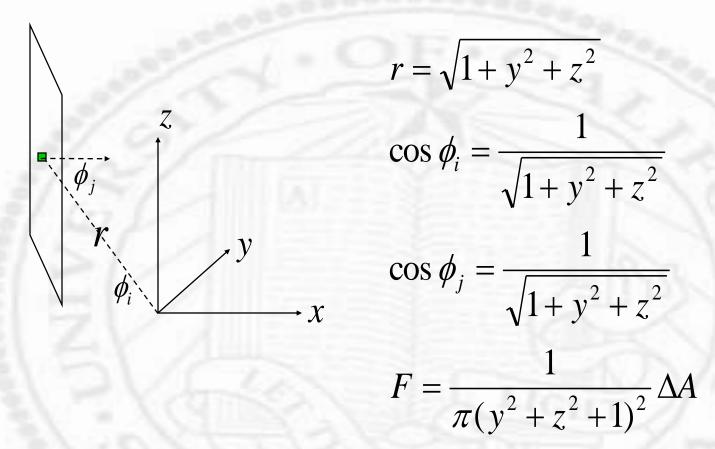


Example



 $F_{dA_i \to dA_j} = H_{ij} \frac{\cos \phi_i \cos \phi_j}{\pi r^2}$ $H_{ij} \begin{cases} 1 & visible \\ 0 & not \\ Computer Graphics \end{cases}$

More Example



Many Possible Generalizations

Substructuring
Spatial refinement
Progressive radiosity
Faster update
Incremental radiosity
Temporal refinement

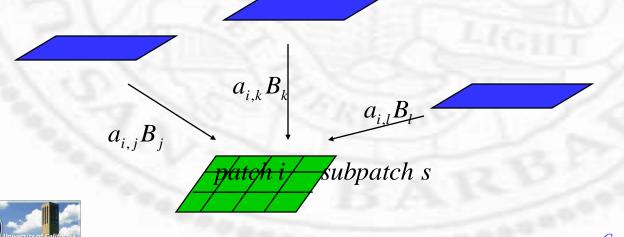
Substructuring

- At places with large radiosity changes
- Need smaller patches for better approximation
- Break one patch into *m* sub patches
 introduce *m* more radiosity values
 the radiosity matrix becomes O((n+m)^2)

Instead

compute sub-patch form factors $F_{s \to j}$ $F_{i \to j} = \frac{1}{A_i} \sum_{s} F_{s \to j} A_s$ update form factor of patch I compute radiosity using original nxn equations $B_i = E_i + \rho_i \sum_{i} B_j F_{i \to j}$ update radiosities of sub-patches

$$B_s = E_i + \rho_i \sum_j B_j F_{s \to j}$$



Progressive Radiosity

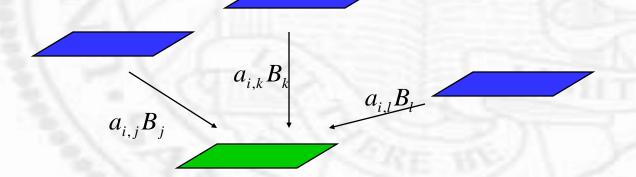
For traditional radiosity solution, each iteration is of O(n^2)
"Gathering" radiosity
n updates, one for each path
each update "gathers" the radiosity values of all n patches

$$a_{11}B_1^{(n)} = -(a_{12}B_2^{(n-1)} + a_{13}B_3^{(n-1)} + \dots + a_{1n}B_n^{(n-1)}) + E_1$$

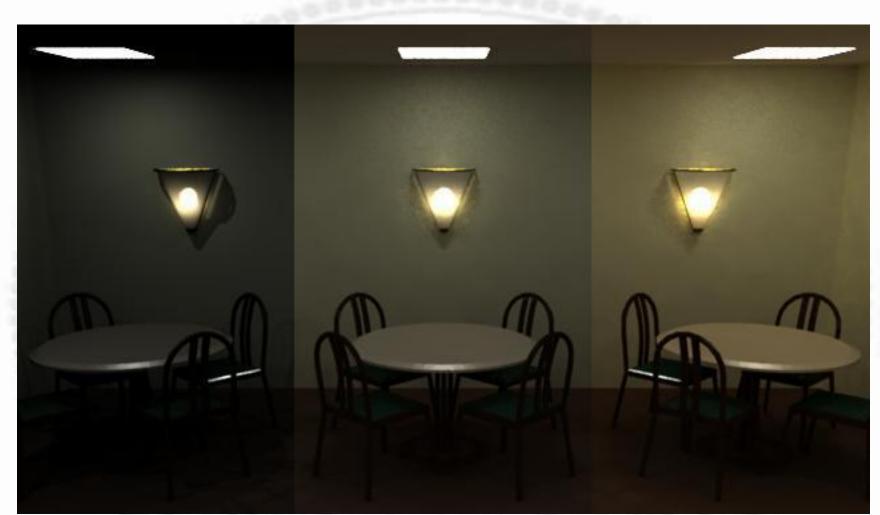
$$a_{22}B_2^{(n)} = -(a_{21}B_1^{(n)} + a_{23}B_3^{(n-1)} + \dots + a_{2n}B_n^{(n-1)}) + E_2$$

$$a_{ii}B_i^{(n)} = -(a_{i1}B_1^{(n)} + a_{i2}B_2^{(n)} + \dots + a_{i,i-1}B_{i-1}^{(n)} + a_{i,i+1}B_{i+1}^{(n-1)} + \dots + a_{in}B_n^{(n-1)}) + E_i$$

$$a_{nn}B_n^{(n)} = -(a_{n1}B_1^{(n)} + a_{n2}B_2^{(n)} + \dots + a_{n,n-1}B_{n-1}^{(n)}) + E_n$$



. . .



1 bounce

"Shooting" radiosity

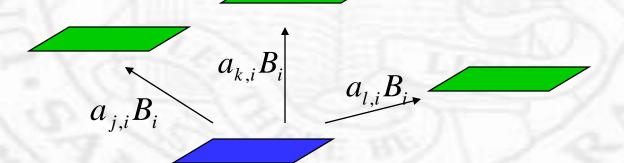
updates all n patches using the radiosity value of a single patch

$[1 - \rho_1 F_{11}]$	$-\rho_{1}F_{12}$	•••	$-\rho_1 F_{1i}$	$-\rho_1 F_{1n}$	$\begin{bmatrix} B_1 \end{bmatrix}$	$\begin{bmatrix} E_1 \end{bmatrix}$
$-\rho_2 F_{21}$	$1 - \rho_2 F_{22}$	•••	$- ho_2 F_{2i}$	$-\rho_2 F_{2n}$		E_2
		•••		1	: =	
1 2		•••			B_i	
$\begin{bmatrix} 1 - \rho_1 F_{11} \\ - \rho_2 F_{21} \end{bmatrix}$ $- \rho_n F_{n1}$	$-\rho_n F_{n2}$		$-\rho_n F_{ni}$	$1-\rho_n F_{nn}$	$\begin{bmatrix} B_n \end{bmatrix}$	E_n

 $\Delta B_{k} = E_{k} \quad \forall k$ $a_{kk} B_{k}^{(n)} = B_{k}^{(n-1)} - \rho_{k} F_{k,i} \Delta B_{i} \quad \forall k$

 $= B_k^{(n-1)} - \rho_k \frac{A_i}{A_k} F_{i,k} \Delta B_i$

- * One iteration involes n O(1) updates
- Form factors of one patch need be kept
- Only the part of radiosity that was not processed before need be "shot"



Trade-off

- Most accurate for diffuse lighting
 Photorealistic image
 Soft shadow, color bleeding
- Large computational effort
- Form factor computation

Combining Ray Tracing and Radiosity

First compute view independent, global diffuse illumination with radiosity

Then compute view dependent, global specular illumination using ray tracing

