

ERE

LIGH

B

POV-Ray

Full-featured raytracer

Ray Tracing Basics

Shoot ray in the *reverse* direction (from eyes to light instead of from light to eyes)

Miss

Hit
Shadow ray (to the light)
Reflected ray (on the same side)
Refracted ray (on the opposite side)

Hit and Miss

Shadow Ray

Shadow ray
 Blocked – in shadow
 Not blocked

Reflected Ray

Pick up color
 of objects on
 the same side

Refracted Ray

Pick up color
 of objects on
 the opposite
 side

Multiple Levels of R/R

Visible Surface Ray Tracing for (each scan line) { for (each pixel in scan line) { compute ray direction from COP (eye) to pixel for (each object in scene) { if (intersection and closest so far) { record object and intersection point // a hit accumulate pixel colors (one level) - shadow ray color - reflected ray color (recursion) - refracted ray color (recursion)

Details

I = I_{local} + K_r*R + K_t*T
Build tree top-down
Fill in values bottom-up

Local Color

A single color [r, g, b] – no brainer
{r,g,b}_local = {r,g,b}_light * {r,g,b}_material *cos(θ) for each light not in shadow
Add one extra term {r,g,b}_ambinent* {r,g,b}_material for background emission
This reflects a local diffuse model
A texture image – every pixel can

different color, more interesting

Texture Mapping

 Important to preserve aspect ratio so as not to distort content

Not always possible with sphere

Elevation [-90..90]

Azimuth [0..360]

```
if xmax >= ymax,
     width = xmax
      height = ymax
else
     width = ymax
      height = xmax
end
if width >= 2*height
     wrange = 2*height
      hrange = height
else
     wrange = widith
     hrange = width/2
end
```


Computing Reflected Ray

 $S = N \cos\Theta + L = N (N.L) + L$

$R = N \cos \Theta + S$ = N (N.L) + N (N.L) + L= 2 N (N.L) + L

All vectors are UNIT length

•

Computing Refracted Ray

• $n_1 \sin \Theta_1 = n_2 \sin \Theta_2$ (Snell's law)

*

*

÷

•

Ray-Object Intersection

Implicit definition (f(P)=0) \Box f(x,y) = x^2+y^2-R^2 $\Box f(x,y,z) = Ax + By + Cz + D$ \Box f(x,y,z)=x^2+y^2+z^2-R^2 Starting from a point P in space • Go in the direction of **d** * Point on ray is $\mathbf{P} + t\mathbf{d}$ $f(\mathbf{P} + t\mathbf{d}) = 0$

Quadratic equations to solve (circle, sphere)

Ray-Object Intersection

- When and where?
 - Before normalization transform and projection
 - In the world coordinate system (in fact, often in object's own coordinate system)
 - Normalization transform won't help to simplify the math
 - > Lights can be anywhere
 - > Objects can be anywhere
 - Normalization only help with clipping and projection (a viewer centered operation)
- Hint: for HW, do it in the world coordinate

2D ray-circle intersection example

Consider the eye-point P = (-3, 1), the direction vector d = (.8, -.6) and the unit circle given by:

$$f(x,y) = x^2 + y^2 - R^2$$

A typical point of the ray is:

$$Q = P + td = (-3,1) + t(.8,-.6) = (-3 + .8t,1 - .6t)$$

Plugging this into the equation of the circle:

$$f(\mathbf{Q}) = f(-3 + .8t, 1 - .6t) = (-3 + .8t)^2 + (1 - .6t)^2 - 1$$

Expanding, we get:

 $9 - 4.8t + .64t^2 + 1 - 1.2t + .36t^2 - 1$ Setting this to zero, we get:

$$t^2 - 6t + 9 = 0$$

2D ray-circle intersection example (cont.)

Using the quadratic formula:

$$roots = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

We get:

$$t = \frac{6 \pm \sqrt{36 - 36}}{2}, \quad t = 3, 3$$

Because we have a root of multiplicity 2, ray intersects circle at one point (i.e., it's tangent to the circle) We can use discriminant $D = b^2 - 4ac$ to quickly determine if a ray intersects a curve or not

- if D < 0, imaginary roots; no intersection
- if D = 0, double root; ray is tangent
- if D > 0, two real roots; ray intersects circle at two points

Smallest non-negative real t represents intersection nearest to eye-point

Implicit objects-multiple conditions

For objects like cylinders, the equation

$$x^2 + z^2 - 1 = 0$$

in 3-space defines an infinite cylinder of unit radius, running along the y-axis

Usually, it's more useful to work with finite objects, e.g. such a unit cylinder truncated with the limits

$$y \le 1$$
$$y \ge -1$$

But how do we do the "caps?"

The cap is the inside of the cylinder at the y extrema of the cylinder

$$x^2 + z^2 - 1 < 0, y = \pm 1$$

Multiple conditions (cont.)

We want intersections satisfying the cylinder:

 $x^2 + z^2 - 1 = 0$ $-1 \le y \le 1$

or top cap:

$$x^2 + z^2 - 1 \le 0$$
$$y = 1$$

or bottom cap:

$$x^2 + z^2 - 1 \le 0$$
$$y = -1$$

Multiple conditions-cylinder pseudocode

// Check for intersection with top end cap Compute ray_inter_plane(t3, plane y = 1) Compute P + t3*d // If it intersects, is it within cap circle? if $x^2 + z^2 > 1$, toss out t3

// Check intersection with other end cap Compute ray_inter_plane(t4, plane y = -1) Compute P + t4*d // If it intersects, is it within cap circle? if x² + z² > 1, toss out t4

Among all the t's that remain (1-4), select the smallest non-negative one

sphere :
$$(X - a)^{2} + (Y - b)^{2} + (Z - c)^{2} - r^{2} = 0$$

$$x = X_{o} + t\Delta X$$

$$Y = Y_{o} + t\Delta Y$$

$$Z = Z_{o} + t\Delta Z$$

$$\frac{X^{2} - 2aX + a^{2} + Y^{2} - 2bY + b^{2} + Z^{2} - 2cZ + c^{2} - r^{2} = 0}{(X_{o} + t\Delta X)^{2} - 2a(X_{o} + t\Delta X) + a^{2} + (Y_{o} + t\Delta Y)^{2} - 2b(Y_{o} + t\Delta Y) + b^{2} + (Z_{o} + t\Delta Z)^{2} - 2c(Z_{o} + t\Delta Z) + c^{2} - r^{2} = 0$$

$$(AX^{2} + AX^{2} + AZ^{2})t^{2} + t^{2}$$

$$(\Delta X^{2} + \Delta Y^{2} + \Delta Z^{2})t^{2} + 2\{\Delta X(X_{o} - a) + \Delta Y(Y_{o} - b) + \Delta Z(Z_{o} - c)\}t + (X_{o} - a)^{2} + (Y_{o} - b)^{2} + (Z_{o} - c)^{2} - r^{2} = 0$$

Computer Graphics

$$(\Delta X^{2} + \Delta Y^{2} + \Delta Z^{2})t^{2} + 2\{\Delta X(X_{o} - a) + \Delta Y(Y_{o} - b) + \Delta Z(Z_{o} - c)\}t + (X_{o} - a)^{2} + (Y_{o} - b)^{2} + (Z_{o} - c)^{2} - r^{2} = 0$$

 $At^2 + Bt + C = 0 \quad \Delta = B^2 - 4AC$

 $t \begin{cases} \Delta > 0 & \text{insersecting} \\ \Delta = 0 & \text{grazing} \\ \Delta < 0 & \text{non insersecting} \end{cases}$

Computer Graphics

$$plane: aX + bY + cZ + d = 0$$

$$ray: \begin{cases} X = X_o + t\Delta X \\ Y = Y_o + t\Delta Y \\ Z = Z_o + t\Delta Z \end{cases}$$

$$a(X_o + t\Delta X) + b(Y_o + t\Delta Y) + c(Z_o + t\Delta Z) + d = 0$$

$$t = -\frac{aX_o + bY_o + cZ_o + d}{a\Delta X + b\Delta Y + c\Delta Z}$$

- There will be a reasonable t value, unless the denominator is zero (the line and the plane are parallel)
- But is the intersection point actually inside the polygon?

One Final Detail

- A cylinder x²+z²-1=0 is "simple" only in its own coordinate system
- Modeling transform can destroy that simplicity
- How to intersect with a general quadratic equation ax²+bxy+cy²+dx+ey+f = 0?

Object-Space Intersection

World system
 Complicated shape equations

- $ax^{2}+bxy+cy^{2}+dx+ey+f$ = 0
- Ray equation is P+td always

Object system
 Simple shape equation
 x²+z²-1=0

Shading – Normal Vector

- For illumination, you need the normal at the point of intersection in world space
- Two step process:
 - solving for point of intersection in the object's own space and computing normal there;
 then transform the object space normal to the world space

Normal Vectors)

- Normal vectors need for shading
 A two-step process:
 solving for point of intersection in the object's own space and computing normal there;
 then transform the object space normal to the world space
 - □ Surface: f(x,y,z)=0, interior f(x,y,z)<0, then $n = \nabla f(x, y, z)$

$$\nabla f(x, y, z) = \left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right)$$

Normal Vectors at
Intersection Points
Sphere normal vector example
For the sphere, the equation is

$$f(x,y,z) = x^2 + y^2 + z^2 - 1$$

The partial derivatives are
 $\frac{\partial f}{\partial x}(x, y, z) = 2x$
 $\frac{\partial f}{\partial y}(x, y, z) = 2y$
 $\frac{\partial f}{\partial z}(x, y, z) = 2z$

So the gradient is

 $\boldsymbol{n} = \nabla f(x, y, z) = (2x, 2y, 2z)$

Normalize **n** before using in dot products! In some degenerate cases, the gradient may be zero, and this method fails...use nearby gradient as a cheap hack

Special Effects

Practical Issues - Realism

Sampling

- In the simplest case, choose our sample points at pixel centers
- For better results, can *supersample*
 - e.g., at corners and at center
- Even better techniques do *adaptive sampling*: increase sample density in areas of rapid change (in geometry or lighting)
- With stochastic sampling, samples are taken probabilistically; converges faster than regularly spaced sampling
- For fast results, can *subsample*: fewer samples than pixels
 - take as many samples as time permits
 - *beam tracing*: track a bundle of neighboring rays together
- How to convert samples to pixels? Filter to get weighted average of samples

Practical Issue - Speed

- Very expensive
- Yet embarrassingly parallel
 Avoid unnecessary intersection tests

Space Partition

- During raytracing, the number of outstanding rays are usually over 100k.
- Building the Octree
- Create one cube represent the world and put all the triangles inside
- Recursively subdivide a cube into 2x2x2 cubes if the number of triangles is over a threshold
- Ray triangle intersection
 If the cube has children
 recursively intersects
 all its children cube
 intersect against all triangles

(root)

(1 level)

(2 levels)

О

Spatial Partitioning

- Ray can be advanced from cell to cell
- Only those objects in the cells lying on the path of the ray need be considered
- First intersection terminates the search

Bounding Volume

Slab: aX + bY + cZ + d = 0 $ray: \begin{cases} X = X_o + t\Delta X \\ Y = Y_o + t\Delta Y \\ Z = Z_o + t\Delta Z \end{cases}$ $t = -\frac{aX_o + bY_o + cZ_o + d}{a\Delta X + b\Delta Y + c\Delta Z} = \frac{A + D}{B}$

A: per ray per slab setB: per ray per slab setD: per slab

Bounding Volume (cont.)

All the maximum (circle) intersections must be after all the minimum (square) intersections

Hierarchical Bounding Volume

Computer Graphics

Batch vs. Interactive

Batch

- Build a whole tree (<= certain depth)</p>
- □ At the leaf level
 - Nothing (background color)
 - Object (its intrinsic color)
 - Proceed backward to fill in the info

- Interactive
 - Build a tree to, say, depth 1
 - □ At leaf level
 - Nothing (background color)
 - Object (color computed from previous iteration)
 - Proceed backward to fill in the inof

Extend to the next depth, and repeat

