
RayTracing

POV-Ray

 Full-featured raytracer

 Free

http://hof.povray.org/pebbles.html
http://hof.povray.org/pebbles.html
http://hof.povray.org/bonsai.html
http://hof.povray.org/bonsai.html
http://hof.povray.org/office-13.html
http://hof.povray.org/office-13.html
http://hof.povray.org/ChristmasBaubles.html
http://hof.povray.org/ChristmasBaubles.html
http://hof.povray.org/glasses.html
http://hof.povray.org/glasses.html

Ray Tracing Basics

 Shoot ray in the reverse direction (from

eyes to light instead of from light to eyes)

 Miss

 Hit

 Shadow ray (to the light)

Reflected ray (on the same side)

Refracted ray (on the opposite side)

Hit and Miss

Shadow Ray

 Shadow ray

Blocked – in

shadow

Not blocked

Reflected Ray

 Pick up color

of objects on

the same side

Refracted Ray

 Pick up color

of objects on

the opposite

side

Multiple Levels of R/R

Computer Graphics

Visible Surface Ray Tracing
for (each scan line) {

for (each pixel in scan line) {

compute ray direction from COP (eye) to pixel

for (each object in scene) {

if (intersection and closest so far) {

record object and intersection point // a hit

}

accumulate pixel colors (one level)

- shadow ray color

- reflected ray color (recursion)

- refracted ray color (recursion)

}

}
}

Details

 I = Ilocal + Kr*R +Kt*T

 Build tree top-down

 Fill in values bottom-up

Local Color

 A single color [r, g, b] – no brainer

 {r,g,b}_local = {r,g,b}_light * {r,g,b}_material

*cos(q) for each light not in shadow

Add one extra term {r,g,b}_ambinent*

{r,g,b}_material for background emission

 This reflects a local diffuse model

 A texture image – every pixel can have a

different color, more interesting

Texture Mapping

 Important to preserve aspect ratio so as not

to distort content

Not always possible with sphere

Azimuth [0..360]

Elevation [-90..90]

if xmax >= ymax,
width = xmax
height = ymax

else
width = ymax
height = xmax

end
if width >= 2*height

wrange = 2*height
hrange = height

else
wrange = widith
hrange = width/2

end

Computing Reflected Ray

 S = N cosΘ +L = N (N.L) + L

 R = N cos Θ + S

 = N (N.L) + N (N.L) + L

 = 2 N (N.L) +L

 All vectors are UNIT length

L

N

RS S

Θ Θ

N cosΘ

Computing Refracted Ray
 n1sinΘ1 = n2sinΘ2 (Snell’s law)

 S1 = L + N cosΘ1 = L + N (N.L)

 S2 = N cosΘ2 + R

 S1 / S2 = sinΘ1 / sinΘ2 = n2 / n1

 = (L + N cosΘ1) / (N cosΘ2 + R)

 R = 1/n2 (n1L + n1NcosΘ1 - n2NcosΘ2)

L

N

R

n1 : refractive index

n2

Θ1

Θ2

S1

S2

N cosΘ1

N cosΘ2

Ray-Object Intersection

 Implicit definition (f(P)=0)

 f(x,y) = x^2+y^2-R^2

 f(x,y,z) = Ax+By+Cz+D

 f(x,y,z)=x^2+y^2+z^2-R^2

 Starting from a point P in space

 Go in the direction of d

 Point on ray is P + td

 f(P + td)=0

 Quadratic equations to solve (circle, sphere)

Ray-Object Intersection

 When and where?

Before normalization transform and projection

 In the world coordinate system (in fact, often in

object’s own coordinate system)

Normalization transform won’t help to simplify

the math

 Lights can be anywhere

Objects can be anywhere

Normalization only help with clipping and

projection (a viewer centered operation)

 Hint: for HW, do it in the world coordinate

Consider the eye-point P = (-3, 1), the direction vector d = (.8, -.6) and the unit
circle given by:

f(x,y) = x2 + y2 – R2

A typical point of the ray is:

Q = P + td = (-3,1) + t(.8,-.6) = (-3 + .8t,1 - .6t)

Plugging this into the equation of the circle:

f(Q) = f(-3 + .8t,1 - .6t) = (-3+.8t)2 + (1-.6t)2 - 1

Expanding, we get:

9 – 4.8t + .64t2 + 1 – 1.2t + .36t2 - 1

Setting this to zero, we get:

t2 – 6t + 9 = 0

2D ray-circle intersection example

Using the quadratic formula:

We get:

Because we have a root of multiplicity 2, ray intersects circle at one
point (i.e., it’s tangent to the circle)

We can use discriminant D = b2 - 4ac to quickly determine if a ray
intersects a curve or not

- if D < 0, imaginary roots; no intersection

- if D = 0, double root; ray is tangent

- if D > 0, two real roots; ray intersects circle at two points

Smallest non-negative real t represents intersection nearest to eye-point

a

acbb
roots

2

42

3 ,3 ,
2

36366

 tt

2D ray-circle intersection example

(cont.)

For objects like cylinders, the equation

x2 + z2 – 1 = 0

in 3-space defines an infinite cylinder of unit radius, running
along the y-axis

Usually, it’s more useful to work with finite objects, e.g. such a unit
cylinder truncated with the limits

y 1

y -1

But how do we do the “caps?”

The cap is the inside of the cylinder at the y extrema of the cylinder

x2 + z2 – 1 < 0, y = ±1

Implicit objects-multiple conditions

We want intersections satisfying the cylinder:

x2 + z2 – 1 = 0

– 1 y 1

or top cap:

x2 + z2 – 1 0

y = 1

or bottom cap:

x2 + z2 – 1 0

y = – 1

Multiple conditions (cont.)

Solve in a case-by-case approach
Ray_inter_finite_cylinder(P,d):

// Check for intersection with infinite cylinder

t1,t2 = ray_inter_infinite_cylinder(P,d)

compute P + t1*d, P + t2*d

// If intersection, is it between “end caps”?

if y > 1 or y < -1 for t1 or t2, toss it

// Check for intersection with top end cap

Compute ray_inter_plane(t3, plane y = 1)

Compute P + t3*d

// If it intersects, is it within cap circle?

if x2 + z2 > 1, toss out t3

// Check intersection with other end cap

Compute ray_inter_plane(t4, plane y = -1)

Compute P + t4*d

// If it intersects, is it within cap circle?

if x2 + z2 > 1, toss out t4

Among all the t’s that remain (1-4), select the smallest non-negative

one

Multiple conditions-cylinder

pseudocode

Computer Graphics

0)(2)(

)(2)(

)(2)(

0222

:

0)()()(:

222

22

22

2222222

2222

rcZtZcZtZ

bYtYbYtY

aXtXaXtX

rccZZbbYYaaXX

ZtZZ

YtYY

XtXX

ray

rcZbYaXsphere

oo

oo

oo

o

o

o

0)()()(

)}()()({2

)(

2222

2222

rcZbYaX

tcZZbYYaXX

tZYX

ooo

ooo

Computer Graphics

nginsersectinon 0

grazing0

nginsersecti0

40

0)()()(

)}()()({2

)(

22

2222

2222

t

ACBCBtAt

rcZbYaX

tcZZbYYaXX

tZYX

ooo

ooo

Computer Graphics

ZcYbXa

dcZbYaX
t

dZtZcYtYbXtXa

ZtZZ

YtYY

XtXX

ray

dcZbYaXplane

ooo

ooo

o

o

o

0)()()(

:

0:

 There will be a reasonable t value, unless the denominator

is zero (the line and the plane are parallel)

 But is the intersection point actually inside the polygon?

One Final Detail

 A cylinder x2+z2-1=0 is “simple” only in its

own coordinate system

 Modeling transform can destroy that

simplicity

 How to intersect with a general quadratic

equation ax2+bxy+cy2+dx+ey+f = 0?

Object-Space Intersection

 World system

 Complicated shape

equations

 ax2+bxy+cy2+dx+ey+f

= 0

 Ray equation is P+td

always

 Object system

 Simple shape equation

 x2+z2-1=0

(0,0,0)

MQ

dtP

0),,(zyxf

dd
11~~ tMPMtP

Q

0),,(
~

zyxf

Shading – Normal Vector

 For illumination, you need the normal at the
point of intersection in world space

 Two step process:

 solving for point of intersection in the object's
own space and computing normal there;

 then transform the object space normal to the
world space

),,(zyxf n

) , ,(), , ,(), , ,() , ,(zyx

z

f
zyx

y

f
zyx

x

f
zyxf

Normal Vectors)

 Normal vectors need for shading

 A two-step process:

 solving for point of intersection in the object's

own space and computing normal there;

 then transform the object space normal to the

world space

 Surface: f(x,y,z)=0, interior f(x,y,z)<0, then

Sphere normal vector example

For the sphere, the equation is

f (x,y,z) = x2 + y2 + z2 – 1

The partial derivatives are

So the gradient is

Normalize n before using in dot products!

In some degenerate cases, the gradient
may be zero, and this method
fails…use nearby gradient as a cheap
hack

zzyx
z

f

yzyx
y

f

xzyx
x

f

2) , ,(

2) , ,(

2) , ,(

)2,2,2(),,(zyxzyxf n

Normal Vectors at

Intersection Points
(2/4)

Special Effects

Practical Issues - Realism

Sampling
 In the simplest case, choose our sample points at pixel centers

 For better results, can supersample

– e.g., at corners and at center

 Even better techniques do adaptive sampling: increase sample density
in areas of rapid change (in geometry or lighting)

 With stochastic sampling, samples are taken probabilistically;
converges faster than regularly spaced sampling

 For fast results, can subsample: fewer samples than pixels

– take as many samples as time permits

– beam tracing: track a bundle of neighboring rays together

 How to convert samples to pixels? Filter to get weighted average of
samples

Practical Issue - Speed

 Very expensive

 Yet embarrassingly parallel

 Avoid unnecessary intersection tests

Space Partition
 During raytracing, the number of outstanding rays are

usually over 100k.

 Building the Octree

 Create one cube represent the world and put all the
triangles inside

 Recursively subdivide a cube into 2x2x2 cubes if the
number of triangles is over a threshold

 Ray triangle intersection

 If the cube has children

 recursively intersects

 all its children cube

 intersect against all triangles

Computer Graphics

Spatial Partitioning

 Ray can be advanced from cell to cell

 Only those objects in the cells lying on the path of

the ray need be considered

 First intersection terminates the search

Computer Graphics

B

DA

ZcYbXa

dcZbYaX
t

ZtZZ

YtYY

XtXX

ray

dcZbYaXSlab

ooo

o

o

o

:

0:

A: per ray per slab set

B: per ray per slab set

D: per slab

Bounding Volume

Computer Graphics

Bounding Volume (cont.)
 All the maximum (circle) intersections must be after all the minimum

(square) intersections

Computer Graphics

Hierarchical Bounding Volume

Batch vs. Interactive

 Batch

 Build a whole tree (<=

certain depth)

 At the leaf level

 Nothing (background

color)

 Object (its intrinsic

color)

 Proceed backward to

fill in the info

 Interactive

 Build a tree to, say,

depth 1

 At leaf level

 Nothing (background

color)

 Object (color computed

from previous iteration)

 Proceed backward to

fill in the inof

Extend to the next depth,

and repeat

