## RayTracing



## POV-Ray

## * Full-featured raytracer

* Free


## , I




## Ray Tracing Basics

* Shoot ray in the reverse direction (from eyes to light instead of from light to eyes)
* Miss
* Hit
$\square$ Shadow ray (to the light)
$\square$ Reflected ray (on the same side)
$\square$ Refracted ray (on the opposite side)


## Hit and Miss



## Shadow Ray



* Shadow ray
- Blocked - in shadow
$\square$ Not blocked


## Reflected Ray



* Pick up color of objects on the same side



## Refracted Ray



* Pick up color of objects on the opposite
 side


## Multiple Levels of $R / R$



## Visible Surface Ray Tracing

for (each scan line) \{
for (each pixel in scan line) \{
compute ray direction from COP (eye) to pixel for (each object in scene) \{ if (intersection and closest so far) \{ record object and intersection point // a hit \} accumulate pixel colors (one level)

- shadow ray color
- reflected ray color (recursion)
- refracted ray color (recursion)
$\square$


## Details

$* \mathrm{I}=\mathrm{I}_{\text {local }}+\mathrm{K}_{\mathrm{r}} * \mathrm{R}+\mathrm{K}_{\mathrm{t}} * \mathrm{~T}$

* Build tree top-down
* Fill in values bottom-up


Fig. 12. The ray tree in schematic

## Local Color

$\because$ A single color [r, g, b] - no brainer
$\square\{\mathrm{r}, \mathrm{g}, \mathrm{b}\} \_$local $=\{\mathrm{r}, \mathrm{g}, \mathrm{b}\} \_$light * $\{\mathrm{r}, \mathrm{g}, \mathrm{b}\} \_$material $* \cos (\theta)$ for each light not in shadow

- Add one extra term $\{\mathrm{r}, \mathrm{g}, \mathrm{b}\} \_$ambinent* \{r,g,b\}_material for background emission
$\square$ This reflects a local diffuse model
* A texture image - every pixel can different color, more interesting


## Texture Mapping

* Important to preserve aspect ratio so as not to distort content
- Not always possible with sphere

Elevation [-90..90]


Azimuth [0..360]

$$
\begin{aligned}
& \text { if } \times \max >=y \max , \\
& \text { width }=x \max \\
& \text { height }=y \max
\end{aligned}
$$

else
width = ymax height $=x$ max
end
if width $>=2 *$ height
wrange $=2$ *height hrange $=$ height
else
wrange $=$ widith hrange $=$ width/2
end

## Computing Reflected Ray

$$
\mathrm{S}=\mathrm{N} \cos \Theta+\mathrm{L}=\mathrm{N}(\mathrm{~N} . \mathrm{L})+\mathrm{L}
$$

$$
\begin{aligned}
\mathrm{R} & =\mathrm{N} \cos \Theta+\mathrm{S} \\
& =\mathrm{N}(\mathrm{~N} . \mathrm{L})+\mathrm{N}(\mathrm{~N} . \mathrm{L})+\mathrm{L} \\
& =2 \mathrm{~N}(\mathrm{~N} . \mathrm{L})+\mathrm{L}
\end{aligned}
$$

* All vectors are UNIT length



## Computing Refracted Ray

$* \mathrm{n}_{1} \sin \Theta_{1}=\mathrm{n}_{2} \sin \Theta_{2}$ (Snell's law)
$\% \quad \mathrm{~S}_{1}=\mathrm{L}+\mathrm{N} \cos \Theta_{1}=\mathrm{L}+\mathrm{N}(\mathrm{N} . \mathrm{L})$
$\% \quad \mathrm{~S}_{2}=\mathrm{N} \cos \Theta_{2}+\mathrm{R}$
$\therefore \quad \mathrm{S}_{1} / \mathrm{S}_{2}=\sin \Theta_{1} / \sin \Theta_{2}=\mathrm{n}_{2} / \mathrm{n}_{1}$
$=\left(\mathrm{L}+\mathrm{N} \cos \Theta_{1}\right) /\left(\mathrm{N} \cos \Theta_{2}+\mathrm{R}\right)$
$\mathrm{R}=1 / \mathrm{n}_{2}\left(\mathrm{n}_{1} \mathrm{~L}+\mathrm{n}_{1} \mathrm{~N} \cos \Theta_{1}-\mathrm{n}_{2} \mathrm{~N} \cos \Theta_{2}\right)$


## Ray-Object Intersection

* Implicit definition ( $\mathrm{f}(\mathrm{P})=0$ )
$\square f(x, y)=x^{\wedge} 2+y^{\wedge} 2-R^{\wedge} 2$
$\square f(x, y, z)=A x+B y+C z+D$
$-f(x, y, z)=x^{\wedge} 2+y^{\wedge} 2+z^{\wedge} 2-R^{\wedge} 2$
* Starting from a point $\mathbf{P}$ in space
* Go in the direction of $\mathbf{d}$
* Point on ray is $\mathbf{P}+\mathrm{td}$
* $f(\mathbf{P}+t \mathbf{t})=0$
* Quadratic equations to solve (circle, sphere)


## Ray-Object Intersection

* When and where?
- Before normalization transform and projection
$\square$ In the world coordinate system (in fact, often in object's own coordinate system)
$\square$ Normalization transform won't help to simplify the math
> Lights can be anywhere
$>$ Objects can be anywhere
$>$ Normalization only help with clipping and projection (a viewer centered operation)
* Hint: for HW, do it in the world coordinate


## $2 D$ ray-circle intersection example

Consider the eye-point $P=(-3,1)$, the direction vector $\boldsymbol{d}=(.8,-.6)$ and the unit circle given by:

$$
f(x, y)=x^{2}+y^{2}-R^{2}
$$

A typical point of the ray is:

$$
\mathrm{Q}=P+t d=(-3,1)+t(.8,-.6)=(-3+.8 \mathrm{t}, 1-.6 t)
$$

Plugging this into the equation of the circle:

$$
f(\mathrm{Q})=f(-3+.8 t, 1-.6 t)=(-3+.8 t)^{2}+(1-.6 t)^{2}-1
$$

Expanding, we get:

$$
9-4.8 t+.64 t^{2}+1-1.2 t+.36 t^{2}-1
$$

Setting this to zero, we get:

$$
t^{2}-6 t+9=0
$$


$2 D$ ray-circle intersection example (cont.)

Using the quadratic formula:

$$
\text { roots }=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

We get:

$$
t=\frac{6 \pm \sqrt{36-36}}{2}, \quad t=3,3
$$

Because we have a root of multiplicity 2, ray intersects circle at one point (i.e., it's tangent to the circle)
We can use discriminant $D=b^{2}-4 a c$ to quickly determine if a ray intersects a curve or not

- if $D<0$, imaginary roots; no intersection
- if $D=0$, double root; ray is tangent
- if $D>0$, two real roots; ray intersects circle at two points

Smallest non-negative real $t$ represents intersection nearest to eye-point

## Implicit objects-multiple conditions

For objects like cylinders, the equation

$$
x^{2}+z^{2}-1=0
$$

in 3-space defines an infinite cylinder of unit radius, running along the $y$-axis
Usually, it's more useful to work with finite objects, e.g. such a unit cylinder truncated with the limits

$$
\begin{gathered}
y \leq 1 \\
y \geq-1
\end{gathered}
$$

But how do we do the "caps?"
The cap is the inside of the cylinder at the $y$ extrema of the cylinder

$$
x^{2}+z^{2}-1<0, y= \pm 1
$$



## Multiple conditions (cont.)



We want intersections satisfying the cylinder:

$$
\begin{gathered}
x^{2}+z^{2}-1=0 \\
-1 \leq y \leq 1
\end{gathered}
$$

or top cap:

$$
\begin{gathered}
x^{2}+z^{2}-1 \leq 0 \\
y=1
\end{gathered}
$$

or bottom cap:

$$
\begin{gathered}
x^{2}+z^{2}-1 \leq 0 \\
y=-1
\end{gathered}
$$

Multiple conditions-cylinder pseudocode

Solve in a case-by-case approach
Ray_inter_finite_cylinder ( $\mathrm{P}, \mathrm{d}$ ) :
// Check for intersection with infinite cylinder
t1, t2 $=$ ray_inter_infinite_cylinder $(P, d)$ compute $\mathrm{P}+\mathrm{t} 1 * \mathrm{~d}, \mathrm{P}+\mathrm{t} 2 * \mathrm{~d}$
// If intersection, is it between "end caps"?
if $y>1$ or $y<-1$ for $t 1$ or $t 2$, toss it
// Check for intersection with top end cap
Compute ray_inter_plane(t3, plane y = 1)
Compute $\mathrm{P}+\mathrm{t} 3 * \mathrm{~d}$
// If it intersects, is it within cap circle?
if $x^{2}+z^{2}>1$, toss out $t 3$
// Check intersection with other end cap
Compute ray_inter_plane(t4, plane $y=-1$ )
Compute $\mathrm{P}+\mathrm{t} 4^{*} \mathrm{~d}$
// If it intersects, is it within cap circle?
if $x^{2}+z^{2}>1$, toss out t4

Among all the t's that remain (1-4), select the smallest non-negative one
sphere: $(X-a)^{2}+(Y-b)^{2}+(Z-c)^{2}-r^{2}=0$

$$
\begin{aligned}
& \text { ray: }:\left\{\begin{array}{l}
X=X_{o}+t \Delta X \\
Y=Y_{o}+t \Delta Y \\
Z=Z_{o}+t \Delta Z
\end{array}\right. \\
& X^{2}-2 a X+a^{2}+Y^{2}-2 b Y+b^{2}+Z^{2}-2 c Z+c^{2}-r^{2}=0 \\
& \left(X_{o}+t \Delta X\right)^{2}-2 a\left(X_{o}+t \Delta X\right)+a^{2}+ \\
& \left(Y_{o}+t \Delta Y\right)^{2}-2 b\left(Y_{o}+t \Delta Y\right)+b^{2}+ \\
& \left(Z_{o}+t \Delta Z\right)^{2}-2 c\left(Z_{o}+t \Delta Z\right)+c^{2}-r^{2}=0
\end{aligned}
$$

$$
\left(\Delta X^{2}+\Delta Y^{2}+\Delta Z^{2}\right) t^{2}+
$$

$$
2\left\{\Delta X\left(X_{o}-a\right)+\Delta Y\left(Y_{o}-b\right)+\Delta Z\left(Z_{o}-c\right)\right\} t+
$$

$$
\left(X_{o}-a\right)^{2}+\left(Y_{o}-b\right)^{2}+\left(Z_{o}-c\right)^{2}-r^{2}=0
$$

$$
\left.\begin{array}{l}
\left(\Delta X^{2}+\Delta Y^{2}+\Delta Z^{2}\right) t^{2}+ \\
2\left\{\Delta X\left(X_{o}-a\right)+\Delta Y\left(Y_{o}-b\right)+\Delta Z\left(Z_{o}-c\right)\right\} t+ \\
\left(X_{o}-a\right)^{2}+\left(Y_{o}-b\right)^{2}+\left(Z_{o}-c\right)^{2}-r^{2}=0
\end{array}\right] \begin{aligned}
& A t^{2}+B t+C=0 \quad \Delta=B^{2}-4 A C \\
& t\left\{\begin{array}{cc}
\Delta>0 \quad \text { insersecting } \\
\Delta=0 \quad \text { grazing } \\
\Delta<0 \quad \text { non insersecting }
\end{array}\right.
\end{aligned}
$$

$$
\left.\begin{array}{l}
\text { plane }: a X+b Y+c Z+d=0 \\
\text { ray }:\left\{\begin{array}{l}
X=X_{o}+t \Delta X \\
Y=Y_{o}+t \Delta Y \\
Z=Z_{o}+t \Delta Z
\end{array}\right. \\
a\left(X_{o}+t \Delta X\right)+b\left(Y_{o}+t \Delta Y\right)+c\left(Z_{o}+t \Delta Z\right)+d=0
\end{array}\right\}=-\frac{a X_{o}+b Y_{o}+c Z_{o}+d}{a \Delta X+b \Delta Y+c \Delta Z}, ~ l
$$

* There will be a reasonable $t$ value, unless the denominator is zero (the line and the plane are parallel)
* But is the intersection point actually inside the polygon?


## One Final Detail

* A cylinder $\mathrm{x}^{2}+\mathrm{z}^{2}-1=0$ is "simple" only in its own coordinate system
* Modeling transform can destroy that simplicity
* How to intersect with a general quadratic equation $a x^{2}+b x y+c y^{2}+d x+e y+f=0$ ?



## Object-Space Intersection



* World system
- Complicated shape equations
$a x^{2}+b x y+c y^{2}+d x+e y+f$ $=0$
- Ray equation is $\mathrm{P}+\mathrm{td}$ always

$$
\tilde{P}+t \tilde{\boldsymbol{d}}=M^{-1} P+t M{ }^{+1} \boldsymbol{d}
$$

* Object system
$\square$ Simple shape equation
- $\mathrm{x}^{2}+\mathrm{z}^{2}-1=0$


## Shading - Normal Vector

$*$ For illumination, you need the normal at the point of intersection in world space

* Two step process:
$\square$ solving for point of intersection in the object's own space and computing normal there;
$\square$ then transform the object space normal to the world space


## Normal Vectors

* Normal vectors need for shading
* A two-step process:
$\square$ solving for point of intersection in the object's own space and computing normal there;
$\square$ then transform the object space normal to the world space
$\square$ Surface: $f(x, y, z)=0$, interior $f(x, y, z)<0$, then

$$
\boldsymbol{n}=\nabla f(x, y, z)
$$

$$
\nabla f(x, y, z)=\left(\frac{\partial f}{\partial x}(x, y, z), \frac{\partial f}{\partial y}(x, y, z), \frac{\partial f}{\partial z}(x, y, z)\right)
$$

## Normal Vectors at

## Intersection Points <br> Sphere normal vector example

For the sphere, the equation is

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}-1
$$

The partial derivatives are

$$
\begin{aligned}
& \frac{\partial f}{\partial x}(x, y, z)=2 x \\
& \frac{\partial f}{\partial y}(x, y, z)=2 y \\
& \frac{\partial f}{\partial z}(x, y, z)=2 z
\end{aligned}
$$

So the gradient is

$$
\boldsymbol{n}=\nabla f(x, y, z)=(2 x, 2 y, 2 z)
$$

Normalize $\boldsymbol{n}$ before using in dot products! In some degenerate cases, the gradient may be zero, and this method fails...use nearby gradient as a cheap hack

## Special Effects



## Practical Issues - Realism



## Sampling

* In the simplest case, choose our sample points at pixel centers
* For better results, can supersample
- e.g., at corners and at center
* Even better techniques do adaptive sampling: increase sample density in areas of rapid change (in geometry or lighting)
* With stochastic sampling, samples are taken probabilistically; converges faster than regularly spaced sampling
* For fast results, can subsample: fewer samples than pixels
- take as many samples as time permits
- beam tracing: track a bundle of neighboring rays together
* How to convert samples to pixels? Filter to get weighted average of samples


## Practical Issue - Speed

* Very expensive
* Yet embarrassingly parallel
* Avoid unnecessary intersection tests


## Space Partition

* During raytracing, the number of outstanding rays are usually over 100k.
* Building the Octree
* Create one cube represent the world and put all the triangles inside
* Recursively subdivide a cube into $2 \times 2 \times 2$ cubes if the number of triangles is over a threshold
* Ray triangle intersection
* If the cube has children
$\%$
* intersect against all triangles

recursively intersects all its children cube



## Spatial Partitioning

* Ray can be advanced from cell to cell
$*$ Only those objects in the cells lying on the path of the ray need be considered
* First intersection terminates the search



## Bounding Volume

Slab: $a X+b Y+c Z+d=0$

$$
\begin{aligned}
& \text { ray: }\left\{\begin{array}{l}
X=X_{o}+t \Delta X \\
Y=Y_{o}+t \Delta Y \\
Z=Z_{o}+t \Delta Z
\end{array}\right. \\
& t=-\frac{a X_{o}+b Y_{o}+c Z_{o}+d}{a \Delta X+b \Delta Y+c \Delta Z}=\frac{A+D}{B}
\end{aligned}
$$

$A$ : per ray per slab set
$B$ : per ray per slab set
$D$ : per slab

## Bounding Volume (cont.)

* All the maximum (circle) intersections must be after all the minimum (square) intersections



## Hierarchical Bounding Volume



## Batch vs. Interactive

* Batch
- Build a whole tree (<= certain depth)
- At the leaf level
> Nothing (background color)
> Object (its intrinsic color)
> Proceed backward to fill in the info
* Interactive
$\square$ Build a tree to, say, depth 1
- At leaf level
> Nothing (background color)
$>$ Object (color computed from previous iteration)
> Proceed backward to fill in the inof
Extend to the next depth, and repeat

