
Shadows



Computer Graphics

One Slide Solution

 It is really very simple

 Can you see something from the eye 

position? Yes, then visible. No, then not 

visible (occluded)

 Can you see something from a light source 

position? Yes, then not in shadow. No, then 

in shadow

 If you know HLHSR, then do that from the 

light instead of the eye location



Computer Graphics

Multiple Slides Solution

 But there can be multiple light sources

 The light source might not be a single point 

or a single direction (e.g., extended sources)

 Want to determine both visibility and 

lighting without multiple transforms



Computer Graphics

Two-Pass Object Precision

 1st pass: transform to light position

 hidden surface determination (polygons which 

are not in shadow)

 2nd pass: transform to original world 

coordinate sys

 polygons not in shadow are merged to become 

surface detail polygons (which algorithm?)

 Postprocessing: transform to eye coordinate

 visible surface determination + surface details



Computer Graphics



Computer Graphics



Computer Graphics

Two-pass Image Precision

 Z buffer from eye (e): what the viewer can see

 Z buffer from light (l): what the light source 

can see

 for each (xe,ye,ze) 

 transform to (xl,yl,zl)

 is zl more distant than z(xl,yl)

 yes, (xe,ye) is in shadow

 no, (xe,ye) is not in shadow



Computer Graphics



Computer Graphics



Computer Graphics

Shadow Volume



Computer Graphics

Shadow Volume

 Enclosed by 

 (side) shadow polygons

 scene polygon

 back shadow polygon (scaled version of the 
original scene polygon)

 Shadow polygons are invisible and not 
rendered (used to determine whether an 
object is in shadow)

 SV polygons = scene polygon + all shadow 
polygons



Computer Graphics

Shadow Volume

 From the viewer

 each front-facing (normal pointing to the 

viewer) SV polygon causes object to be in 

shadow

 each back-facing (normal pointing away from 

the viewer) SV polygon causes object to be out 

of shadow

 #FF intersections >= #BF intersections to be in 

shadow



Computer Graphics

Shadow Volume

 How do you do this?

 A modified depth-sort type algorithm

 include SV polygons in the depth-sort list but 

process them front-to-back (instead of back-to-

front)

 determine whether the eye is in any SV

 then count how many times the projection ray 

intersects FF and BF SV polygons

 easier said than done



Computer Graphics

Soft Shadow



Computer Graphics

Soft Shadow



Computer Graphics

Using BSP Tree

 Stationary light source

 Stationary scene

 Moving camera

 Basic BSP tree algorithm

 Construct a tree based on scene polygons

 Determine rendering order

 Enhancement

 Polygons need surface details for right order and 
appearance

 Order is taken care of by basic BSP

 How about surface details? 



Computer Graphics

Intuition
 Surface details (in shadow or not) are stationary

regardless of camera position 

 Find once

 if a polygon is in shadow or not, and

 Which part is in shadow (surface detail polygons)

 Which polygon is NOT in shadow

 The one that is closet to the light source

 The polygon 2nd closest to the light source can 
only have shadow from the closet polygons

 The polygon 3rd closest to the light source can 
only have shadow from the 1st and 2nd closet 
polygons, etc.



Computer Graphics

SVBSP Tree

 A binary tree

 Each node is a SV polygon (instead of a 

scene polygon)

 Space is divided into IN/OUT by a node (a 

SV polygon, normal pointing out)

 Leaf nodes are labeled IN/OUT



Computer Graphics

a

b
c

d
a

b

c

d

OUT

OUT

OUT

OUT IN



Computer Graphics

a

b
c

d
a

b

c

d

OUT

OUT

OUT

OUT INQ1

Q

Q2
Q3

Q

Q1
Q2+Q3

Q3 Q2

Q2



Computer Graphics

a

b
c

d
a

b

c

d

OUT

OUT

OUT INQ1

Q2
Q3

Q1

e
f

e

OUT f

OUT IN



Computer Graphics

a

b
c

d

a

b

c

d

OUT

OUT IN

Q1

Q2
Q3

Q1

e
f

e

OUT f

OUT IN

Q3

g

h

i
g

OUT h

OUT i

OUT IN



Computer Graphics

SVBSP Tree Construction

 Ordering is important
 the polygon which is closest to the light source must 

be used first

 the polygon which is 2nd closest to the light source 
then filtered down the SVBSP tree to generate surface 
details polygons

 add the 2nd closest polygons to SVBSP tree

 the polygon which is 3rd closest to the light source 
then filtered down the SVBSP tree to generate surface 
details polygons

 add the 3rd closest polygons to SVBSP tree

 ...



Computer Graphics

 How to know which polygon is closest 
(2nd, 3rd closest ….) to the light source?

 Use the regular BSP Tree
 traverse according to the light source position

 first the half containing light

 then the partition plane

 then the half not containing light

 First pass (SVBSP): surface details

 Second pass (BSP): eye locations for 

rendering



Computer Graphics

Other Possibilities

 Ray Tracing

with shadow rays to the sources

 Radiosity

with form factor computation

 Later



Computer Graphics

Fake Shadow

 Shadow generation is not trivial

OpenGL does not do it

 Reason

 Shading calculation can be based entirely on 
“local” information, while shadow calculation 
cannot (need to know the relative position of 
many objects)

 In reality

 Shadow does not to be entirely correct, it just 
has to be realistic



Computer Graphics

Fake Shadow (cont.)

 Usually, in an indoor environment

Light is on the ceiling

Walls and floor enclose the scene (and they are 

planar)

Cast shadows on those enclosing surfaces by 

projecting objects onto them



Computer Graphics

Example

 Figure out the projection 

transform From (x,y,z,1) to 

(i,j,1)

 Apply this transform to all 

scene polygons

 Draw projected polygons in 

dark (shadow) colors

(x,y,z,1)

(i,j,1)



Computer Graphics

Math 


























































































1
100

00

00

1

)(
,

)(

)(

0)(

0

)(

)(

)(

z

y

x

z

yz

xz

zz

zyyz

zz

zxxz

zz

z

zzz

zzz

yyy

xxx

p

p

p

l

ll

ll

y

x

lp

plpl
y

lp

plpl
x

lp

l
t

lptl

zplane

lptlz

lptly

lptlx

line


