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Dimension Reduction

 Curse of dimensionality

with 50 features (dimensions), each quantized 

to 20 levels, create 2050 possible feature 

combinations, imagine how many samples you 

need to estimate p(x|w)?

 how do you visualize the structure in a 50 

dimensional space? 
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Other problems

 Size of the local regions needed for density 

estimation getting larger and larger

 To capture r% of the data, edge length is r1/n

 n=10, r=0.01, x =0.63, 

 n=10, r=0.1, x=0.8

 Data tend to boundary, creating boundary skew 

Consider uniform distribution, p% interior 

Exterior probability is 1-pn

 n=10, p=0.8, 0.89 exterior

N=100, p=0.8, 0.999.. exterior
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Solutions - Reduction

 Fisher’s linear discriminant

 Preserve class separation (special case of principle 

component analysis)

 Multi-dimensional scaling

 Preserve distance measures

 Principal component analysis

 Best data representation (not necessarily best class 

separation)
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Fisher’s linear discriminant (2-class)

 Given n d-dimensional samples 

 a linear transform                   which

maps d-D samples onto a line

 best preserves class separation

 Intuitively, good features are those with 

large separation of means relative to 

variances
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Caveats
 The nature of the problem is that ambiguity 

might arise when you reduce problem 

dimension (a good reduction algorithm may 

minimize the problem, but  may not 

completely eliminate the problem)
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Caveats (cont)

 The figures also suggest that, sometimes, to 

get better performance, it is necessary to 

increase the dimension (more features), not 

to decrease it



9PR , ANN, & ML

In the original d-dimensional space

 Between class scatter

 Within class scatter

 Ideally, function should be large
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In the transformed 1-dimensional space

 Between class scatter

 Within class scatter

 Ideally, function should be large
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The Analysis

 F(w): generalized Rayleigh quotient

 To maximize F(w), w is the generalized 

eigenvector associated with the largest 

generalized eigenvalue 
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 Proof:
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Example

 Larger the within-class 

spread direction gets de-

emphasized
PR , ANN, & ML
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Fisher’s linear discriminant (c-class)

 With c-1 discriminant functions

 Project from d-space to (c-1)-space

 Again, try to maximize between-class 

scatter to within-class scatter ratio for best 

separability
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In the original feature space

 Within class scatter

Easy generalization into c classes
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Between Class Scattering

 More tricky

 Total mean & total scatter

 Total scatter is made of 

 Scatter within a class

 Scatter between classes

Total mean
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Meaning

 Total scatter = between class scatter + within class 

scatter

 In hypothesis testing

 Between class scatter is significant 

 Within class scatter is insignificant (error)

 E.g., three different treatment option (surgery, 

drug, placebo) 

 Large between class scatter means one treatment is 

more effective than the others

 Large within class scatter means that samples means 

variation among subjects of the same treatment 
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Multi-Dimensional Scaling

 Given n objects and a confusion (similarity 

or dis-similarity) matrix nxn

 Distance (similarity) can be numbers 

(Euclidean distance) or ranking

 Find an embedding in an m-dimensional 

space where the distance (similarity) is 

preserved

PR , ANN, & ML
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Algorithms

PR , ANN, & ML
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Algorithms

 B is similar to “convariance matrix” and can 

be reconstructed by eigen vectors and 

eigenvalues

PR , ANN, & ML
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Multi-Dimensional Scaling

 Original space

 dimension d

 Reduced-dimensional space

 dimension d’

 { , ,..., }x x xn1 2

ij i jx x | |

 { , ,..., }y y yn1 2

ij i jy y | |

Select      in such a way to preserve the n(n-1)/2 

distance measurements through dimension 

reduction
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 Find ij as close to original ij as possible

 Metric MDS

 NonMetric MDS

 rank orders are the same in both

 f can be any monotonic function

baf

f

f

ijij

ijij









)(

)(

function preserving-metric monotonic,a  is 

MDS Solution



27PR , ANN, & ML

Possible Cost (Stress) Functions
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Gradient Descent

 A search mechanism

 Start at an arbitrarily chosen starting point

 Move in a direction (negative gradient) to 

minimize the cost function
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An iterative algorithm 
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Their gradient directions
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How many dimensions?

 Again, for visualization purpose, it is 

usually 2 or 3
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Example
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An Example

 d movies, with rating from -1 (bad) to 0 

(neutral) to 1 (good)

 Ri can be considered a random variable with the 

underlying universe being all n viewers

 E(Ri) = expected (average) ratings from all 

viewers

 var(Ri) = E(Ri-E(Ri))
2 variance (spread) in 

ratings from all viewers

 cov(i,j) = E[(Ri-E(Ri)) (Rj-E(Rj))] covariance 

(correlation) of ratings of two movies 

PR , ANN, & ML



34

An Example (cont.)

 Covariance matrix: a dxd matrix with entry 

being cov(i,j)

 cov(i,j) is symmetrical

Has QLQT eigen decomposition

What are the physical meaning of Q and L?

PR , ANN, & ML
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PCA (Principal Component 

Analysis)

PR , ANN, & ML
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PCA (Principal Component 

Analysis)
 N time the covariance matrix (assume the 

mean is zero for now)

PR , ANN, & ML
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Principal Component Analysis

 Extract a set of compact basis which best 

describe the data set 
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Can be shown that

 is an original vector

 is a basis vector

 is the significance of the basis vector

 is the weight of the particular basis vector

 If data set is highly correlated, usually only a 

few bases are significant

Use       instead of      

Reduce dimensionality from d to n or less

x v ui ij jj j
j

n
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Important SVD properties

 Orthogonal bases

 Importance ranked axis direction

 Body-fitted coordinate system

 Uncorrelated components

x1

x2x3

u1
u2

v1

v2
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Furthermore
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How to Use PCA

 Scotty-beam-me-up:

Red: projection (decomposition) into important 

data dimensions

Green: “massage” according to importance

Blue: reconstruction onto important basis

 Represent in “body-fitted” coordinate 

system, e.g., for similarity search 

PR , ANN, & ML
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Math Detail
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Intuition

 u’s represent 

Body-fitted

Uncorrelated 

 Importance-ranked dimensions

 Instead of using original vectors (x) 

projected on standard basis, use (x) 

projected on u

 Use as many or as few as you want (recall 

dimension reduction)

PR , ANN, & ML
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Caveat

 PCA gives the dimension for best 

representation of data, which does not 

necessarily implies best dimension for 

discrimination of data

Best representation

Best discrimination
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Caveat

 PCA is sensitive to data preprocessing

Centering

Normalization

 Different normalization (weighting) gives 

different preference to features

NBA player salary = f (height, ppg)

 The number of important dimensions (e.g., 

height and ppg are correlated) should be 

preserved 
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Caveat

 XXT is a very frequently seen math 

construct

 Treat as a vector in PCA 

 Treat as a vector of random variables in KL 

Treat as a vector of partial derivatives in 

Hessian

 XXT is

 Symmetric, positive semidefinite

 Eigen values are real and >=0 

PR , ANN, & ML
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Kernel PCA

 A generalization of PCA in the feature space

 Idea is this:

 Linear structures might not exist in original 
feature space

But might exist after a nonlinear mapping into a 
higher-dimensional space

 Linear algebra can be used for data analysis in 
higher dimensional space

With kernel tricks, mapping need not be 
actually done
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Kernel CPA

 Requirements: only inner products are used 

in decomposing covariance matrix 

 Dot(xi,xj) can be done

 In the original space

 In Kernel space without explicit mapping

PR , ANN, & ML
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Math Details 
 Compute covariance matrix

qRq 
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 Find eigen vectors and values

 Represent in kernel math
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Details
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How to Use?

 Solve

K: kernel matrix, k: eigen vectors

 Representation

 only k(x, xj) are needed 

k: solved in the previous step

 Possible to find representation basis and 

map unknown vectors using Kernel function 

without explicit mapping

PR , ANN, & ML
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PCA and MDS
 PCA provides a linear solution to a version of the metric MDS 

 Distance measurements are real and symmetrical 

 Use a particular definition of distance: inner product 

 Caveat: inner product requires a coordinate system (origin) while pair-

wise distance does not

 Inner product defines pair-wise distance but not vice versa

 Put all the pair-wise distances into a matrix, mij=distance 

between features i and j (this is the Gram matrix)

 Recall that M is made of n rank-one matrices

 Only a small number (2-3 for visualization purpose) of those are 

kept if singular values drop off quickly – mapping into a lower 

dimension space
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Final Notes

 Other techniques, such as Self-Organization 

Map (SOM) are available

 SOM is discussed later in non-supervised 

techniques


