Dimension Reduction




Dimension Reduction

<« Curse of dimensionality

2 with 50 features (dimensions), each quantized
to 20 levels, create 20°° possible feature
combinations, imagine how many samples you
need to estimate p(x|w)?

0 how do you visualize the structure in a 50
dimensional space?

PR, ANN, L ML



Other problems

<+ Size of the local regions needed for density
estimation getting larger and larger

0 To capture r% of the data, edge length is 2"
» n=10, r=0.01, x =0.63, '
> Nn=10, r=0.1, x=0.8

<« Data tend to boundary, creating boun

2 Consider uniform distribution, p% interior

0 Exterior probability is 1-p"
»Nn=10, p=0.8, 0.89 exterior
» N=100, p=0.8, 0.999.. exterior
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Solutions - Reduction

< Fisher’s linear discriminant

0 Preserve class separation (special case of principle
component analysis)

< Multi-dimensional scaling

0 Preserve distance measures

<« Principal component analysis

0 Best data representation (not necessarily best class
separation)
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Fisher s linear discriminant (2-class)

<« Given n d-dimensional samples x={x,,x,,..,x }
X ea, | X |Fn X, em,,| X, [=n, n+n,=n

<« a linear transform y=w'x  which
2 maps d-D samples onto a line
0 best preserves class separation

« Intuitively, good features are those with
large separation of means relative to
variances
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Caveats

<« The nature of the problem is that ambiguity
might arise when you reduce problem
dimension (a good reduction algorithm may
minimize the problem, but may not
completely eliminate the problem)
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Caveats (cont)

<« The figures also suggest that, sometimes, to
get better performance, It Is necessary to
Increase the dimension (more features), not
to decrease it
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In the original d-dimensional space

< Between class scatter

1
Im-m,[* my==>x
r]i XeX;

< Within class scatter
S12‘|'322 siZ:Z(x_mi)t(x_mi)

XEXi

<« ldeally, function should be large

2
|m1_m2 |
s, +5,°
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In the transformed 1-dimensional space

< Between class scatter
|, —1h, [ rﬁi:niZy:niZth:wtmi
<« Within class scatter ‘ :
2 2 2 2
S°+S° § =X(y-m)
<« ldeally, function should be large

|m1_m2 |2

A 2
S1

WS +§°
2
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|m, —m, |2: (thl _thz)z

> Wt(ml —m,)(m, _mz)tW ~ WtSbW

§i2 = Z(y_rﬁi)2 = Z:(th_wtmi)2

XEXi

= > w(x—m;)(x-m;)'w=w'Sw

XEXi

PR, ANN, L ML

11



The Analysis

+ F(w): generalized Rayleigh quotient ¥ SeW

w tw
<+ To maximize F(w), w is the generalized
eigenvector associated with the largest

generalized eigenvalue

SgW=AS W oOr
S, S,w = Aw

W = Sw_l(ml _mz)
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< Proof:

|, —mh, > w'S;w

F(w) =

§°+8,°  w's,w
dF(w) 25w 2S5 w WtSBW_O
dw w'S w w'S ww'S w
< .
525 W= O = AR,
w S, w

SgW = AS, W~

w
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. L

S

w=sS, (m;—m;) 4
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arger the within-class
nread direction gets de-

mphasized
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Fisher s linear discriminant (c-class)

< With c-1 discriminant functions
<« Project from d-space to (c-1)-space

< Agalin, try to maximize between-class
scatter to within-class scatter ratio for best
separability
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In the original feature space

< Within class scatter
0 Easy generalization into c classes

SW :Zsi
Si 1 Z(X_mi)(x_mi)t
m. =ni > X
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Between Class Scattering

< More tricky
o Total mean & total scatter ™ = 13 =% =1, > mm,

o Total scatter is made of S+ =22 OG<—m)G<—m)!

> Scatter within a class
> Scatter between classes

Sg = ini (m; —m)(m, —m)’

Total mean




Total mean & total scatter matrix
m =EZX=%ZC1:nimi

N
=> (x—m)(x—m)’

St Z(X m)(X — m) Z(X m;)(m-m) =0
_ZZ(X m, +m, —m)(X—m, +m, —m)"
—ZZ(X m;)(x—m;)’ +Z Z(m —m)(m, —m)"
:SW_I_Zni (m; —m)(m, _m)t

. =1 SW:ZC:Si

Se :Zni(mi_m)(mi_m)t =L

S, = > (x—m;)(x—m,)"

m=—>x
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Meaning

< Total scatter = between class scatter + within class
scatter

<+ In hypothesis testing
0 Between class scatter is significant
0 Within class scatter is insignificant (error)

+ E.g., three different treatment option (surgery,
drug, placebo)

0 Large between class scatter means one treatment is
more effective than the others

0 Large within class scatter means that samples means
variation among subjects of the same treatment

PR, ANN, L ML
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In the transformed (c-1)-dimensional space

Y. = W; X i=1,..., c—1

vy =W |x

m, — Ea STy de(c—l)
N; VASINT

== nm,
N =1

S, =>_> (y—m)(y—m)"
=1 yets;

Sg = Z Z(r—ﬁu _rﬁ)(rﬁu _rﬁ)t
i=1 yes;

S, =W'S W

S, =W'S,W

|§B| WS ,W|  <Transformed measure is a matrix
% AT “ eUse determinant for spread volume
1S.| WS, W| P

SgW;, = A4S, W,
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Multi-Dimensional Scaling

<+ Glven n objects and a confusion (similarity
or dis-similarity) matrix nxn

<« Distance (similarity) can be numbers
(Euclidean distance) or ranking

<« Find an embedding in an m-dimensional
space where the distance (similarity) Is
preserved

PR, ANN, L ML
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Algorithms

. Set, up the matrix of squared proximities P = [p?].
. Apply the double centering: B = —1JP®J using the matrix J =1 —n"'11/,

where n is the number of objects.

. Extract the m largest positive eigenvalues A, ... A, of B and the corresponding

m eigenvectors ey ... en.

. A m-dimensional spatial configuration of the n objects is derived from the
coordinate matrix X = EmA:;: 2 where E,, is the matrix of m eigenvectors

and A,, is the diagonal matrix of m eigenvalues of B, respectively.
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Algorithms

« B 1s similar to “convariance matrix” and can
be reconstructed by eigen vectors and
eigenvalues

__1 _1 9 2 _l 9
B_1 2(11 ~11°) P (11n11)

=—— (I —11’) X((I = ~11°)’ X)’
=2 (= A1) X)(( = A1) XY
==~ (X — 11’ X)(X — 11’ X)’

—— (X - X)(X - Xy
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cph aar ode aal

cph 0 93 82 133 MDS map
aar 93 0 52 60. ' ' '
ode 82 52 0 111 40f coh
aal 133 60 111 0 P
The matrix of squared proximities is '7;' 20 aal
o
0 8649 6724 17689 @ gl
0]
p® _ 8649 0 2704 3600 £ aar
6724 2704 0 12321 a
17689 3600 12321 0
Since there are n. = 4 objects, the matrix J is calculated by —40r ode
1000 1111 0.75 —0.25 —0.25 —0.25 60 40 —2'?3 .0 12'0 0 60
0100 1111 —0.25 075 —0.25 —025 imension
J= _ —0.25 % =
0010 1 111 —-0.25 —-0.25 0.75 —-0.25
0001 I 1 11 —-0.25 —-0.25 —-0.25 0.75
5035.0625 —1553.0625 258.9375 —3740.938 |
B— _1Jp@j— —1553.0625 507.8125 5.3125 1039.938
2 258.9375 0.3125  2206.8125 —2471.062
—3740.9375 1039.9375 —2471.0625  5172.062 |
—0.637 —0.586 '\
0.187 0.214
A1 = 9724.168, Ay = 3160.986, e, = , e
! ? ' —0.253 ’ 0.706
0.704 —0.334 )
—0.637 —0.586 —62.831 —32.97448
X — 0.187 0.214 V9724.168 0] 18.403 12.02697
—0.253  0.706 0 /3160986 | | —24.960  39.71091
0.704 —0.334 69.388 —18.76340
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Multi-Dimensional Scaling

<« Original space <+ Reduced-dimensional space
a dimension d 0 dimension d’
N:{Xl’XZ""’Xn} S:{yl,yz,,yn}

Select J in such a way to preserve the n(n-1)/2
distance measurements through dimension
reduction
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MDS Solution

+ FInd B;; as close to original o; as possible
« Metric MDS
f 1sa monotonic, metric - preserving function
F(5;)=q
f(B;)=aq;+D
< NonMetric MDS

a rank orders are the same in both
2 f can be any monotonic function

PR, ANN, L ML
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Possible Cost (Stress) Functions

C — ( Zaijz )2
= L= ’Z(a £ 129%
AT raes [
¥ al_] _IBU 2
\ 7 Z:( X 2
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Gradient Descent

« A search mechanism
< Start at an arbitrarily chosen starting point

< Move In a direction (negative gradient) to
minimize the cost function

PR, ANN, L ML
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An Iterative algorithm
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Thelr gradient directions

—2 Yk = Y
W Crs > (o — B:)
Y, b aijz ) Kj K] :Bkj
i<j
: 2k oy By
v, o= —2 i — P Ve — Y
" IZJ aij j#k akj ﬂkj
<

PR, ANN, L ML
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How many dimensions?

« Again, for visualization purpose, It IS
usually 2 or 3

PR, ANN; T ML

31



Example

sSouree tareet

PR, ANN, L ML
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An Example
<« d movies, with rating from -1 (bad) to 0
(neutral) to 1 (good)

<+ R; can be considered a random variable with the
underlying universe being all n viewers

+» E(R;) = expected (average) ratings from all
viewers

+ var(R)) = E(R-E(R;))? variance (spread) in
ratings from all viewers

+ cov(l,]) = E[(R;-E(R;)) (R;-E(R;))] covariance

| (correlation) of ratings of two movies
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An Example (cont.)

<« Covariance matrix: a dxd matrix with entry
being cov(l,])

<« cov(l,)) I1s symmetrical
0 Has QAQT eigen decomposition
0 What are the physical meaning of Q and A?

PR, ANN, L ML
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PCA (Principal Component
Analysis)

where

0, -0 %P0 N oo [ 4 |
XL G 2l X, 60|+ 8" X, —0|&[0 8. >

I oo == "0 |l D “O\Y
[ = _Hiifo-" 0 —oF=[0. - 0-2ad
O O O]l+ XL -0 = 100

T

08 g =e0—0f |= X" =1
:inXT
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PCA (Principal Component
Analysis)

< N time the covariance matrix (assume the
mean Is zero for now)

DX X =

n

>
k=1
n
S

(K) v (K)
Zx X,

n

>
k=1
n
S

(K) v (K)
Zx xS
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Principal Component Analysis

<« EXtract a set of compact basis which best

describe the data set
[ s N={X{; X5,.., X, }

X711 X2 - X1in
X1 X2 - Xpp -
- Xij
| Xag1 Xd2 - Xan ddxn
U, U - Uy ot Sl v J
11 - nl
Uy; Uy - Uyy 0 0
u'J i O O O-nn V. \Vj
1n . nn _nxn
| Ugz  Ugz - Ugg Jg.gl O 0 0 Jy.,

' t
den . dedzdxnv nxn

PR, ANN, L ML
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Can nbe shown that
X; = jZ::lVijO'jjuj
> X; IS an original vector
> Uj is a basis vector
> Ojjis the significance of the basis vector
> Vij is the weight of the particular basis vector

2 If data set is highly correlated, usually only a
few bases are significant

aUse v; Instead of .
0 Reduce dimensionality from d to n or less
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Important SVD properties

<« Orthogonal bases
<« Importance ranked axis direction
<« Body-fitted coordinate system

< Uncorrelated components
X34 X2
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Furthermore
den — dedz thxn

dxn
>(d><n><tn><d — (deddenvtnxn)(unxnztdxnuthd)
— dedzzdxnutdxd

«» SVD of the samples can be used to derive
the PCA transform of the class

0 the same basis functions - °

2 related eigenvalues o oy;

GII GII
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How to Use PCA

t 2 t
CdXd — X X nxd — dedz dXﬂU dxd

dxn

CdXdX — UdXd Ezdxn Utdde

< Scotty-peam-me-up:
0 Red: projection (decomposition) into important
data dimensions
a Green: “massage’ according to importance

2 Blue: reconstruction onto important basis

« Represent 1in “body-fitted” coordinate
system, e.g., for similarity search

R

PR, ANN, L ML
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Math Detall

B To, u’
=|u, u, o

_: : i o, UnT |

R I TV T 20 b
=| U, u, :

_: : £, Vo-n__ '\/O-n__' unT A

Jouu," [ ;]{:: : :::]
) _-(C..CT .:,
0 i j

k<<n, only a few dimensions are kept

Embedding are the rows of \/;. u;
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Intuition

< U’s represent
0 Body-fitted
2 Uncorrelated
0 Importance-ranked dimensions

< Instead of using original vectors (x)
projected on standard basis, use (x)
projected on u

<« Use as many or as few as you want (recall
dimension reduction)




Caveat

< PCA gives the dimension for best
representation of data, which does not
necessarily implies best dimension for
discrimination of data

Best representation

Best discrimination




Caveat

«» PCA Is sensitive to data preprocessing
0 Centering
2 Normalization
<« Different normalization (weighting) gives
different preference to features
2 NBA player salary = f (height, ppg)
<« The number of important dimensions (e.g.,

height and ppg are correlated) should be
preserved

PR, ANN, L ML
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Caveat

+» XXT is a very frequently seen math
construct

4
d
a

Treat as a vector in PCA
Treat as a vector of random variables in KL
Treat as a vector of partial derivatives in

Hesslan

o XXTIS
0 Symmetric, positive semidefinite

d

Eigen values are real and >=0

PR, ANN, L ML
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Kernel PCA

<+ A generalization of PCA In the feature space
< ldea Is this:

2 Linear structures might not exist in original
feature space

0 But might exist after a nonlinear mapping into a
nigher-dimensional space

2 Linear algebra can be used for data analysis In
nigher dimensional space

2 With kernel tricks, mapping need not be
actually done

PR, ANN, L ML
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Kernel CPA

<+ Requirements: only inner products are used
In decomposing covariance matrix

<« Dot(x1,X]) can be done
2 In the original space
2 In Kernel space without explicit mapping

PR, ANN, L ML
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Math Detalls

+ Compute covariance matrix  R==3 p()o(x)’
<« FInd eigen vectors and values Rqg=A4q

+ Represent in kernel math 0= 0(x)

0 “representable” components 1n  ¢(x;)
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Detalls

q, = Zakjw(xj)
j=1
Rq, =44,

- Z(P(Xi)§0(xi)qu = NAq, R :%Zﬂxi)(B(Xi)T
i=1 i
= Z(D(Xi)@(xi)T Zakj¢(xj) T NZZ 2 @(X;) A= ;“kj(P(XJ)

:Zz%gp(x YK (X;,X;) = N/’tzaquo(X) 00070, = 00" Styol) = Sty 000) = St K 0,0

:>¢(Xk)zzakj¢(x )K(XI,X ) = (X, )N/Izakj§0(x)
:ZZakJK(xk,x K (X;,X,) = N/IZakJK(xk,x )

K?a = N/1Ka:> Ka = NAa
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How to Use?

+» Solve  ko=Nia
a K: kernel matrix, a,: eigen vectors

+ Representation  perq. o e - Saptoron- Sk
o only k(x, xj) are needed
a o solved in the previous step

<+ Possible to find representation basis and
map unknown vectors using Kernel function
without explicit mapping

PR, ANN, L ML
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PCA and MDS

PCA provides a linear solution to a version of the metric MDS
Distance measurements are real and symmetrical

Use a particular definition of distance: inner product

0 Caveat: inner product requires a coordinate system (origin) while pair-
wise distance does not

0 Inner product defines pair-wise distance but not vice versa

Put all the pair-wise distances into a matrix, m=distance
between features i and j (this is the Gram matrix)

Recall that M Is made of n rank-one matrices

Only a small number (2-3 for visualization purpose) of those are

kept if singular values drop off quickly — mapping into a lower
dimension space

PR, ANN, L ML
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Final Notes

<« Other techniques, such as Self-Organization
Map (SOM) are available

«» SOM Is discussed later in non-supervised
techniques
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