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Dimension Reduction

 Curse of dimensionality

with 50 features (dimensions), each quantized 

to 20 levels, create 2050 possible feature 

combinations, imagine how many samples you 

need to estimate p(x|w)?

 how do you visualize the structure in a 50 

dimensional space? 
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Other problems

 Size of the local regions needed for density 

estimation getting larger and larger

 To capture r% of the data, edge length is r1/n

 n=10, r=0.01, x =0.63, 

 n=10, r=0.1, x=0.8

 Data tend to boundary, creating boundary skew 

Consider uniform distribution, p% interior 

Exterior probability is 1-pn

 n=10, p=0.8, 0.89 exterior

N=100, p=0.8, 0.999.. exterior
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Solutions - Reduction

 Fisher’s linear discriminant

 Preserve class separation (special case of principle 

component analysis)

 Multi-dimensional scaling

 Preserve distance measures

 Principal component analysis

 Best data representation (not necessarily best class 

separation)
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Fisher’s linear discriminant (2-class)

 Given n d-dimensional samples 

 a linear transform                   which

maps d-D samples onto a line

 best preserves class separation

 Intuitively, good features are those with 

large separation of means relative to 

variances
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Caveats
 The nature of the problem is that ambiguity 

might arise when you reduce problem 

dimension (a good reduction algorithm may 

minimize the problem, but  may not 

completely eliminate the problem)
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Caveats (cont)

 The figures also suggest that, sometimes, to 

get better performance, it is necessary to 

increase the dimension (more features), not 

to decrease it
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In the original d-dimensional space

 Between class scatter

 Within class scatter

 Ideally, function should be large
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In the transformed 1-dimensional space

 Between class scatter

 Within class scatter

 Ideally, function should be large
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 Or
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The Analysis

 F(w): generalized Rayleigh quotient

 To maximize F(w), w is the generalized 

eigenvector associated with the largest 

generalized eigenvalue 
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 Proof:
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Example

 Larger the within-class 

spread direction gets de-

emphasized
PR , ANN, & ML

)m(mw 21 

)m(mSw 21

1

w 




15PR , ANN, & ML

Fisher’s linear discriminant (c-class)

 With c-1 discriminant functions

 Project from d-space to (c-1)-space

 Again, try to maximize between-class 

scatter to within-class scatter ratio for best 

separability
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In the original feature space

 Within class scatter

Easy generalization into c classes
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Between Class Scattering

 More tricky

 Total mean & total scatter

 Total scatter is made of 

 Scatter within a class

 Scatter between classes

Total mean
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Meaning

 Total scatter = between class scatter + within class 

scatter

 In hypothesis testing

 Between class scatter is significant 

 Within class scatter is insignificant (error)

 E.g., three different treatment option (surgery, 

drug, placebo) 

 Large between class scatter means one treatment is 

more effective than the others

 Large within class scatter means that samples means 

variation among subjects of the same treatment 
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Multi-Dimensional Scaling

 Given n objects and a confusion (similarity 

or dis-similarity) matrix nxn

 Distance (similarity) can be numbers 

(Euclidean distance) or ranking

 Find an embedding in an m-dimensional 

space where the distance (similarity) is 

preserved

PR , ANN, & ML
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Algorithms

PR , ANN, & ML
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Algorithms

 B is similar to “convariance matrix” and can 

be reconstructed by eigen vectors and 

eigenvalues

PR , ANN, & ML
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Multi-Dimensional Scaling

 Original space

 dimension d

 Reduced-dimensional space

 dimension d’

 { , ,..., }x x xn1 2

ij i jx x | |

 { , ,..., }y y yn1 2

ij i jy y | |

Select      in such a way to preserve the n(n-1)/2 

distance measurements through dimension 

reduction


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 Find ij as close to original ij as possible

 Metric MDS

 NonMetric MDS

 rank orders are the same in both

 f can be any monotonic function

baf
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Possible Cost (Stress) Functions
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Gradient Descent

 A search mechanism

 Start at an arbitrarily chosen starting point

 Move in a direction (negative gradient) to 

minimize the cost function
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An iterative algorithm 
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Their gradient directions
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How many dimensions?

 Again, for visualization purpose, it is 

usually 2 or 3
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Example
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An Example

 d movies, with rating from -1 (bad) to 0 

(neutral) to 1 (good)

 Ri can be considered a random variable with the 

underlying universe being all n viewers

 E(Ri) = expected (average) ratings from all 

viewers

 var(Ri) = E(Ri-E(Ri))
2 variance (spread) in 

ratings from all viewers

 cov(i,j) = E[(Ri-E(Ri)) (Rj-E(Rj))] covariance 

(correlation) of ratings of two movies 

PR , ANN, & ML



34

An Example (cont.)

 Covariance matrix: a dxd matrix with entry 

being cov(i,j)

 cov(i,j) is symmetrical

Has QLQT eigen decomposition

What are the physical meaning of Q and L?

PR , ANN, & ML
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PCA (Principal Component 

Analysis)

PR , ANN, & ML







































































 







































































i

T

ii

T

T

T

nxd
t

dxn

where

XX

X

X

X

XXXXX

3

2

1

321

000

000

000

000

000

000

|00

00

|00

0|0

00

0|0

00|

00

00|



36

PCA (Principal Component 

Analysis)
 N time the covariance matrix (assume the 

mean is zero for now)

PR , ANN, & ML
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Principal Component Analysis

 Extract a set of compact basis which best 

describe the data set 
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Can be shown that

 is an original vector

 is a basis vector

 is the significance of the basis vector

 is the weight of the particular basis vector

 If data set is highly correlated, usually only a 

few bases are significant

Use       instead of      

Reduce dimensionality from d to n or less

x v ui ij jj j
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Important SVD properties

 Orthogonal bases

 Importance ranked axis direction

 Body-fitted coordinate system

 Uncorrelated components

x1

x2x3

u1
u2

v1

v2
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Furthermore
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How to Use PCA

 Scotty-beam-me-up:

Red: projection (decomposition) into important 

data dimensions

Green: “massage” according to importance

Blue: reconstruction onto important basis

 Represent in “body-fitted” coordinate 

system, e.g., for similarity search 

PR , ANN, & ML
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Math Detail
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Intuition

 u’s represent 

Body-fitted

Uncorrelated 

 Importance-ranked dimensions

 Instead of using original vectors (x) 

projected on standard basis, use (x) 

projected on u

 Use as many or as few as you want (recall 

dimension reduction)

PR , ANN, & ML
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Caveat

 PCA gives the dimension for best 

representation of data, which does not 

necessarily implies best dimension for 

discrimination of data

Best representation

Best discrimination
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Caveat

 PCA is sensitive to data preprocessing

Centering

Normalization

 Different normalization (weighting) gives 

different preference to features

NBA player salary = f (height, ppg)

 The number of important dimensions (e.g., 

height and ppg are correlated) should be 

preserved 
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Caveat

 XXT is a very frequently seen math 

construct

 Treat as a vector in PCA 

 Treat as a vector of random variables in KL 

Treat as a vector of partial derivatives in 

Hessian

 XXT is

 Symmetric, positive semidefinite

 Eigen values are real and >=0 

PR , ANN, & ML
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Kernel PCA

 A generalization of PCA in the feature space

 Idea is this:

 Linear structures might not exist in original 
feature space

But might exist after a nonlinear mapping into a 
higher-dimensional space

 Linear algebra can be used for data analysis in 
higher dimensional space

With kernel tricks, mapping need not be 
actually done
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Kernel CPA

 Requirements: only inner products are used 

in decomposing covariance matrix 

 Dot(xi,xj) can be done

 In the original space

 In Kernel space without explicit mapping

PR , ANN, & ML
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Math Details 
 Compute covariance matrix

qRq 


i

T

i
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)(x)(xR i 
1

 Find eigen vectors and values

 Represent in kernel math

 “representable” components in 
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)( jx
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Details
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How to Use?

 Solve

K: kernel matrix, k: eigen vectors

 Representation

 only k(x, xj) are needed 

k: solved in the previous step

 Possible to find representation basis and 

map unknown vectors using Kernel function 

without explicit mapping

PR , ANN, & ML
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PCA and MDS
 PCA provides a linear solution to a version of the metric MDS 

 Distance measurements are real and symmetrical 

 Use a particular definition of distance: inner product 

 Caveat: inner product requires a coordinate system (origin) while pair-

wise distance does not

 Inner product defines pair-wise distance but not vice versa

 Put all the pair-wise distances into a matrix, mij=distance 

between features i and j (this is the Gram matrix)

 Recall that M is made of n rank-one matrices

 Only a small number (2-3 for visualization purpose) of those are 

kept if singular values drop off quickly – mapping into a lower 

dimension space
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Final Notes

 Other techniques, such as Self-Organization 

Map (SOM) are available

 SOM is discussed later in non-supervised 

techniques


