Dimension Reduction

Dimension Reduction

* Curse of dimensionality
\square with 50 features (dimensions), each quantized to 20 levels, create 20^{50} possible feature combinations, imagine how many samples you need to estimate $\mathrm{p}(\mathbf{x} \mid \mathrm{w})$?
\square how do you visualize the structure in a 50 dimensional space?

Other problems

* Size of the local regions needed for density estimation getting larger and larger
\square To capture $r \%$ of the data, edge length is $r^{1 / n}$

$$
\begin{aligned}
& >n=10, r=0.01, x=0.63 \\
& >n=10, r=0.1, x=0.8
\end{aligned}
$$

* Data tend to boundary, creating bouncary skew
\square Consider uniform distribution, $p \%$ interior
\square Exterior probability is $1-p^{n}$
$>n=10, p=0.8,0.89$ exterior
$>N=100, p=0.8,0.999$.. exterior

Solutions - Reduction

*. Fisher's linear discriminant

- Preserve class separation (special case of principle component analysis)
* Multi-dimensional scaling
- Preserve distance measures
* Principal component analysis
- Best data representation (not necessarily best class separation)

Fisher's linear discriminant (2-class)

* Given n d-dimensional samples $\mathbf{X}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$

$$
\mathbf{X}_{1} \in \varpi_{1},\left|\mathbf{X}_{1}\right|=n_{1} \mathbf{X}_{2} \in \varpi_{2},\left|\mathbf{X}_{2}\right|=n_{2} n_{1}+n_{2}=n
$$

* a linear transform $\quad y=\mathbf{w}^{\mathbf{t}} \mathbf{x} \quad$ which
- maps d-D samples onto a line
\square best preserves class separation
* Intuitively, good features are those with large separation of means relative to variances

Caveats

* The nature of the problem is that ambiguity might arise when you reduce problem dimension (a good reduction algorithm may minimize the problem, but may not completely eliminate the problem)

Caveats (cont)

* The figures also suggest that, sometimes, to get better performance, it is necessary to increase the dimension (more features), not to decrease it

In the original d-dimensional space

* Between class scatter

$$
\left|\mathbf{m}_{1}-\mathbf{m}_{2}\right|^{2} \quad \mathbf{m}_{i}=\frac{1}{n_{i}} \sum_{i \times x_{i}} \mathbf{x}
$$

* Within class scatter

$$
s_{1}^{2}+s_{2}^{2} \quad s_{i}^{2}=\sum_{\mathbf{x} \in \boldsymbol{X}_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t}\left(\mathbf{x}-\mathbf{m}_{i}\right)
$$

* Ideally, function should be large

$$
\frac{\left|\mathbf{m}_{1}-\mathbf{m}_{2}\right|^{2}}{s_{1}^{2}+s_{2}^{2}}
$$

In the transformed 1-dimensional space

* Between class scatter
* Within class scatter

$$
\left|\hat{m}_{1}-\hat{m}_{2}\right|^{2} \quad \hat{m}_{i}=\frac{1}{n_{i}} \sum y=\frac{1}{n_{i}} \sum_{x \in \aleph_{i}} \mathbf{w}^{\mathrm{t}} \mathbf{x}=\mathbf{w}^{\mathrm{t}} \mathbf{m}_{i}
$$

$$
\hat{s}_{1}^{2}+\hat{s}_{2}^{2} \quad \hat{s}_{i}^{2}=\sum\left(y-\hat{m}_{i}\right)^{2}
$$

* Ideally, function should be large

$$
F(\mathbf{w})=\frac{\left|\hat{m}_{1}-\hat{m}_{2}\right|^{2}}{\hat{s}_{1}^{2}+\hat{s}_{2}^{2}}
$$

* Or

$$
\begin{aligned}
& \left|\hat{m}_{1}-\hat{m}_{2}\right|^{2}=\left(\mathbf{w}^{\mathbf{t}} \mathbf{m}_{1}-\mathbf{w}^{\mathrm{t}} \mathbf{m}_{2}\right)^{2} \\
& =\mathbf{w}^{\mathbf{t}}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{\mathbf{t}} \mathbf{w}=\mathbf{w}^{\mathrm{t}} \mathbf{S}_{b} \mathbf{W}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{s}_{i}^{2}=\sum\left(y-\hat{m}_{i}\right)^{2}=\sum_{\mathbf{x} \in \mathbf{X}_{i}}\left(\mathbf{w}^{t} \mathbf{x}-\mathbf{w}^{t} \mathbf{m}_{i}\right)^{2} \\
& \left.=\sum_{\mathbf{x} \in \mathbf{X}^{\prime}} \mathbf{w}^{t} \mathbf{(x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t} \mathbf{w}=\mathbf{w}^{t} \mathbf{S}_{i} \mathbf{w} \\
& \hat{s}_{1}^{2}+\hat{s}_{2}^{2}=\mathbf{w}^{\mathbf{t}}\left(\mathbf{S}_{1}+\mathbf{S}_{2}\right) \mathbf{w}=\mathbf{w}^{\mathbf{t}} \mathbf{S}_{w} \mathbf{w}
\end{aligned}
$$

$$
F(w)=\frac{\left|\hat{m}_{1}-\hat{m}_{2}\right|^{2}}{\hat{s}_{1}{ }^{2}+\hat{s}_{2}{ }^{2}}=\frac{\mathbf{w}^{\mathbf{t}} \mathbf{S}_{\mathbf{B}} \mathbf{w}}{\mathbf{w}^{\mathbf{t}} \mathbf{S}_{\mathbf{w}} \mathbf{w}}
$$

The Analysis

* $\mathrm{F}(\mathrm{w})$: generalized Rayleigh quotient $\quad \frac{\mathbf{w}^{\prime} \mathbf{S}_{\mathbf{b}} \mathbf{w}}{\mathbf{w}^{\mathbf{w}} \mathbf{w}}$
* To maximize $\mathrm{F}(\mathrm{w})$, w is the generalized eigenvector associated with the largest generalized eigenvalue

$$
\begin{aligned}
& \mathbf{S}_{\mathbf{B}} \mathbf{w}=\lambda \mathbf{S}_{w} \mathbf{w} \quad o r \\
& \mathbf{S}_{\mathbf{w}}^{-1} \mathbf{S}_{\mathbf{B}} \mathbf{w}=\lambda \mathbf{w} \\
& \mathbf{w}=\mathbf{S}_{\mathbf{w}}^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)
\end{aligned}
$$

* Proof:

$$
F(\mathbf{w})=\frac{\left|\hat{m}_{1}-\hat{m}_{2}\right|^{2}}{\hat{s}_{1}{ }^{2}+\hat{s}_{2}{ }^{2}}=\frac{\mathbf{w}^{\mathbf{t}} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\mathbf{t}} \mathbf{S}_{w} \mathbf{w}}
$$

$\frac{d F(\mathbf{w})}{d \mathbf{w}}=\frac{2 \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\mathrm{t}} \mathbf{S}_{w} \mathbf{w}}-\frac{2 \mathbf{S}_{w} \mathbf{w}}{\mathbf{w}^{\mathrm{t}} \mathbf{S}_{w} \mathbf{w}} \frac{\mathbf{w}^{\mathrm{t}} \mathbf{S}_{B} \mathbf{w}}{\mathbf{w}^{\mathrm{t}} \mathbf{S}_{w} \mathbf{w}}=0$
$2 \mathbf{S}_{B} \mathbf{w}^{*}-\lambda 2 \mathbf{S}_{\mathbf{w}} \mathbf{w}^{*}=0$

$$
\lambda=\frac{\mathbf{w}^{* t} \mathbf{S}_{B} \mathbf{w}^{*}}{\mathbf{w}^{*} \mathbf{S}_{w} \mathbf{w}^{*}}
$$

$\mathbf{S}_{B} \mathbf{w}^{*}=\lambda \mathbf{S}_{\mathbf{w}} \mathbf{w}^{*}$
$\mathbf{S}_{\mathbf{w}}{ }^{-1} \mathbf{S}_{B} \mathbf{w}^{*}=\lambda \mathbf{w}^{*}$
$\mathbf{w}^{*}=\mathbf{S}_{\mathbf{w}}{ }^{-1}\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)$
$\because \mathbf{S}_{B}=\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)^{T} \rightarrow \mathbf{S}_{B} \mathbf{x}=c\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right)$

Example

$P R, \mathcal{A} \mathcal{N N}, \mathcal{L} \mathcal{L} \mathcal{L}$

Fisher's linear discriminant (c-class)

* With c-1 discriminant functions
\% Project from d-space to (c-1)-space
* Again, try to maximize between-class scatter to within-class scatter ratio for best separability

In the original feature space

* Within class scatter
\square Easy generalization into c classes

$$
\begin{aligned}
& \mathbf{S}_{w}=\sum_{i=1}^{c} \mathbf{S}_{i} \\
& \mathbf{S}_{i}=\sum_{\mathbf{x} \in \mathbf{X}_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t} \\
& \mathbf{m}_{i}=\frac{1}{n_{i}} \sum_{\mathbf{x} \times \mathbf{X}_{i}} \mathbf{x}
\end{aligned}
$$

Between Class Scattering

* More tricky
\square Total mean \& total scatter $\mathbf{m}=\frac{1}{n} \sum \mathbf{x}=\frac{1}{n} \sum_{i=1}^{\infty} n_{i} \mathbf{m}_{,}$
\square Total scatter is made of $\quad \mathbf{S}_{T}=\sum(\mathbf{x}-\mathbf{m})(\mathbf{x}-\mathbf{m})^{\prime}$
> Scatter within a class
> Scatter between classes

$$
\mathbf{S}_{B}=\sum_{i=1}^{c} n_{i}\left(\mathbf{m}_{\mathbf{i}}-\mathbf{m}\right)\left(\mathbf{m}_{\mathbf{i}}-\mathbf{m}\right)^{t}
$$

Total mean \& total scatter matrix

$$
\begin{aligned}
& \mathbf{m}=\frac{1}{n} \sum \mathbf{x}=\frac{1}{n} \sum_{i=1}^{c} n_{i} \mathbf{m}_{i} \\
& \mathbf{S}_{T}=\sum(\mathbf{x}-\mathbf{m})(\mathbf{x}-\mathbf{m})^{t} \\
& \mathbf{S}_{T}=\sum(\mathbf{x}-\mathbf{m})(\mathbf{x}-\mathbf{m})^{t} \\
& =\sum_{i=1}^{c} \sum_{\mathbf{x} \in \mathbf{X}_{i}}\left(\mathbf{x}-\mathbf{m}_{i}+\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{x}-\mathbf{m}_{i}+\mathbf{m}_{i}-\mathbf{m}\right)^{t} \\
& \stackrel{\downarrow}{=} \sum_{i=1}^{c} \sum_{x \in \aleph_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t}+\sum_{i=1}^{c} \sum_{\mathbf{x} \in \mathbf{X}_{i}}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{t} \\
& =\mathbf{S}_{w}+\sum_{i=1}^{c} n_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{t} \\
& \mathbf{S}_{B}=\sum_{i=1}^{c} n_{i}\left(\mathbf{m}_{i}-\mathbf{m}\right)\left(\mathbf{m}_{i}-\mathbf{m}\right)^{t} \quad \begin{array}{l}
\mathbf{S}_{w}=\sum_{i=1}^{c} \mathbf{S}_{i} \\
\mathbf{S}_{i}=\sum_{\mathbf{x} \in \mathbf{X}_{i}}\left(\mathbf{x}-\mathbf{m}_{i}\right)\left(\mathbf{x}-\mathbf{m}_{i}\right)^{t}
\end{array} \\
& \mathscr{P R}, \mathcal{A N N N}, \mathbb{C} \mathbf{m}_{\dot{M}}=\frac{1}{n_{i}} \sum_{\mathbf{x} \in \mathbf{X}_{i}} \mathbf{x}
\end{aligned}
$$

Meaning

* Total scatter $=$ between class scatter + within class scatter
* In hypothesis testing
\square Between class scatter is significant
- Within class scatter is insignificant (error)
* E.g., three different treatment option (surgery, drug, placebo)
- Large between class scatter means one treatment is more effective than the others
\square Large within class scatter means that samples means variation among subjects of the same treatment

In the transformed (c-1)-dimensional space

$$
\begin{aligned}
& y_{i}=w_{i}^{t} x \quad i=1, \ldots, c-1 \\
& \begin{array}{l}
y=W^{i} x \\
\tilde{m}_{i}=\frac{1}{n_{i}} \sum_{y \in \mathfrak{N}_{i}} y
\end{array} \\
& W_{d \times(c-1)} \\
& \tilde{m}=\frac{1}{n} \sum_{i=1}^{c} n_{i} m_{i} \\
& \widetilde{S}_{w}=\sum_{i=1}^{c} \sum_{y \in \mathfrak{N}_{i}}\left(y-\tilde{m}_{i}\right)\left(y-\tilde{m}_{i}\right)^{t} \\
& \widetilde{S}_{B}=\sum_{i=1}^{c} \sum_{y \in \mathfrak{N}_{i}}\left(\tilde{m}_{i}-\tilde{m}\right)\left(\tilde{m}_{i}-\tilde{m}\right)^{t} \\
& \tilde{S}_{w}=W^{t} S_{w} W \\
& \tilde{S}_{B}=W^{t} S_{B} W \\
& J(W)=\frac{\left|\tilde{S}_{B}\right|}{\left|\tilde{S}_{w}\right|}=\frac{\left|W^{t} S_{B} W\right|}{\left|W^{t} S_{w} W\right|} \leftarrow \quad \stackrel{\text { Transformed measure is a matrix }}{\bullet \text { Use determinant for spread volume }} \\
& S_{B} w_{i}=\lambda_{i} S_{w} w_{i}
\end{aligned}
$$

Multi-Dimensional Scaling

* Given n objects and a confusion (similarity or dis-similarity) matrix nxn
* Distance (similarity) can be numbers (Euclidean distance) or ranking
* Find an embedding in an m-dimensional space where the distance (similarity) is preserved

Algorithms

1. Set up the matrix of squared proximities $\mathbf{P}^{(2)}=\left[p^{2}\right]$.
2. Apply the double centering: $\mathbf{B}=-\frac{1}{2} \mathbf{J P}^{(2)} \mathbf{J}$ using the matrix $\mathbf{J}=\mathbf{I}-n^{-1} \mathbf{1} \mathbf{1}^{\prime}$, where n is the number of objects.
3. Extract the m largest positive eigenvalues $\lambda_{1} \ldots \lambda_{m}$ of \mathbf{B} and the corresponding m eigenvectors $\mathbf{e}_{\mathbf{1}} \ldots \mathbf{e}_{\mathbf{m}}$.
4. A m-dimensional spatial configuration of the n objects is derived from the coordinate matrix $\mathbf{X}=\mathbf{E}_{\mathrm{m}} \Lambda_{m}^{1 / 2}$, where \mathbf{E}_{m} is the matrix of m eigenvectors and Λ_{m} is the diagonal matrix of m eigenvalues of \mathbf{B}, respectively.

Algorithms

*B is similar to "convariance matrix" and can be reconstructed by eigen vectors and eigenvalues

$$
\begin{aligned}
& \mathbf{B}=-\frac{1}{2}\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{\prime}\right) \mathbf{P}^{2}\left(\mathbf{I}-\frac{1}{n} \mathbf{1 1}^{\prime}\right) \\
& =-\frac{1}{2}\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{\prime}\right) \mathbf{X X} \mathbf{X}^{\prime}\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{\prime}\right) \\
& =-\frac{1}{2}\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{\prime}\right) \mathbf{X}\left(\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{\prime}\right)^{\prime} \mathbf{X}\right)^{\prime} \\
& =-\frac{1}{2}\left(\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{\prime}\right) \mathbf{X}\right)\left(\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{\prime}\right) \mathbf{X}\right)^{\prime} \\
& =-\frac{1}{2}\left(\mathbf{X}-\frac{1}{n} \mathbf{1 1}^{\prime} \mathbf{X}\right)\left(\mathbf{X}-\frac{1}{n} \mathbf{1 1}^{\prime} \mathbf{X}\right)^{\prime} \\
& -\frac{1}{2}(\mathbf{X}-\overline{\mathbf{X}})(\mathbf{X}-\overline{\mathbf{X}})^{\prime}
\end{aligned}
$$

cph	0	93	82	133
aar	93	0	52	60
ode	82	52	0	111
aal	133	60	111	0

The matrix of squared proximities is

$$
\mathbf{P}^{(2)}=\left[\begin{array}{rrrr}
0 & 8649 & 6724 & 17689 \\
8649 & 0 & 2704 & 3600 \\
6724 & 2704 & 0 & 12321 \\
17689 & 3600 & 12321 & 0
\end{array}\right]
$$

Since there are $n=4$ objects, the matrix \mathbf{J} is calculated by

$$
\begin{aligned}
& \mathbf{J}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-0.25 \times\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
0.75 & -0.25 & -0.25 & -0.25 \\
-0.25 & 0.75 & -0.25 & -0.25 \\
-0.25 & -0.25 & 0.75 & -0.25 \\
-0.25 & -0.25 & -0.25 & 0.75
\end{array}\right] \\
& \mathbf{B}=-\frac{1}{2} \mathbf{J P}^{(\mathbf{2})} \mathbf{J}=\left[\begin{array}{rrrr}
5035.0625 & -1553.0625 & 258.9375 & -3740.938 \\
-1553.0625 & 507.8125 & 5.3125 & 1039.938 \\
258.9375 & 5.3125 & 2206.8125 & -2471.062 \\
-3740.9375 & 1039.9375 & -2471.0625 & 5172.062
\end{array}\right] \\
& \lambda_{1}=9724.168, \lambda_{2}=3160.986, \quad \mathbf{e}_{\mathbf{1}}=\left(\begin{array}{r}
-0.637 \\
0.187 \\
-0.253 \\
0.704
\end{array}\right), \mathbf{e}_{\mathbf{2}}=\left(\begin{array}{r}
-0.586 \\
0.214 \\
0.706 \\
-0.334
\end{array}\right) \\
& \mathbf{X}=\left[\begin{array}{rr}
-0.637 & -0.586 \\
0.187 & 0.214 \\
-0.253 & 0.706 \\
0.704 & -0.334
\end{array}\right]\left[\begin{array}{rr}
\sqrt{9724.168} & 0 \\
0 & \sqrt{3160.986}
\end{array}\right]=\left[\begin{array}{rr}
-62.831 & -32.97448 \\
18.403 & 12.02697 \\
-24.960 & 39.71091 \\
69.388 & -18.76340
\end{array}\right]
\end{aligned}
$$

Multi-Dimensional Scaling

* Original space
\square dimension d
* Reduced-dimensional space
- dimension d'

$$
\begin{array}{ll}
\aleph=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} & \mathfrak{I}=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \\
\alpha_{i j}=\left|x_{i}-x_{j}\right| & \beta_{i j}=\left|y_{i}-y_{j}\right|
\end{array}
$$

Select \mathfrak{J} in such a way to preserve the $n(n-1) / 2$ distance measurements through dimension reduction

MDS Solution

$*$ Find β_{ij} as close to original α_{ij} as possible

* Metric MDS

$$
\begin{aligned}
& f \text { is a monotonic, metric - preserving function } \\
& f\left(\beta_{i j}\right)=\alpha_{i j} \\
& f\left(\beta_{i j}\right)=a \alpha_{i j}+b
\end{aligned}
$$

* NonMetric MDS
\square rank orders are the same in both
$\square \mathrm{f}$ can be any monotonic function

Possible Cost (Stress) Functions

$$
\begin{aligned}
& c=\left(\frac{\sum_{i, j}\left(\alpha_{i j}-f\left(\beta_{i j}\right)\right.}{\sum_{i, j} \alpha_{i j}{ }^{2}}\right)^{\frac{1}{2}} \\
& c=\frac{1}{\sum_{i=j} \alpha_{i j}{ }^{2}} \sum_{i=j}\left(\alpha_{i j}-\beta_{i j}\right)^{2} \\
& c^{\prime}=\sum_{i=1}\left(\frac{\alpha_{i j}-\beta_{i j}}{\alpha_{i j}}\right)^{2} \\
& c^{\prime \prime}=\frac{1}{\sum_{i=j} \alpha_{i j}} \sum_{i=j} \frac{\left(\alpha_{i j}-\beta_{i j}\right)^{2}}{\alpha_{i j}}
\end{aligned}
$$

Gradient Descent

* A search mechanism
* Start at an arbitrarily chosen starting point
* Move in a direction (negative gradient) to minimize the cost function

An iterative algorithm

 $x^{\prime}=x-\eta \nabla f=\left(x_{1}, x_{2}\right)-\eta\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}\right)$$$
f(x)=f\left(x_{1}, x_{2}\right)
$$

Their gradient directions

$$
\begin{aligned}
& \nabla_{y_{k}} c=\frac{-2}{\sum_{i<j} \alpha_{i j}{ }^{2}} \sum_{j \neq k}\left(\alpha_{k j}-\beta_{k j} \frac{y_{k}-y_{j}}{\beta_{k j}}\right. \\
& \nabla_{y_{k}} c^{\prime}=-2 \sum_{j \neq k} \frac{\alpha_{k j}-\beta_{k j} y_{k}-y_{j}}{\alpha_{k j}{ }^{2}} \frac{\beta_{k j}}{\nabla_{i<j}} \\
& \nabla_{y_{k}} c^{\prime \prime}=\frac{-2}{\sum_{i j} \alpha_{i j}} \sum_{j \neq k} \frac{\alpha_{k j}-\beta_{k j}}{\alpha_{k j}} \frac{y_{k}-y_{j}}{\beta_{k j}}
\end{aligned}
$$

How many dimensions?

* Again, for visualization purpose, it is usually 2 or 3

Example

An Example

$*$ d movies, with rating from -1 (bad) to 0 (neutral) to 1 (good)
$* \mathrm{R}_{\mathrm{i}}$ can be considered a random variable with the underlying universe being all n viewers

* $\mathrm{E}\left(\mathrm{R}_{\mathrm{i}}\right)=$ expected (average) ratings from all viewers
$* \operatorname{var}\left(\mathrm{R}_{\mathrm{i}}\right)=\mathrm{E}\left(\mathrm{R}_{\mathrm{i}}-\mathrm{E}\left(\mathrm{R}_{\mathrm{i}}\right)\right)^{2}$ variance (spread) in ratings from all viewers
$* \operatorname{cov}(\mathrm{i}, \mathrm{j})=\mathrm{E}\left[\left(\mathrm{R}_{\mathrm{i}}-\mathrm{E}\left(\mathrm{R}_{\mathrm{i}}\right)\right)\left(\mathrm{R}_{\mathrm{j}}-\mathrm{E}\left(\mathrm{R}_{\mathrm{j}}\right)\right)\right]$ covariance (correlation) of ratings of two movies

An Example (cont.)

* Covariance matrix: a dxd matrix with entry being $\operatorname{cov}(\mathrm{i}, \mathrm{j})$
$* \operatorname{cov}(\mathrm{i}, \mathrm{j})$ is symmetrical
\square Has $\mathrm{Q} \Lambda \mathrm{Q}^{\mathrm{T}}$ eigen decomposition
\square What are the physical meaning of Q and Λ ?

PCA (Principal Component
Analysis)
where

$$
\begin{aligned}
& \mathbf{X}_{d x n} \mathbf{X}^{t}{ }_{n x d}=\left(\left[\begin{array}{ccc}
\mid & 0 & 0 \\
\mathbf{X}_{1} & 0 & 0 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & \mid & 0 \\
0 & \mathbf{X}_{2} & 0 \\
0 & \mid & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & \mid \\
0 & 0 & \mathbf{X}_{3} \\
0 & 0 & \mid
\end{array}\right]\right) \\
& \left(\left[\begin{array}{ccc}
- & \mathbf{X}_{1}^{T} & - \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
- & \mathbf{X}_{2}^{T} & - \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
- & \mathbf{X}_{3}^{T} & -
\end{array}\right]\right) \\
& =\sum_{i} \mathbf{X}_{i} \mathbf{X}_{i}^{T}
\end{aligned}
$$

PCA (Principal Component Analysis)

* N time the covariance matrix (assume the mean is zero for now)

$$
\sum_{i} \mathbf{X}_{i} \mathbf{X}_{i}^{T}=\left[\begin{array}{llll}
\sum_{k=1}^{n} x_{1}^{(k)} x_{1}^{(k)} & \sum_{k=1}^{n} x_{1}^{(k)} x_{2}^{(k)} & \cdots & \sum_{k=1}^{n} x_{1}^{(k)} x_{d}^{(k)} \\
\sum_{k=1}^{n} x_{2}^{(k)} x_{1}^{(k)} & \sum_{k=1}^{n} x_{2}^{(k)} x_{2}^{(k)} & \cdots & \sum_{k=1}^{n} x_{2}^{(k)} x_{d}^{(k)} \\
\sum_{k=1}^{n} x_{d}^{(k)} x_{1}^{(k)} & \sum_{k=1}^{n} x_{d}^{(k)} x_{2}^{(k)} & \cdots & \sum_{k=1}^{n} x_{d}^{(k)} x_{d}^{(k)}
\end{array}\right]
$$

Principal Component Analysis

* Extract a set of compact basis which best describe the data set

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
x_{11} & x_{12} & \cdot & x_{1 n} \\
x_{21} & x_{22} & \cdot & x_{2 n} \\
\cdot & \cdot & x_{i j} & \cdot \\
x_{d 1} & x_{d 2} & \cdot & x_{d n}
\end{array}\right]_{d \times n}=\left\{\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots,\right.} \\
& {\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdot & u_{1 d} \\
u_{21} & u_{22} & \cdot & u_{2 d} \\
\cdot & \cdot & u_{i j} & \cdot \\
u_{d 1} & u_{d 2} & \cdot & u_{d d}
\end{array}\right]_{d \times d}\left[\begin{array}{ccc}
\sigma_{11} & 0 & 0 \\
0 & \cdot & 0 \\
0 & 0 & \sigma_{n n} \\
0 & 0 & 0
\end{array}\right]_{d \times n}\left[\begin{array}{ccc}
v_{11} & \cdot & v_{n 1} \\
\cdot & \cdot & \cdot \\
v_{1 n} & \cdot & v_{n n}
\end{array}\right]_{n \times n}} \\
& \\
& \mathbf{X}_{d \times n}=\mathbf{U}_{d \times d} \mathbf{\Sigma}_{d \times n} \mathbf{V}^{t}{ }_{n \times n}
\end{aligned}
$$

Can be shown that
 $$
x_{i}=\sum_{j=1}^{n} v_{i j} \sigma_{i j} u_{j}
$$

> x_{i} is an original vector
$>u_{j}$ is a basis vector
$>\sigma_{j j}$ is the significance of the basis vector
$>v_{i j}$ is the weight of the particular basis vector
\square If data set is highly correlated, usually only a few bases are significant
\square Use v_{i} instead of x_{i}
\square Reduce dimensionality from d to n or less

Important SVD properties

* Orthogonal bases
* Importance ranked axis direction
* Body-fitted coordinate system
* Uncorrelated components

Furthermore

$\mathbf{X}_{d \times n}=\mathbf{U}_{d \times d} \boldsymbol{\Sigma}_{d \times n} \mathbf{V}^{t}{ }_{n \times n}$
$\mathbf{X}_{d \times n} \mathbf{X}_{n \times d}{ }^{n}=\left(\mathbf{U}_{d \times d} \boldsymbol{\Sigma}_{d \times n} \mathbf{V}_{n \times n}^{t}\right)\left(\mathbf{U}_{n \times n} \boldsymbol{\Sigma}^{t}{ }_{d \times n} \mathbf{U}_{d \times d}^{t}\right)$
$=\mathbf{U}_{d \times d} \boldsymbol{\Sigma}^{2}{ }_{d \times n} \mathbf{U}^{t}{ }_{d \times d}$

* SVD of the samples can be used to derive the PCA transform of the class
\square the same basis functions $\quad u_{i}^{p, A}=u_{i}^{\text {sid }}$
\square related eigenvalues

$$
\sigma_{i i}^{P C A}=\left(\sigma_{i i}^{S V D}\right)^{2}
$$

$$
\begin{gathered}
\text { How to Use PCA } \\
\mathbf{C}_{d x d}=\mathbf{X}_{d \times n} \mathbf{X}_{n \times d}^{t}=\mathbf{U}_{d \times d} \boldsymbol{\Sigma}^{2}{ }_{d \times n} \mathbf{U}_{d \times d}^{t} \\
\mathbf{C}_{d x d} \mathbf{x}=\mathbf{U}_{d \times d} \boldsymbol{\Sigma}^{2}{ }_{d \times n} \mathbf{U}_{d \times d}^{t} \mathbf{x}
\end{gathered}
$$

* Scotty-beam-me-up:
\square Red: projection (decomposition) into important data dimensions
\square Green: "massage" according to importance
\square Blue: reconstruction onto important basis
* Represent in "body-fitted" coordinate system, e.g., for similarity search

Math Detail

$$
\mathbf{M}=\sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{T}
$$

$$
=\left[\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\mathbf{u}_{1} & \vdots & \mathbf{u}_{n} \\
\vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]\left[\begin{array}{ccc}
\cdots & \mathbf{u}_{1}{ }^{T} & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \mathbf{u}_{n}{ }^{T} & \cdots
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\mathbf{u}_{1} & \vdots & \mathbf{u}_{n} \\
\vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{lll}
\sqrt{\sigma_{1}} & & \\
& \ddots & \\
& & \sqrt{\sigma_{n}}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{\sigma_{1}} & & \\
& \ddots & \\
& & \sqrt{\sigma_{n}}
\end{array}\right]\left[\begin{array}{ccc}
\cdots & \mathbf{u}_{1}{ }^{T} & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \mathbf{u}_{n}{ }^{T} & \cdots
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
\vdots & \vdots & \vdots \\
\sqrt{\sigma_{1} \mathbf{u}_{1}} & \vdots & \sqrt{\sigma_{n}} \mathbf{u}_{n} \\
\vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{ccc}
\cdots & \sqrt{\sigma_{1}} \mathbf{u}_{1}{ }^{T} & \cdots \\
\cdots & \cdots & \cdots \\
\cdots & \sqrt{\sigma_{n}} \mathbf{u}_{n}{ }^{T} & \cdots
\end{array}\right] \quad\left[\begin{array}{cccc}
\vdots & \vdots & \vdots \\
0 & \mathbf{C}_{i} & 0 \\
\vdots & \vdots & \vdots
\end{array}\right]\left[\begin{array}{lccc}
\cdots & 0 & \mathbf{C}_{j}^{T} & \cdots \\
\cdots & (\sqrt{\sim} & \bigvee & - \\
\left.n^{T}\right)
\end{array}\right]
$$

$$
\left.=\sum_{i_{i=1}^{n}}^{n}\left(\sqrt{\sigma_{i}} \mathbf{u}_{i}\right)\left(\sqrt{\sigma_{i}} \mathbf{u}_{i}{ }^{T}\right) \Longrightarrow \quad \begin{array}{ccc}
\vdots & \vdots & \vdots
\end{array}\right] \cdots
$$

$$
\approx \sum_{i=1}^{k}\left(\underline{\sqrt{\sigma_{i}} \mathbf{u}_{i}}\right)\left(\sqrt{\sigma_{i}} \mathbf{u}_{i}{ }^{T}\right)
$$

* $\mathrm{k} \ll \mathrm{n}$, only a few dimensions are kept
* Embedding are the rows of $\sqrt{\sigma_{i}} \mathbf{u}_{i}$

Intuition

* u's represent
- Body-fitted
- Uncorrelated
- Importance-ranked dimensions
* Instead of using original vectors (\mathbf{x}) projected on standard basis, use (\mathbf{x}) projected on \mathbf{u}
* Use as many or as few as you want (recall dimension reduction)

Caveat

*PCA gives the dimension for best representation of data, which does not necessarily implies best dimension for discrimination of data

Caveat

$*$ PCA is sensitive to data preprocessing
\square Centering

- Normalization
* Different normalization (weighting) gives different preference to features
\square NBA player salary $=\mathrm{f}$ (height, ppg)
* The number of important dimensions (e.g., height and ppg are correlated) should be preserved

Caveat

$* \mathrm{XX}^{\mathrm{T}}$ is a very frequently seen math construct

- Treat as a vector in PCA
\square Treat as a vector of random variables in KL
\square Treat as a vector of partial derivatives in Hessian
* XX^{T} is
\square Symmetric, positive semidefinite
\square Eigen values are real and $>=0$

Kernel PCA

* A generalization of PCA in the feature space
* Idea is this:
\square Linear structures might not exist in original feature space
\square But might exist after a nonlinear mapping into a higher-dimensional space
\square Linear algebra can be used for data analysis in higher dimensional space
\square With kernel tricks, mapping need not be actually done

Kernel CPA

* Requirements: only inner products are used in decomposing covariance matrix
* Dot(xi,xj) can be done
\square In the original space
-In Kernel space without explicit mapping

Math Details

$*$ Compute covariance matrix $\quad \mathbf{R}=\frac{1}{N} \sum_{i} \varphi\left(\mathbf{x}_{\mathbf{i}}\right) \varphi\left(\mathbf{x}_{i}\right)^{T}$
$*$ Find eigen vectors and values $\quad \mathbf{R q}=\lambda \mathbf{q}$

* Represent in kernel math

$$
\mathbf{q}=\sum_{j=1}^{n} \alpha_{j} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)
$$

\square "representable" components in $\varphi\left(\mathbf{x}_{\mathbf{j}}\right)$

Details

$\mathbf{q}_{k}=\sum_{j=1}^{n} \alpha_{k j} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)$
$\mathbf{R} \mathbf{q}_{k}=\lambda \mathbf{q}_{k}$
$\Rightarrow \sum_{i=1}^{n} \varphi\left(\mathbf{x}_{i}\right) \varphi\left(\mathbf{x}_{i}\right)^{T} \mathbf{q}_{k}=N \lambda \mathbf{q}_{k}$

$$
\mathbf{R}=\frac{1}{N} \sum_{i} \varphi\left(\mathbf{x}_{\mathbf{i}}\right) \varphi\left(\mathbf{x}_{i}\right)^{T}
$$

$$
\Rightarrow \sum_{i=1}^{n} \varphi\left(\mathbf{x}_{i}\right) \varphi\left(\mathbf{x}_{i}\right)^{T} \sum_{j=1}^{n} \alpha_{k j} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)=N \lambda \sum_{j=1}^{n} \alpha_{k j} \varphi\left(\mathbf{x}_{\mathbf{j}}\right) \quad \mathbf{q}_{k}=\sum_{j=1}^{n} \alpha_{k j} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)
$$

$\Rightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{k j} \varphi\left(\mathbf{x}_{i}\right) K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=N \lambda \sum_{j=1}^{n} \alpha_{k j} \varphi\left(\mathbf{x}_{\mathbf{j}}\right) \quad \varphi(\mathbf{x})^{T} \mathbf{q}_{k}=\varphi(\mathbf{x})^{)^{n}} \sum_{j=1}^{n} \alpha_{k} \varphi\left(\mathbf{x}_{j}\right)=\sum_{j=1}^{n} \alpha_{k j} \varphi(\mathbf{x})^{T} \varphi\left(\mathbf{x}_{j}\right)=\sum_{j=1}^{n} \alpha_{k} K K\left(\mathbf{x}_{j}, \mathbf{x}\right)$
$\Rightarrow \varphi\left(\mathbf{x}_{k}\right) \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{k j} \varphi\left(\mathbf{x}_{i}\right) K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\varphi\left(\mathbf{x}_{k}\right) N \lambda \sum_{j=1}^{n} \alpha_{k j} \varphi\left(\mathbf{x}_{\mathbf{j}}\right)$
$\Rightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{k j} K\left(\mathbf{x}_{k}, \mathbf{x}_{i}\right) K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=N \lambda \sum_{j=1}^{n} \alpha_{k j} K\left(\mathbf{x}_{k}, \mathbf{x}_{j}\right)$
$\mathbf{K}^{2} \boldsymbol{\alpha}=N \lambda \mathbf{K} \boldsymbol{\alpha} \Rightarrow \mathbf{K} \boldsymbol{\alpha}=N \lambda \boldsymbol{\alpha}$

How to Use?

* Solve K $\boldsymbol{a}=\mathrm{N} \lambda \boldsymbol{a}$
$\square \mathbf{K}$: kernel matrix, $\boldsymbol{\alpha}_{\mathrm{k}}$: eigen vectors

- only $\mathrm{k}(\mathrm{x}, \mathrm{xj})$ are needed
$\square \boldsymbol{\alpha}_{k}$: solved in the previous step
* Possible to find representation basis and map unknown vectors using Kernel function without explicit mapping

PCA and MDS

* PCA provides a linear solution to a version of the metric MDS
* Distance measurements are real and symmetrical
* Use a particular definition of distance: inner product
- Caveat: inner product requires a coordinate system (origin) while pairwise distance does not
- Inner product defines pair-wise distance but not vice versa
* Put all the pair-wise distances into a matrix, $\mathrm{m}_{\mathrm{ij}}=$ distance between features i and j (this is the Gram matrix)
* Recall that \mathbf{M} is made of n rank-one matrices
* Only a small number (2-3 for visualization purpose) of those are kept if singular values drop off quickly - mapping into a lower dimension space

Final Notes

* Other techniques, such as Self-Organization Map (SOM) are available
* SOM is discussed later in non-supervised techniques

