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“Pattern Recognition”

What is a Pattern?



3PR , ANN, & ML



4PR , ANN, & ML



5PR , ANN, & ML



6PR , ANN, & ML

 DNA patterns

 AGCTCGAT

 Protein Patterns

 20 amino acids
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Faces

Finger prints
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Other Patterns

 Insurance, credit card applications

 applicants are characterized by a pattern 

 # of accidents, make of car, year of model

 income, # of dependents, credit worthiness, 

mortgage amount

 Dating services

Age, hobbies, income, etc. establish your 

“desirability”



12PR , ANN, & ML

Other Patterns

 Web documents

Key words based description (e.g., documents 
containing War, Bagdad, Hussen are different 
from those containing football, NFL, AFL, 
draft, quarterbacks)

 Intrusion detection

Usage and connection patterns 

 Cancer detection

 Image features for tumors, patient age, 
treatment option, etc. 



13PR , ANN, & ML

Other Patterns

 Housing market

 Location, size, year, school district

 University ranking

 Student population, student-faculty ratio, 

scholarship opportunities, location, faculty research 

grants, etc. 

 Too many 

 E.g., 

http://www.ics.uci.edu/~mlearn/MLSummary.html
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What is a pattern?

 A pattern is a set of objects, processes or 

events which consist of both deterministic 

and stochastic components

 A pattern is a record of certain dynamic 

processes influenced both by deterministic 

and stochastic factors
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What is a Pattern? (cont.) 

Completely regular, 

deterministic

(e.g., crystal structure)

Completely 

random

(e.g., white noise)

Constellation patterns, 

texture patterns, EKG 

patterns, etc.
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 Classifies “patterns” into “classes”

 Patterns (x)

 have “measurements”, “traits”, or “features”

 Classes (    )

 likelihood (a prior probability           )

 class-conditional density  

 Classifier (f(x) ->     )

 An example

 four coin classes: penny, nickel, dime, and quarter

 measurements: weight, color, size, etc.

 Assign a coin to a class based on its size, weight, etc.

P i( )
 i

p x i( | )

What is Pattern Recognition?

 i

We use P to denote probability mass function (discrete) and 

p to denote probability density function (continuous)
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An Example

Many visual inspection systems are like this:

Circuit board, fruit, OCR, etc.
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Another Example
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Features

 The intrinsic traits or characteristics that tell 

one pattern (object) apart from another

 Features extraction and representation allows

 Focus on relevant, distinguishing parts of a pattern 

Data reduction and abstraction
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Detection vs. Description

 Detection: something 

happened

 Heard noise 

 Saw something 

interesting

 Non-flat signals

 Description: what has 

happened? 

 Gun shot, talking, 

laughing, crying, etc.

 Lines, corners, 

textures

 Mouse, cat, dog, bike, 

etc.

PR , ANN, & ML
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Feature Selection

 More an art than a science

 Effectiveness criteria:

size

population

Size alone is not effective



compactness

perimeter

Perimeter is not effective

Discrimination is accomplished by compactness alone

compactness

elongatedness

The two feature values are correlated, only one of them 

is needed
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Too simple Too complicated
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Optimal tradeoff between performance and generalization
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Importance of Features

 Cannot be over-stated

 We usually don’t know which to select, 

what they represent, and how to tune them 

(face, gait recognition, tumor detection, etc.)

 Classification and regression schemes are 

mostly trying to make the best of whatever 

features are available 

PR , ANN, & ML



28

Features

 One is usually not descriptive (no silver 

bullet)

 Many (shotgun approach) can actually hurt 

 Many problems:
 Relevance

 Dimensionality 

 Co-dpendency 

 Time and space varying characteristics. 

 Accuracy 

 Uncertainty and error

 Missing values

PR , ANN, & ML
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Feature Selection (cont.)

 Q: How to decide if a feature is effective?

 A: Through a training phase

 Training on typical samples and typical features 

to discover

Whether features are effective

Whether there are any redundancy

 The typical cluster shape (e.g., Gaussian)

Decision boundaries between samples

Cluster centers of particular samples

 Etc.
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Classifiers

)(xng
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Traditional Pattern Recognition

 Parametric methods

Based on class sample exhibiting a certain 

parametric distribution (e.g. Gaussian)

Learn the parameters through training

 Density methods

Does not enforce a parametric form 

 Learn the density function directly

 Decision boundary methods

 Learn the separation in the feature space
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Parametric Methods
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Density Methods
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Feature space

 d dimensional (d the number of features)

 populated with features from training samples 

f1

f2

fd
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Decision 

Boundary 

Methods

f1

f2

fd

?

• Decision surfaces • Cluster centers

f1

f2

fd

?

f1

f2

fd

?
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“Modern” vs “Traditional” 

Pattern Recognition
 Hand-crafted features

 Simple and low-level 

concatenation of 

numbers or traits

 Syntactic

 Feature detection and 

description are 

separate tasks from 

classifier design

 Automatically learned 

features

 Hierarchical and 

complex

 Semantic

 Feature detection and 

description are not 

jointly optimized with 

classifiers

PR , ANN, & ML
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Traditional Features

PR , ANN, & ML
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Modern Features

PR , ANN, & ML
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Modern Features
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Modern Features

PR , ANN, & ML



42

Modern Features
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Modern Features
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“Modern” vs “Traditional” 

Pattern Recognition

PR , ANN, & ML
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Mathematical Foundation

 Does not matter what methods or 

techniques you use, the underlying 

mathematical principle is quite simple 

 Bayesian theory is the foundation 
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Review: Bayes Rule

 Forward (synthesis) route:

 From class to sample in a class

Grammar rules to sentences

Markov chain (or HMM) to pronunciation

 Texture rules (primitive + repetition) to textures

 Backward (analysis) route:

 From sample to class ID

A sentence parsed by a grammar

A utterance is “congratulations” (not “constitution”)

Brickwall vs. plaid shirt
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Review: Bayes Rule

 Backward is always harder

 Because the interpretation is not unique

 Presence of x has multiple possibilities

1
2

3

nx
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The simplest example

 Two classes: pennies and dimes

 No measurements

 Classification: 

 based on the a prior probabilities

 Error rate:

min( ( ), ( ))P P 1 2

  

  
 

1 1 2

2 1 2

1 2

if P P

if P P

or otherwise

( ) ( )

( ) ( )





1
2
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x

A slightly more complicated example

 Two classes: pennies and dimes

 A measurement x is made (e.g. weight)

 Classification

 based on the a posterior probabilities with 

Bayes rule

  

  

 


  

1 1 2

2 1 2

1 2

if P x P x

if P x P x

or otherwise

P x
p x

p x

p x P

p x
i

i i i

( | ) ( | )

( | ) ( | )

( | )
( , )
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weight

probability

p x( | )2p x( | )1

weight

probability

p x P( | ) ( ) 2 2
p x P( | ) ( ) 1 1

 P( )1
 P( )2

 p x( )  p x( )

weight

probability

p x( | )1 p x( | )2
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Why Both?

 In the day time, some animal runs in front of 

you on the bike path, you know exactly what it 

is (p(x|w) is sufficient)

 In the night time, some animal runs in front of 

you on the bike path, you can hardly distinguish 

the shape (p(x|w) is low for all cases, but you 

know it is probably a squirrel, not a lion 

because of p(w))

?)(&)|( ii Pxp 
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Essence

 Turn a backward (analysis) problem into 

several forward (synthesis) problem 

 Or analysis-by-synthesis

 Whichever model has a highly likelihood of 

synthesizing the outcome wins

 The formula is not mathematically provable
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Error rate

 Determined by 

 The likelihood of a class

 The likelihood of measuring x in a class

min( ( | ), ( | ))P x P x or 1 2

1
1 1 2 2

p x
p x P p x P

( )
min( ( | ) ( ), ( | ) ( ))   
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Error Rate (cont.)

 Bayes Decision Rule minimizes the average 

error rate:

)|(maxarg

)|(1)|()|(

)()|(

*

)(

*

)(
*

)(

xp

where

xpxpxerrorp

dxxpxerrorperror

i
i

x

xi

xi
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Various types of errors

PR , ANN, & ML
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Precision vs. Recall

 A very common measure used in PR and 

MI community

 One goes up and the other HAS to go down

 A range of options (Receiver operating 

characteristic curves)

 Area under the curve 

as a goodness measure

PR , ANN, & ML
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Various ways to measure error rates

 Training error

 Test error

 Empirical error

 Some under your control (training and test)

 Some not (empirical error)

 How: n-fold validation

 Why: Overfitting and underfitting problems

PR , ANN, & ML
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An even more complicated example

 Two classes: pennies or dimes

 A measurement x is made

 Risk associated with making a wrong decision

 Based on the a posterior probabilities with 

Bayesian risk

R x P x P x

R x P x P x

thelossof action in state

R x theconditional risk of action with x

ij i j

i i

( | ) ( | ) ( | )

( | ) ( | ) ( | )

:

( | ):

    

    

  

 

1 11 1 12 2

2 21 1 22 2
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Observation

State1

Observation

State2

Decision1 Decision2

Mis-classification

Math

Mis-interpretation

Human factor
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Observation

State1 State2

Observation

Decision1 Decision2

Observation

State1 State2

Decision1 Decision2 Decision1 Decision2

Incorrect decisions

Incur domain-specific cost
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R(used as pennies | x) =

r(pennies used as pennies) * P(pennies | x) +

r(dimes used as pennies) * P(dimes | x)

R(used as dimes | x) =

r(pennies used as dimes) * P(pennies | x) +

r(dimes used as dimes) * P(dimes | x)

An even more complicated example

p(x|pennies)P(pennies)

p(x|dimes)P(dimes)
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A more credible example 

R(call FD|smoke) =

r(call,fire)*P(fire|smoke) + 

r(call, no fire)*P(no fire|smoke)

R(no call FD|smoke)=

r(no call, no fire)*P(no fire|smoke) + 

r(no call, fire)*P(fire|smoke)

 The risk associated with false negative is 

much higher than that of false positive

False positive

False negative
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A more credible example 

R(attack|battle field intelligence) =

r(attack,<50%)*P(<50%|intelligence) + 

r(attack,>50%)*P(>50%|intelligence)

R(no attack|battle field intelligence)=

r(no attack, >50%)*P(>50%|intelligence) + 

r(no attack, <50%)*P(<50%|intelligence)

False positive

False negative
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Baysian Risk
 Determined by

 likelihood of a class

 likelihood of measuring x in a class

 the risk of making a wrong action

 Classification

Baysian risk should be minimized

)|()()|()(
)|()|(

))|()|(),|()|(min(
))|(),|(min(

2221211121

121

222121212111

21

xPxP
xRxR

orxPxPxPxP
orxRxR
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Bayesian Risk (cont.)

 Again, decisions depend on 

 likelihood of a class

 likelihood of observation of x in a class

 Modified by some positive risk factors

 Why?

 Because in the real world, it might not be the 

misclassification rate that is important, it is the 

action you assume

)|()()|()( 2221211121 xPxP  
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Other generalizations

 Multiple classes

 n classes

 Multiple measurements

 X is a vector instead of a scalar

 Non-numeric measurements

 Actions vs. decisions

 Correlated vs. independent events

 speech signals and images

 Training allowed or not

 Time-varying behaviors

P i
i

n

( ) 


 1
1
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Difficulties

 What features to use

 How many features (the curse of 

dimensionality)

 The a prior probability 

 The class-conditional density  

 The a posterior probability 

)( iP 

)|( xP i

p x i( | )
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Typical Approaches

 Supervised (with tagged samples x):

 parameters of a probability function (e.g.     Gaussian                            
)                                

 density functions (w/o assuming  any parametric forms)

 decision boundaries (classes are indeed separable)

 Unsupervised (w/o tagged samples x):

 minimum distance

 hierarchical clustering

 Reinforced (with hints)

 Right or wrong, but not correct answer

 Learning with a critic (not a teacher as in supervised)

p x Ni i i( | ) ( , )  
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Parameter Density Decision Boundary

Supervised Learning

Minimum Distance Hierarchical Clustering

Un-supervised Clustering

Uncorrelated Events

Hidden Markov Models

Correlated Events

Pattern Recognition
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Applications

 DNA sequence

 Lie detectors

 Handwritten digits recognition

 Classification based on smell

 Web document classification and search engine

 Defect detection 

 Texture classification 

 Image database retrieval

 Face recognition

 etc. 
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Other formulations

 We talked about 1/3 of the scenarios – that 

of classification (discrete)

 Regression – continuous

 Extrapolation and interpolation

 Clustering

 Similarity 

Abnormality detection

Concept drift (discovery), etc. 

PR , ANN, & ML
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Classification vs. Regression

 Classification

 Large vs. small hints 

on category

 Absolute values does 

not matter as much 

(can actually hurt)

 Normalization is often 

necessary

 Fitting order stays low 

 Regression

 Large means large, 

small means small

 Absolute values matter

 Fitting orders matter

PR , ANN, & ML
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Recent Development 

 Data can be “massaged” Surprisingly, 

massaging the data and use simple 

classifiers is better than massaging the 

classifiers and use simple data (for simple 

problems & small data sets)

 Hard-to-visualize concept

 Transform data into higher dimensional  space 

(e.g., infinite dimensional) has a tendency to 

separate data and increase error margin

 Concept of SVM and later kernel methods
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More Recent Development

 Think about fitting linear data with a model

 Linear, quadratic, cubic, etc.

 Higher the order, better the fit

 n data points can be perfectly fit by an (n-1) order 

polynomial

 However

 Overfitting is likely

 No ability to extrapolate

 “Massage” the classifiers (using deep networks)

 Feature detection and description

 Classification

 Jointly optimization 

PR , ANN, & ML


