

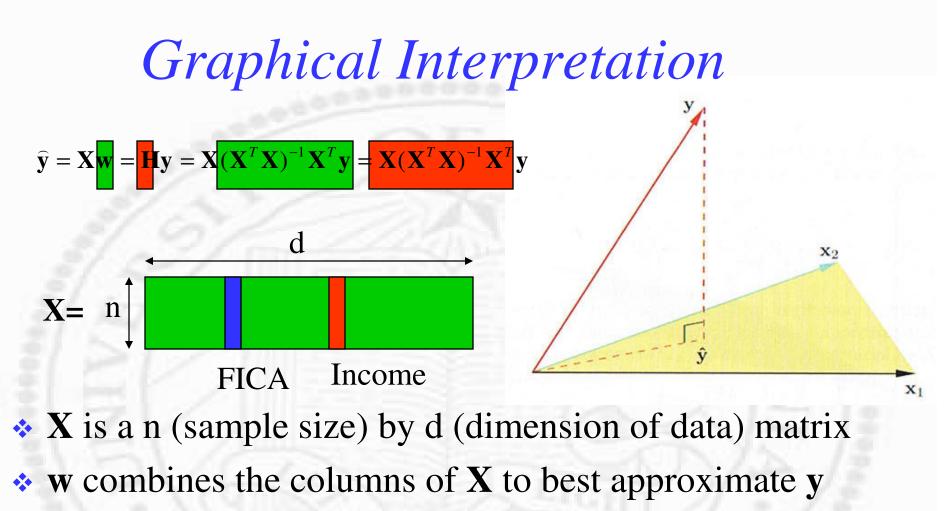
Simple Idea of Data Fitting

- Given $(\mathbf{x}_i, \mathbf{y}_i)$
 - □ i=1,...,n
 - \mathbf{x}_i is of dimension d
- Find the best linear function w (hyperplane) that fits the data
- Two scenarios
 - □ y: real, regression
 - □ y: {-1,1}, classification
- Two cases
 - □ n>d, regression, least square
 - n<d, ridge regression</p>
- New sample: x, <x,w>: best fit (regression), best decision (classification)

Primary and Dual

- There are two ways to formulate the problem:
 Primary
 - Dual
- * Both provide deep insight into the problem
- Primary is more traditional
- Dual leads to newer techniques in SVM and kernel methods

$$\begin{array}{l} \textbf{Regression} \\ \textbf{w} = \arg\min_{\textbf{W}} \left\{ \sum_{i} (y_{i} - w_{o} - \sum_{j} x_{ij} w_{j})^{2} \right\} \\ \textbf{w} = \arg\min_{\textbf{W}} (\textbf{y} - \textbf{X} \textbf{w})^{T} (\textbf{y} - \textbf{X} \textbf{w}) \\ \frac{d(\textbf{y} - \textbf{X} \textbf{w})^{T} (\textbf{y} - \textbf{X} \textbf{w})}{d\textbf{w}} = 0 \\ \Rightarrow \textbf{X}^{T} (\textbf{y} - \textbf{X} \textbf{w}) = 0 \\ \Rightarrow \textbf{X}^{T} \textbf{X} \textbf{w} = \textbf{X}^{T} \textbf{y} \\ \Rightarrow \textbf{w} = (\textbf{X}^{T} \textbf{X})^{-1} \textbf{X}^{T} \textbf{y} \\ \hat{y} = < \textbf{x}, (\textbf{X}^{T} \textbf{X})^{-1} \textbf{X}^{T} \textbf{y} > \\ \textbf{X} = \begin{bmatrix} \textbf{x}_{i}^{T} \\ \textbf{x}_{2}^{T} \\ \textbf{x}_{i} \end{bmatrix}_{i \times xd}^{T} \\ \textbf{X} = \begin{bmatrix} \textbf{x}_{i}^{T} \\ \textbf{x}_{2}^{T} \\ \vdots \\ \textbf{x}_{n}^{T} \end{bmatrix}_{i \times xd} \\ \end{array}$$



- Combine features (FICA, income, etc.) to decisions (loan)
- H projects y onto the space spanned by columns of X
 Simplify the decisions to fit the features

Problem #1

- n=d, exact solution
- n>d, least square, (most likely scenarios)
 When n < d, there are not enough constraints to determine coefficients w uniquely

 $X = n \int$

W

Problem #2

- If different attributes are highly correlated (income and FICA)
- The columns become dependent
- Coefficients are then poorly determined with high variance
 - E.g., large positive coefficient on one can be canceled by a similarly large negative coefficient on its correlated cousin
 - Size constraint is helpful
 - Caveat: constraint is problem dependent

Ridge Regression

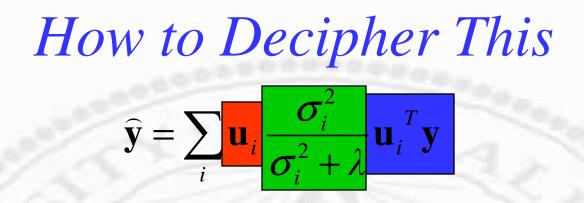
Similar to regularization

$$\mathbf{w}^{ridge} = \arg\min_{\mathbf{w}} \left\{ \sum_{i} (y_{i} - w_{o} - \sum_{j} x_{ij} w_{j})^{2} + \lambda \sum_{j} w_{j}^{2} \right\}$$
$$\mathbf{w}^{ridge} = \arg\min_{\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})^{T} (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w}^{T} \mathbf{w}$$
$$\frac{d(\mathbf{y} - \mathbf{X}\mathbf{w})^{T} (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w}^{T} \mathbf{w}}{d\mathbf{w}} = 0$$
$$\Rightarrow -\mathbf{X}^{T} (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \mathbf{w} = 0$$
$$\Rightarrow \mathbf{X}^{T} \mathbf{y} = \mathbf{X}^{T} \mathbf{X} \mathbf{w} + \lambda \mathbf{w}$$
$$\Rightarrow \mathbf{X}^{T} \mathbf{y} = (\mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I}) \mathbf{w}$$
$$\Rightarrow \mathbf{w}^{ridge} = (\mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{T} \mathbf{y}$$
$$\Rightarrow \hat{\mathbf{y}} = \langle \mathbf{x}, (\mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^{T} \mathbf{y} \rangle$$

9

Ugly Math

 $\mathbf{w}^{ridge} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$ $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} V^T$ $\widehat{\mathbf{y}} = \mathbf{X}\mathbf{w}^{ridge} = \mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$ $= \mathbf{U} \mathbf{\Sigma} V^T (\mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{U} \mathbf{\Sigma} V^T + \lambda \mathbf{I})^{-1} \mathbf{V} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{y}$ $= \mathbf{U} \mathbf{\Sigma} (V^{-T})^{-1} (\mathbf{V} \mathbf{\Sigma}^T \mathbf{\Sigma} V^T + \lambda \mathbf{I})^{-1} (\mathbf{V}^{-1})^{-1} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{y}$ $= \mathbf{U} \mathbf{\Sigma} (\mathbf{V}^{-1} \mathbf{V} \mathbf{\Sigma}^{T} \mathbf{\Sigma} V^{T} V^{-T} + \mathbf{V}^{-1} \lambda \mathbf{I} V^{-T})^{-1} \mathbf{\Sigma}^{T} \mathbf{U}^{T} \mathbf{y}$ $= \mathbf{U} \mathbf{\Sigma} (\mathbf{\Sigma}^T \mathbf{\Sigma} + \lambda \mathbf{I})^{-1} \mathbf{\Sigma}^T \mathbf{U}^T \mathbf{y}$ $= \sum_{i} \mathbf{u}_{i} \frac{\boldsymbol{\sigma}_{i}^{2}}{\boldsymbol{\sigma}_{i}^{2} + \lambda} \mathbf{u}_{i}^{T} \mathbf{y}$



- Red: best estimate (y hat) is composed of columns of U ("basis" features, recall U and X have the same column space)
- Green: how these basis columns are weighed
 Blue: projection of target (y) onto these columns
- Together: representing y in a body-fitted coordinate system (u_i)

Sidebar

Recall that

- Trace (sum of the diagonals) of a matrix is the same as the sum of the eigenvalues
- Proof: every matrix has a standard Jordan form (an upper triangular matrix) where the eigenvalues appear on the diagonal (trace=sum of eigenvalues)
- □ Jordan form results from a similarity transform (PAP⁻¹) which does not change eigenvalues
 - $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$
 - \Rightarrow **PAx** = λ **Px**

 $\Rightarrow \mathbf{A}^{J}\mathbf{y} = \lambda \mathbf{y}$

 $\Rightarrow \mathbf{PAP}^{-1}\mathbf{Px} = \lambda \mathbf{Px}$

Physical Interpretation

- Singular values of X represents the spread of data along different *body-fitting* dimensions (orthonormal columns)
- To estimate y(=<x,w^{ridge}>) regularization minimizes the contribution from less spread-out dimensions
 - Less spread-out dimensions usually have much larger variance (high dimension eigen modes) harder to estimate gradients reliably
 - Trace X(X^TX+λI)⁻¹X^T is called effective degrees of freedom

More Details

- Trace X(X^TX+λI)⁻¹X^T is called effective degrees of freedom
 - Controls how many eigen modes are actually used or active

 $df(\lambda) = d, \lambda = 0, df(\lambda) = 0, \lambda \to \infty$

- Different methods are possible
 - □ Shrinking smoother: contributions are scaled
 - Projection smoother: contributions are used (1) or not used (0)

Dual Formulation

 Weight vector can be expressed as a sum of the *n* training feature vectors

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$
$$= \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-2} \mathbf{X}^T \mathbf{y}$$
$$= \mathbf{X}^T d \times n \boldsymbol{\alpha}_{n \times 1}$$
$$= \sum_i \alpha_i \mathbf{x}_i$$

 $\mathbf{X}^{T}\mathbf{y} = \mathbf{X}^{T}\mathbf{X}\mathbf{w} + \lambda\mathbf{w}$ $\lambda\mathbf{w} = \mathbf{X}^{T}\mathbf{y} - \mathbf{X}^{T}\mathbf{X}\mathbf{w}$ $\mathbf{w} = \frac{1}{\lambda}\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\mathbf{w})$ $= \mathbf{X}^{T}_{d \times n} \boldsymbol{\alpha}_{n \times 1}$ $= \sum_{i} \alpha_{i} \mathbf{x}_{i}$

Dual Formulation (cont.)

$$\mathbf{X}^{T} \mathbf{y} = \mathbf{X}^{T} \mathbf{X} \mathbf{w} + \lambda \mathbf{w} \qquad \mathbf{a}_{n \times 1} = \frac{1}{\lambda} (\mathbf{y} - \mathbf{X}_{n \times d} \mathbf{w}_{d \times 1})$$

$$\lambda \mathbf{w} = \mathbf{X}^{T} \mathbf{y} - \mathbf{X}^{T} \mathbf{X} \mathbf{w} \qquad \lambda \mathbf{a} = \mathbf{y} - \mathbf{X} \mathbf{w}$$

$$\mathbf{w} = \frac{1}{\lambda} \mathbf{X}^{T} (\mathbf{y} - \mathbf{X} \mathbf{w}) \qquad \lambda \mathbf{a} = \mathbf{y} - \mathbf{X} \mathbf{X}^{T} \mathbf{a}$$

$$\mathbf{x}^{T} \mathbf{a} = \mathbf{y} - \mathbf{X} \mathbf{X}^{T} \mathbf{a}$$

$$(\mathbf{X} \mathbf{X}^{T} + \lambda \mathbf{I}) \mathbf{a} = \mathbf{y}$$

$$\mathbf{x}^{T} \mathbf{a} = (\mathbf{X}_{n \times d} \mathbf{X}^{T} \mathbf{a} + \lambda \mathbf{I})^{-1} \mathbf{y}_{n \times 1} = (\mathbf{G} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

$$\mathbf{g}(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle = \sum \alpha_{i} \langle \mathbf{x}_{i}, \mathbf{x} \rangle$$

 $= \langle \mathbf{X}^{T} (\mathbf{X}\mathbf{X}^{T} + \lambda \mathbf{I})^{-1} \mathbf{y}, \mathbf{x} \rangle = \mathbf{y}^{T} (\mathbf{X}\mathbf{X}^{T} + \lambda \mathbf{I})^{-1} \begin{bmatrix} \langle \mathbf{x}_{1}, \mathbf{x} \rangle^{T} \\ \langle \mathbf{x}_{2}, \mathbf{x} \rangle \\ \vdots \end{bmatrix}$

 $\left| \left\langle \mathbf{x}_{n}, \mathbf{x} \right\rangle \right|$

15

In More Details

Gram matrix

$$\begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix}_{i \times n} \begin{pmatrix} \begin{bmatrix} - & \mathbf{x}_{1}^{T} & - \\ - & \cdots & - \\ - & \mathbf{x}_{n}^{T} & - \end{bmatrix}_{n \times d} \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{x}_{1} & \vdots & \mathbf{x}_{n} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix}_{d \times n} + \lambda \mathbf{I} \int_{-\infty}^{-1} \begin{bmatrix} - & \mathbf{x}_{1}^{T} & - \\ - & \cdots & - \\ - & \mathbf{x}_{n}^{T} & - \end{bmatrix}_{n \times d} \mathbf{X}$$

$$\begin{bmatrix} y_{1} & y_{2} & \cdots & y_{n} \end{bmatrix}_{i \times n} \begin{bmatrix} \mathbf{x}_{1}^{T} \mathbf{x}_{1} + \lambda & \mathbf{x}_{1}^{T} \mathbf{x}_{2} & \cdots & \mathbf{x}_{1}^{T} \mathbf{x}_{n} \\ \mathbf{x}_{2}^{T} \mathbf{x}_{1} & \mathbf{x}_{2}^{T} \mathbf{x}_{2} + \lambda & \cdots & \mathbf{x}_{2}^{T} \mathbf{x}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{n}^{T} \mathbf{x}_{1} & \mathbf{x}_{n}^{T} \mathbf{x}_{2} & \cdots & \mathbf{x}_{n}^{T} \mathbf{x}_{n} + \lambda \end{bmatrix} \begin{bmatrix} - & \mathbf{x}_{1}^{T} \mathbf{x} & - \\ - & \mathbf{x}_{n}^{T} \mathbf{x} & - \\ - & \mathbf{x}$$

Observations

Primary
X^TX is d by d
Training: Slow for high feature dimension
Use: fast O(d)

$$g(\mathbf{x}) = \langle \mathbf{x}_{d \times 1}, (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}_{d \times 1} \rangle$$

Dual

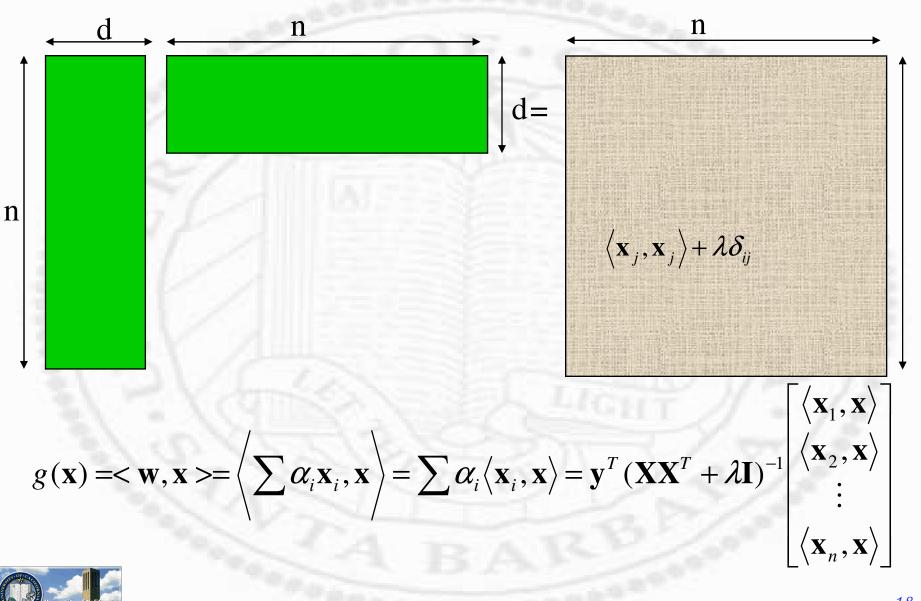
- Only inner products are involved
- ✤ XX^T is n by n
- Training: Fast for high feature dimension
- Use: Slow O(nd)
 - N inner product to evaluate, each requires d multiplications $\lceil \langle \mathbf{x}_1, \mathbf{x} \rangle \rceil$

$$g(\mathbf{x}) = \mathbf{y}^T (\mathbf{X}\mathbf{X}^T + \lambda \mathbf{I})^{-1} \mathbf{x}_n \Big| \langle$$

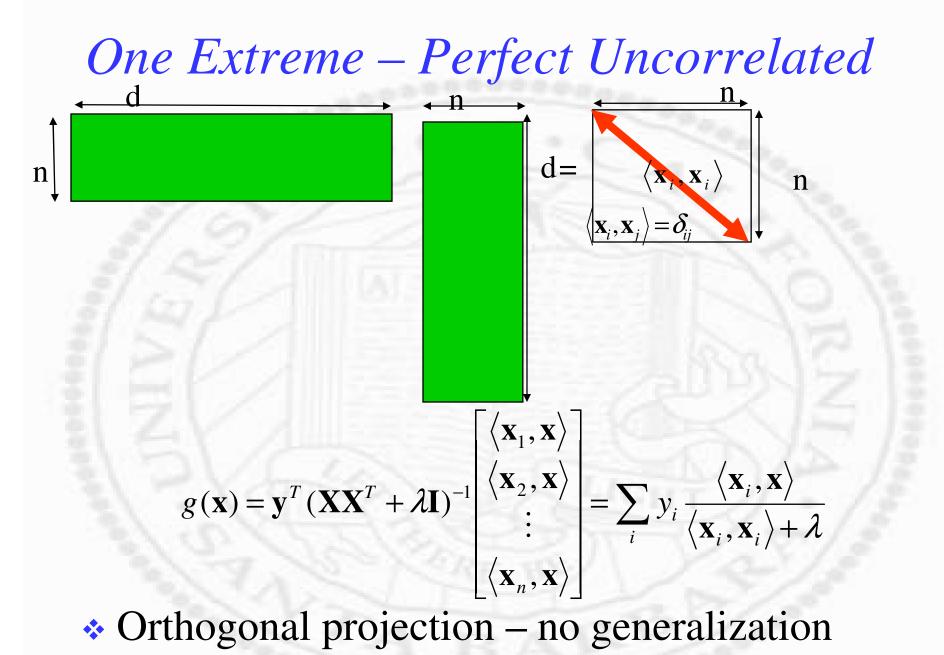
17

 $\mathbf{x}_{2},\mathbf{x}$

Graphical Interpretation



n



$$General Case$$

$$\hat{\mathbf{y}}^{T}_{1\times n} = \mathbf{y}^{T}_{1\times n} (\mathbf{X}\mathbf{X}^{T} + \lambda \mathbf{I})^{-1}_{n\times n} \mathbf{X}_{n\times d} \mathbf{X}^{T}_{d\times n} \qquad \mathbf{X} = \mathbf{U}_{n\times d} \boldsymbol{\Sigma}_{d\times d} V^{T}_{d\times d}$$

$$= \mathbf{y}^{T}_{1\times n} (\mathbf{U}\boldsymbol{\Sigma}^{2}\mathbf{U}^{T} + \lambda \mathbf{I})^{-1}_{n\times n} \mathbf{U}\boldsymbol{\Sigma} V^{T} \mathbf{X}^{T}_{d\times n}$$

$$= \mathbf{y}^{T}_{1\times n} (\mathbf{U}(\boldsymbol{\Sigma}^{2} + \lambda \mathbf{I})\mathbf{U}^{T})^{-1}_{n\times n} \mathbf{U}\boldsymbol{\Sigma} V^{T} \mathbf{X}^{T}_{d\times n}$$

$$= \mathbf{y}^{T}_{1\times n} \mathbf{U}(\boldsymbol{\Sigma}^{2} + \lambda \mathbf{I})^{-1} \mathbf{U}^{-1} \mathbf{U}\boldsymbol{\Sigma} V^{T} \mathbf{X}^{T}_{d\times n}$$

$$= (\mathbf{U}^{T}_{d\times n} \mathbf{y}_{n\times 1})^{T}_{1\times d} (\boldsymbol{\Sigma}^{2} + \lambda \mathbf{I})^{-1} \boldsymbol{\Sigma} V^{T} \mathbf{X}^{T}_{d\times n}$$

$$= (\mathbf{U}^{T}_{d\times n} \mathbf{y}_{n\times 1})^{T}_{1\times d} (\boldsymbol{\Sigma}^{2} + \lambda \mathbf{I})^{-1} \boldsymbol{\Sigma} V^{T} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{T}$$

$$= (\mathbf{U}^{T}_{d\times n} \mathbf{y}_{n\times 1})^{T}_{1\times d} (\boldsymbol{\Sigma}^{2} + \lambda \mathbf{I})^{-1} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T}$$

How to interpret this? Does this still make sense?

Physical Meaning of SVD

- * Assume that n > d
- * X is of rank d at most
- ✤ U are the body (data)-fitted axes
- * \mathbf{U}^{T} is a projection from *n* to *d* space
- * Σ is the importance of the dimensions
- ✤ V is the representation of the X in the d space

$$\mathbf{X} = \mathbf{U}_{n \times d} \boldsymbol{\Sigma}_{d \times d} \boldsymbol{V}^{T}_{d \times d}$$

$$\hat{\mathbf{y}}^{T}_{1\times n} = \left(\mathbf{U}^{T}_{d\times n}\mathbf{y}_{n\times 1}\right)^{T} \stackrel{\mathbf{v}}{\to} \left(\boldsymbol{\Sigma}^{2} + \lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T} \Longrightarrow \hat{\mathbf{y}} = \sum_{i} \mathbf{u}_{i} \frac{\sigma_{i}^{2}}{\sigma_{i}^{2} + \lambda} \mathbf{u}_{i}^{T} \mathbf{y}$$

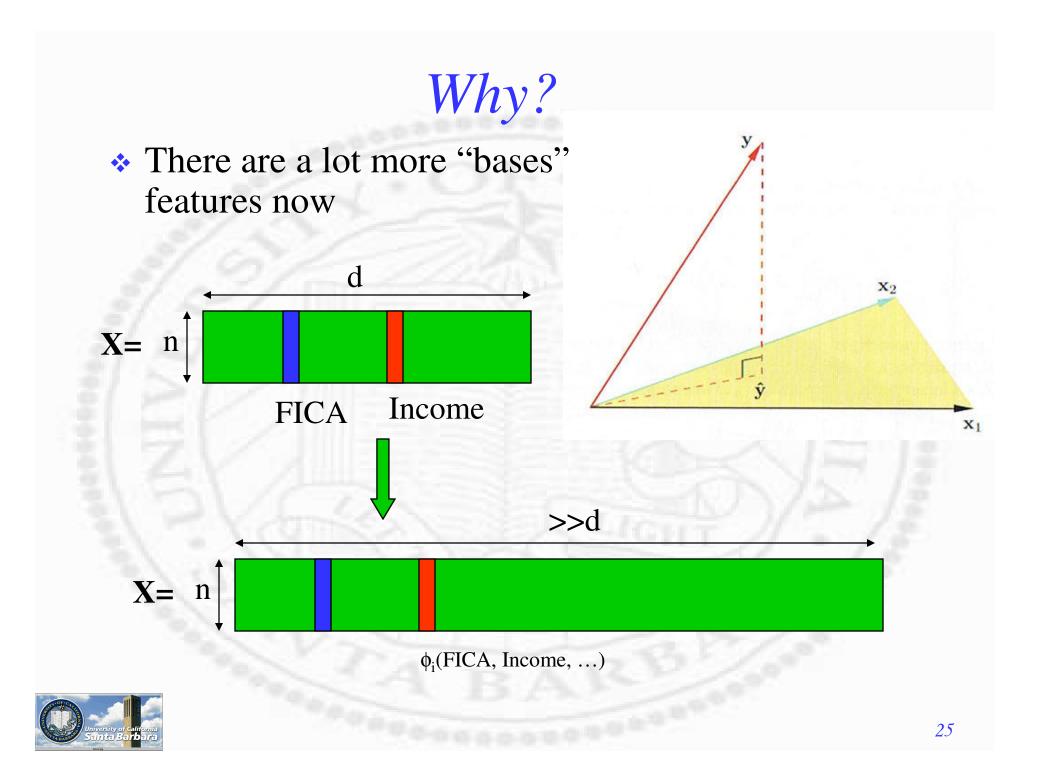
- In the new, uncorrelated space, there are only d training vectors and d decisions
- * Red: dx1 uncorrelated decision vector
- Green: weighting of the significance of the components in the uncorrelated decision vector
- Blue: transformed (uncorrelated) training samples
- Still the same interpretation: similarity measurement in a new space by
 - Gram matrix
 - Inner product of training samples and new sample

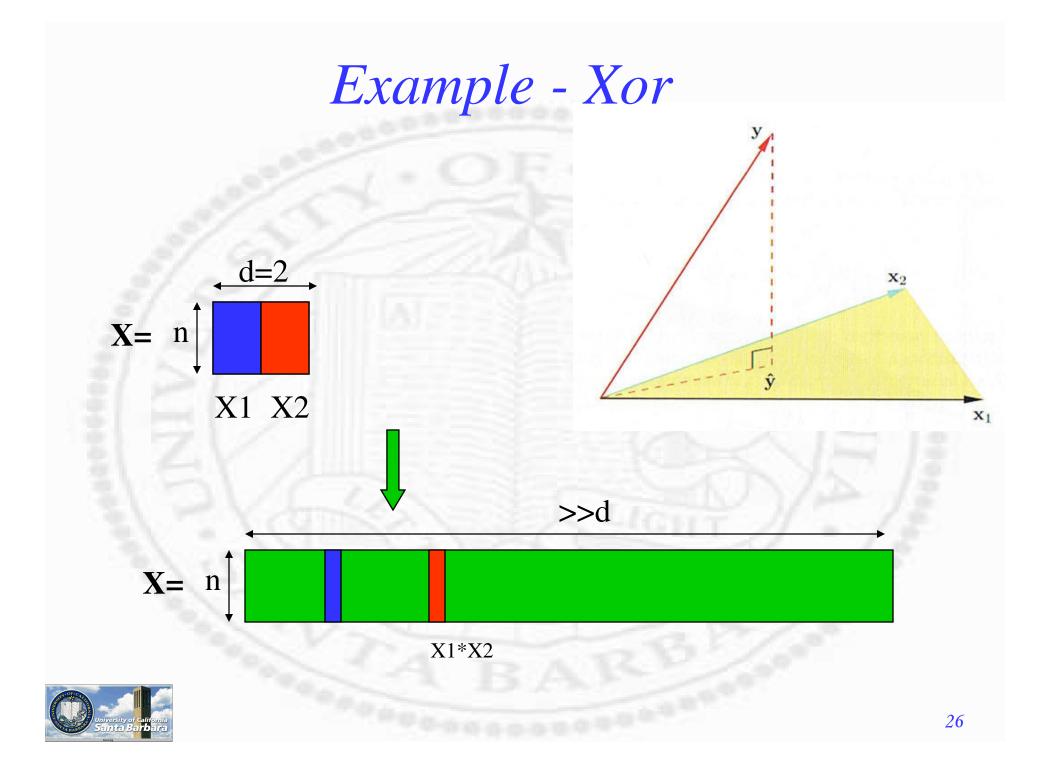
First Important Concept

- The computation involves *only* inner product
 For training samples in computing the Gram matrix
 - For new sample in computing regression or classification results
- Similarity is measured in terms of *angle*, instead of *distance*

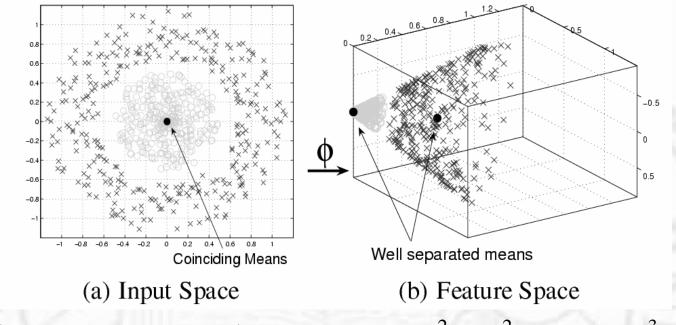
Second Important Concept

- Using angle or distance for similarity measurement doesn't make problems easier or harder
 - If you cannot separate data, it doesn't matter what similarity measures you use
- "Massage" data
 - Transform data (into higher even infinite dimensional space)
 - Data become "more likely" to be linearly separable (caveat: choice of the kernel function is important)
 - Cannot perform inner product efficiently
 - Kernel trick do not have to





Example (Doesn't quite work yet)



$$\phi: \mathbf{x} = (x_1, x_2) \to \phi(\mathbf{x}) = (x_1, x_2, x_1^2 + x_2^2) \in F = R^3$$

- Need to keep the nice property of requiring only inner product in the computation (dual formulation)
- But what happens if the feature dimension is very high (or even infinitely high)?
- Inner product in the high (infinitely high) dimensional feature space can be calculated without explicit mapping through a kernel function

$$\begin{array}{c} \text{Ln Bore Details} \\ (x_{1},x) \\ (x_{2},x) \\ (x_{3},x) \\ (x$$

Example

$$\phi : \mathbf{x} = (x_1, x_2) \to \phi(\mathbf{x}) = (x_1^2, 2x_1x_2, x_2^2) \in F = R^3$$

$$k(\mathbf{x}, \mathbf{y}) = (x_1y_1 + x_2y_2)^2$$

$$= x_1^2 y_1^2 + 2x_1y_1x_2y_2 + x_2^2 y_2^2$$

$$= (x_1^2, \sqrt{2}x_1x_2, x_2^2) \cdot (y_1^2, \sqrt{2}y_1y_2, y_2^2)$$

$$= \phi(\mathbf{x}) \cdot \phi(\mathbf{y})$$

More Example

 $\phi: \mathbf{x} = (x_1, x_2) \to \phi(\mathbf{x}) = (x_1^2, x_1 x_2, x_1 x_2, x_2^2) \in F = R^4$ $k(\mathbf{x}, \mathbf{y}) = (x_1 y_1 + x_2 y_2)^2$ $= x_1^2 y_1^2 + 2x_1 y_1 x_2 y_2 + x_2^2 y_2^2$ $= (x_1^2, x_1 x_2, x_1 x_2, x_2^2) \cdot (y_1^2, y_1 y_2, y_1 y_2, y_2^2)$ $= \phi(\mathbf{x}) \cdot \phi(\mathbf{y})$

$$Even More Example$$

$$\phi: \mathbf{x} = (x_1, x_2) \rightarrow \phi(\mathbf{x}) = \frac{1}{\sqrt{2}} (x_1^2 - x_2^2, 2x_1x_2, x_1^2 + x_2^2) \in F = R^3$$

$$k(\mathbf{x}, \mathbf{y}) = (x_1y_1 + x_2y_2)^2$$

$$= x_1^2 y_1^2 + 2x_1y_1x_2y_2 + x_2^2 y_2^2$$

$$= (x_1^2, \sqrt{2}x_1x_2, x_2^2) \cdot (y_1^2, \sqrt{2}y_1y_2, y_2^2)$$

$$= \frac{1}{\sqrt{2}} (x_1^2 - x_2^2, 2x_1x_2, x_1^2 + x_2^2) \cdot \frac{1}{\sqrt{2}} (y_1^2 - y_2^2, 2y_1y_2, y_1^2 + y_2^2)$$

$$= \phi(\mathbf{x}) \cdot \phi(\mathbf{y})$$

 The interpretation of mapping φ is not unique even with a single κ function

Observations

- The interpretation of mapping φ is not unique even with a single κ function
- * The κ function is special. Certainly not all functions have such properties (i.e., corresponding to the inner product in a feature space)
- Such functions are called kernel functions
 - Kernel is a function that for all x, z in X, κ(x, z)=<φ(x), φ(z)>, where φ is a mapping from X to an (inner product) feature space F

Important Theorem

 A function κ: κ(X,X)-> R can be decomposed into κ(x,z)-> <\$\phi(x),\$\phi(z)> (\$\phi forms a Hilbert space) if and only if it satisfies *finitely* positive semi-definite property

Finitely positive semi-definite: If κ(X,X)-> R is symmetrical and for any finite subset of space X, the matrix formed by applying κ is positive semi-definite (i.e., Gram matrix is SPD for any choices of training samples)

Only if Condition

* Given bi-linear function κ : $\kappa(X,X)$ -> R $\kappa(x,z)$ -> < $\phi(x),\phi(z)$ > then the Gram matrix from κ satisfies *finitely* positive semi-definite property

$$\mathbf{v}^{T}\mathbf{G}\mathbf{v} = \mathbf{v}^{T} \begin{bmatrix} \kappa(x_{1}, x_{1}) & \kappa(x_{1}, x_{2}) & \cdots & \kappa(x_{1}, x_{n}) \\ \kappa(x_{2}, x_{1}) & \kappa(x_{2}, x_{2}) & \cdots & \kappa(x_{2}, x_{n}) \\ \cdots & \cdots & \cdots & \cdots \\ \kappa(x_{n}, x_{1}) & \kappa(x_{n}, x_{2}) & \cdots & \kappa(x_{n}, x_{n}) \end{bmatrix} \mathbf{v}$$
$$= \mathbf{v}^{T} \begin{bmatrix} \phi(\mathbf{x}_{1}) \\ \phi(\mathbf{x}_{2}) \\ \vdots \\ \phi(\mathbf{x}_{n}) \end{bmatrix} [\phi(\mathbf{x}_{1}) & \phi(\mathbf{x}_{2}) & \cdots & \phi(\mathbf{x}_{n})] \mathbf{v}$$

 $= \sum v_i \phi(\mathbf{x}_i) \sum v_i \phi(\mathbf{x}_i) = \left\| \sum v_i \phi(\mathbf{x}_i) \right\|^2 \ge 0$

34

If Condition Proof Strategy

- More complicated
- First: Establish a Hilbert (*function*) space
- Second: Establish the reproducing property in this function space
- Third: Establish the (Fourier) basis of such a function space
- Fourth: Establish κ as expansion on such a Fourier basis

What? $\phi: \mathbf{x} = (x_1, x_2) \rightarrow \phi(\mathbf{x}) = (x_1^2, 2x_1x_2, x_2^2) \in F = R^3$ $k(\mathbf{x}, \mathbf{y}) = (x_1y_1 + x_2y_2)^2$ $= x_1^2 y_1^2 + 2x_1 y_1 x_2 y_2 + x_2^2 y_2^2$ $= (x_1^2, \sqrt{2}x_1 x_2, x_2^2) \cdot (y_1^2, \sqrt{2}y_1 y_2, y_2^2)$ $= \phi(\mathbf{x}) \cdot \phi(\mathbf{y})$

In this case, φ is a 3 dimensional space
Each "dimension" is a function of x
There are three (not unique) "eign" functions that form the basis

A Function Space Example All (well-behaved, square-integrable) functions defined over a domain R form a vector space (a function space, $\boldsymbol{\mathcal{F}}$) $\Box f \in \mathcal{F}$, then $cf \in \mathcal{F}$ $\Box f \in \mathcal{F}$, and $g \in \mathcal{F}$, then $(af+bg) \in \mathcal{F}$ Such a space is a Hilbert space if it is complete with an inner product (real valued, symmetrical, bilinear)

> < $f, g \ge g, f \ge \int f(x)g(x)dx$ < $f, f \ge \int f(x)f(x)dx = \int f^{2}(x)dx > 0$

 You can define an orthogonal basis (e.g., Fourier basis) on it

Hilbert Space

The proof is harder and not very intuitive
Suffice it to say that someone has figured out that the desired feature space is a *function* space of the form

$$F = \left\{ \sum_{i=1}^{i} \alpha_{i} k(\mathbf{x}_{i},.) : l \in N, \mathbf{x}_{i} \in \mathbf{X}, \alpha_{i} \in R, i = 1, \cdots, l \right\}$$

With an inner product defined as

$$F = \left\{ \sum_{i=1}^{l} \alpha_{i} k(\mathbf{x}_{i}, .) : l \in N, \mathbf{x}_{i} \in \mathbf{X}, \alpha_{i} \in R, i = 1, \cdots, l \right\}$$

$$f = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}_i, .), \quad g = \sum_{i=1}^{m} \beta_i k(\mathbf{z}_i, .)$$
$$< f, g \ge \sum_{j=1}^{m} \sum_{i=1}^{l} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{z}_j) = \sum_{i=1}^{l} \alpha_i g(\mathbf{x}_i) = \sum_{j=1}^{m} \beta_j f(\mathbf{z}_j)$$

Because then we have SPD properties regardless of choice of x_i

Why

$$F = \left\{ \sum_{i=1}^{l} \alpha_{i} k(\mathbf{x}_{i}, .) : l \in N, \mathbf{x}_{i} \in \mathbf{X}, \alpha_{i} \in R, i = 1, \cdots, l \right\}$$

$$f = \sum_{i=1}^{l} \alpha_{i} k(\mathbf{x}_{i}, .), \quad g = \sum_{i=1}^{m} \beta_{i} k(\mathbf{z}_{i}, .)$$

$$< f, g \ge \sum_{j=1}^{m} \sum_{i=1}^{l} \alpha_{i} \beta_{j} k(\mathbf{x}_{i}, \mathbf{z}_{j}) = \sum_{i=1}^{l} \alpha_{i} g(\mathbf{x}_{i}) = \sum_{j=1}^{m} \beta_{j} f(\mathbf{z}_{j})$$

$$< f, f \ge \sum_{j=1}^{l} \sum_{i=1}^{l} \alpha_{i} \alpha_{j} k(\mathbf{x}_{i}, \mathbf{z}_{j}) = \mathbf{\alpha}^{T} \mathbf{k} \mathbf{\alpha} \ge 0$$

Still have to prove completeness (not here, see page 62 of Shawe-Taylor and Christianini)

Reproducing Property

 Special Hilbert space called Reproducing Kernel Hilbert space (RKHS)

Recall :
$$f = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}_i,.), \quad g = \sum_{i=1}^{m} \beta_i k(\mathbf{z}_i,.)$$

 $\langle f, g \rangle = \sum_{j=1}^{m} \sum_{i=1}^{l} \alpha_i \beta_j k(\mathbf{x}_i, \mathbf{z}_j) = \sum_{i=1}^{l} \alpha_i g(\mathbf{x}_i) = \sum_{j=1}^{m} \beta_j f(\mathbf{z}_j)$

If we take $g = k(\mathbf{x},.)$ $\langle f, g \rangle = \langle f, k(\mathbf{x},.) \rangle = \sum_{i=1}^{l} \alpha_i k(\mathbf{x}_i, \mathbf{x}) = f(\mathbf{x})$

Mercer Kernel Theorem

- * Denote an orthonormal basis of the RKHS with kernel κ as $\phi_i(.)$
- * $\kappa(x,.)$ belongs in this space
- * Expand $\kappa(x,.)$ onto the orthonormal basis $\phi_i(.)$

$$k(\mathbf{x},.) = \sum_{i=1}^{\infty} \langle k(\mathbf{x},.), \phi_i(.) \rangle \phi_i(.)$$

$$\Rightarrow k(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{\infty} \langle k(\mathbf{x}, \mathbf{z}), \phi_i(\mathbf{z}) \rangle \phi_i(\mathbf{z})$$

$$\Rightarrow k(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{\infty} \langle k(\mathbf{x}, \mathbf{z}), \phi_i(\mathbf{z}) \rangle \phi_i(\mathbf{z})$$

$$\Rightarrow k(\mathbf{x}, \mathbf{z}) = \sum_{i=1}^{\infty} \phi_i(\mathbf{x}) \phi_i(\mathbf{z})$$

Reproducing property

Practically

 The explicit computation of feature mapping is *not* necessary

 Instead, we can compose different κ and manipulate Gram matrices using all kinds of mathematical tricks (Kernel design), as long as the finite positive definite property is preserved

Research intensive topic, not covered in detail here

Composition of Kernels

- The space of kernel functions is closed under certain operations
 - I.e., the composition of valid kernel functions using such operations result in valid kernels
 - Can be proven by showing the resulting function preserves the finite positive definite property
 - E.g., sum and multiplication of kernels, and constant multiplication by a positive number

$$\boldsymbol{\alpha}^{T} \mathbf{k}_{1} \boldsymbol{\alpha} > 0 \quad \boldsymbol{\alpha}^{T} \mathbf{k}_{2} \boldsymbol{\alpha} > 0$$
$$\boldsymbol{\alpha}^{T} c \mathbf{k}_{1} \boldsymbol{\alpha} = c \boldsymbol{\alpha}^{T} \mathbf{k}_{1} \boldsymbol{\alpha} > 0, if \quad c > 0$$
$$\boldsymbol{\alpha}^{T} (\mathbf{k}_{1} + \mathbf{k}_{2}) \boldsymbol{\alpha} = \boldsymbol{\alpha}^{T} \mathbf{k}_{1} \boldsymbol{\alpha} + \boldsymbol{\alpha}^{T} \mathbf{k}_{2} \boldsymbol{\alpha} >$$

Other Rules

$$k (\mathbf{x}, \mathbf{z}) = k_{1} (\mathbf{x}, \mathbf{z}) + k_{2} (\mathbf{x}, \mathbf{z})$$

$$k (\mathbf{x}, \mathbf{z}) = ak_{1} (\mathbf{x}, \mathbf{z}), a > 0$$

$$k (\mathbf{x}, \mathbf{z}) = k_{1} (\mathbf{x}, \mathbf{z}) k_{2} (\mathbf{x}, \mathbf{z})$$

$$\Rightarrow k (\mathbf{x}, \mathbf{z}) = p (k_{1} (\mathbf{x}, \mathbf{z}))$$

$$\Rightarrow k (\mathbf{x}, \mathbf{z}) = \exp(-k_{1} (\mathbf{x}, \mathbf{z}))$$

$$\Rightarrow k (\mathbf{x}, \mathbf{z}) = \exp(-k_{1} (\mathbf{x}, \mathbf{z}))$$

))

Kernel Shaping

Adding a constant to all entries
Adding an extra constant features
Adding a constant to diagonal
Ridge regression, drop smaller features

Example Kernels

- Pattern classification is a hard problem
- Massaging classifiers is difficult and massaging data (using different kernels) only allocate the complexity differently (you cannot turn a NP problem into a P problem by a magic trick)
- Whether Kernel methods work will depend on your kernels
- Some examples are discussed below (there are many more ...)

Polynomial Kernel $k(\mathbf{x}, \mathbf{z}) = p(k_1(\mathbf{x}, \mathbf{z})) = (\langle \mathbf{x}, \mathbf{z} \rangle + c)^d$ (if feature is two dimensional and d = 2) $= (x_1z_1 + x_2z_2 + c)^2$

 $= (x_1z_1 + x_2z_2 + c)$ = $(x_1z_1 + x_2z_2)^2 + 2c(x_1z_1 + x_2z_2) + c^2$ = $x_1^2 z_1^2 + 2x_1z_1x_2z_2 + x_2^2 z_2^2 + 2cx_1z_1 + 2x_2z_2 + c^2$ = $(x_1^2, \sqrt{2}x_1x_2, x_2^2, \sqrt{2c}x_1, \sqrt{2c}x_2, c) \cdot (z_1^2, \sqrt{2}z_1z_2, z_2^2, \sqrt{2c}z_1, \sqrt{2c}z_2, c)$

$$= \phi(\mathbf{x}).\phi(\mathbf{z}) = \sum_{i} \phi_i(\mathbf{x}).\phi_i(\mathbf{z})$$

- Instead of calculating so many terms, we can do a simple polynomial evaluation – the beauty of kernel methods (less control over weighting of individual monomials)

All-Subsets Kernel

If there are n features, 1, ..., n

 $\phi_{A}, A \subseteq \{1, 2, \dots, n\}$

$$\phi_A(\mathbf{x}) = \prod_{j \in A} x_j^{i_j} = x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} \quad \sum_{j=1}^n i_j \le n, i_j \in \{0,1\}, 1 \le j \le n$$

The feature space is made of all monomials of the form

$$\prod_{i \in A} x_j^{i_j} = x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} \qquad \sum_{j=1}^n i_j \le n, i_j \in \{0,1\}, 1 \le j \le n$$

✤ The dimension is 2ⁿ

All-Subsets Kernel (cont.)

Instead of calculating so many terms, we can do a simple polynomial evaluation

If there are n features, 1, ..., n

 $\phi_{A}, A \subseteq \{1, 2, \dots, n\}$

$$\kappa(\mathbf{x},\mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \sum_{A \subseteq \{1,2,\dots,n\}} \phi_A(\mathbf{x}) \phi_A(\mathbf{z}) = \prod_{i=1}^n (1 + x_i z_i)$$

More generally

 $\kappa(\mathbf{x},\mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \sum_{A \subseteq \{1,2,\dots,n\}} \phi_A(\mathbf{x}) \phi_A(\mathbf{z}) = \prod_{i=1}^n (1 + a_i x_i z_i)$

Different weights for different features

ANOVA Kernel

All-subset kernel of a fixed cardinality *d*Dimensionality is *n*

If there are n features, 1, ..., n $\phi_A, A \subseteq \{1, 2, ..., n\}, |A| = d$ $\phi_A(\mathbf{x}) = \prod_{j \in A} x_j^{i_j} = x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} \qquad \sum_{j=1}^n i_j = d, i_j \in \{0, 1\}, 1 \le j \le n$

Evaluation through recursion (DP)

Gaussian Kernel

* Identical to the Radial Basis Function

$$\kappa(\mathbf{x}, \mathbf{z}) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \exp(\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2})$$

$$\ast \text{ Recall that } e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

The feature dimension is infinitely high in this case

Representing Texts

- Bag-of-words model
 - Presence + frequency
 - Ordering, grammatical relations, phrases ignored
 - □ Terms: words
 - Dictionary: all possible words
 - □ Corpses: all documents
 - Document

d → \$\phi(d)\$ = (tf(t₁, d), tf(t₂, d), ..., f(t_k, d)) ∈ R^k
 Similarity is measured by the inner product of \$\phi(d)\$

Mapping between terms and docs Document-term matrices (D) **X** in our previous notation ✤ Term-document matrices (**D**^T) **X**' in our previous notation Document-document matrices (**D D**^T) Gram matrix, dual formulation * Term-term matrices $(\mathbf{D}^{\mathrm{T}} \mathbf{D})$ Primary formulation $d \rightarrow \phi(d) = (tf(t_1, d), tf(t_2, d), \cdots, f(t_k, d)) \in \mathbb{R}^k$ $tf(t_1, d_1) tf(t_2, d_1) . tf(t_k, d_1)$ $tf(t_1, d_2) \quad tf(t_2, d_2) \quad . \quad tf(t_k, d_2)$

 $\mathbf{D}(\mathbf{X}) =$

 $tf(t_1, d_n) \quad tf(t_2, d_n) \quad . \quad tf(t_k, d_n)$

Strings and Sequences

- DNA, protein, virus signatures, etc.
 - Different lengths
 - Partial matching
 - Multiple matched sub-regions
 - Good example of kernels on non-numerical data set
 - Dynamic programming (DP) is the standard (expensive) matching technique to define similarity

Spectrum Kernels

p-spectrum: histogram of (contiguous) substring of length *p*

Kernel as inner product of p-spectrum of

Example 11.8 [2-spectrum kernel] Consider the strings "bar", "bat", "car" and "cat". Their 2-spectra are given in the following table:

ϕ	ar	at	ba	ca
bar	1	0	1	0
bat	0	1	1	0
car	1	0	0	1
cat	0	1	0	1

with all the other dimensions indexed by other strings of length 2 having value 0, so that the resulting kernel matrix is:

		the second s		the second s
Κ	bar	bat	car	cat
bar	2	1	1	0
bat	1	2	0	1
car	1	0	2	1
cat	0	1	1	2

two

55

All Subsequences Kernel

Example 11.16 All the (non-contiguous) subsequences in the words "bar", "baa", "car" and "cat" are given in the following two tables:

	ϕ	ε	a	b	С	r	t	aa	ar	at	ba	br	bt
	bar	1	1	1	0	1	0	0	1	0	1	1	0
	baa	1	2	1	0	0	0	1	0	0	2	0	0
	car	1	1	0	1	1	0	0	1	0	0	0	0
	cat	1	1	0	1	0	1	0	0	1	0	0	0
-	ϕ	ca	С	r	ct	ba	r	baa	car	ca	t		
	bar	0	0		0	1		0	0	0			
	baa	0	0		0	0		1	0	0			
	car	1	1		0	0		0	1	0			
	cat	1	0		1	0		0	0	1			

and since all other (infinite) coordinates must have value zero, the kernel matrix is

Κ	bar	baa	car	cat
bar	8	6	4	2
baa	6	12	3	3
car	4	3	8	4
cat	2	3	4	8

