Kernel Methods




Simple Idea of Data Fitting

< QGiven (X,y;)
o i=1,....,n
QO Xx,1s of dimension d
< Find the best linear function w (hyperplane) that fits the
data
< Two scenarios
O y: real, regression
a y: {-1,1}, classification
» Two cases
O n>d, regression, least square
O n<d, ridge regression

» New sample: x, <x,w>: best fit (regression), best decision
(classification)




Primary and Dual

« There are two ways to formulate the problem:
A Primary
A Dual

+ Both provide deep insight into the problem
< Primary 1s more traditional

« Dual leads to newer techniques in SVM and
kernel methods




Regression
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Graphical Interpretation

FICA Income — %
<+ X 1s a n (sample size) by d (dimension of data) matrix
< W combines the columns of X to best approximate y

0 Combine features (FICA, income, etc.) to decisions (loan)

<+ H projects y onto the space spanned by columns of X
a Simplify the decisions to fit the features




Problem #1

< n=d, exact solution
+ n>d, least square, (most likely scenarios)

<+ When n < d, there are not enough
constraints to determine coefficients w
uniquely
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Problem #2

« If different attributes are highly correlated
(income and FICA)

« The columns become dependent

« Coefficients are then poorly determined
with high variance

A E.g., large positive coefficient on one can be
canceled by a similarly large negative
coetficient on its correlated cousin

Q Size constraint 1s helpful
A Caveat: constraint 1s problem dependent




Ridge Regression

« Similar to regularization

w'% = arg min{Z(yi P —Z:xl.jwj)2 +/12 wf}
W i J j

ridge

w' % = argmin(y — Xw)' (y — Xw)+Aw’'w
A%

diy—Xw) (y—Xw)+Aw'w
dw

= -X"(y=Xw)+Aw =0

= X'y =X"Xw+ Aw

—= XTy =(X"X+ AD)w

= w =(X'X+ D)Xy

= =< x, (XX + D)Xy >

0




Ugly Math
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How to Decipher This

- S

« Red: best estimate (y hat) 1s composed of
columns of U (*basis” features, recall U and X
have the same column space)

« Green: how these basis columns are weighed

« Blue: projection of target (y) onto these
columns

+ Together: representing y in a body-fitted
coordinate system (u.)
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Sidebar

< Recall that

a Trace (sum of the diagonals) of a matrix is the
same as the sum of the eigenvalues

a Proof: every matrix has a standard Jordan form
(an upper triangular matrix) where the
eigenvalues appear on the diagonal (trace=sum
of eigenvalues)

3 Jordan form results from a similarity transform
(PAP-!) which does not change eigenvalues
Ax = Ax
= RAX. =APX
= PAP 'Px = APx

= Ay =1y
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Physical Interpretation

< Singular values of X represents the spread
of data along different body-fitting
dimensions (orthonormal columns)

+ To estimate y(=<x,w"42¢>) regularization
minimizes the contribution from less
spread-out dimensions

a Less spread-out dimensions usually have much

larger variance (high dimension eigen modes)
harder to estimate gradients reliably

a Trace X(XTX+AI)1XT is called effective
degrees of freedom
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More Details

% Trace X(XTX+AID)'XT is called effective
degrees of freedom

A Controls how many eigen modes are actually
used or active
df (W) =d,A=0,df (A)=0,1 — oo
« Different methods are possible
A Shrinking smoother: contributions are scaled

A Projection smoother: contributions are used (1)
or not used (0)
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Dual Formulation

« Weight vector can be expressed as a sum of
the n training feature vectors

W = (XTX)—IXTy XTy = X"Xw+ Aw
- XTX(XTX)_2 XTy lW — XTy = XTXW
XS hod W= X' (y=Xw
5 Zaixi = XTana
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Dual Formulation (cont.)

1
X'y =X"Xw+ Aw L :z(y_xnxdwdxl)
Aw=X'y-X'Xw  Jda=y-Xw
- T
“u;Lxﬂy_Xw) Aa=y-XX"a
A (XX” + ADa =y
> Xde a
i b a=(X, X oa+AD'y, , =(G+AD"y

g(X) =< w,Xx >= <z a'l.xl.,x>: z ai<xi,x>
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In More Details

y n ]lxn

y n ]lxn

Gram matrix
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Observations

< Primary

«» XX isd by d

< Training: Slow for
high feature dimension

< Use: fast O(d)

g(x)=<x, ., (X" X+D)"' X"y >

< Dual

< Only inner products
are involved

+» XXTisnbyn

« Training: Fast for high
feature dimension

< Use: Slow O(nd)

A N inner product to
evaluate, each requires

d multiplications | (x,,x)

g(xX) =y (XX" + D) s <X2:’ X>

(x, 1)

nx1
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Graphical Interpretation
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One Extreme — Perfect Uncorrelated
< n,

d > <—n.—>

1§ CawgE
_<X1',X>_
¢ L AT T -1 <X2’X> e | <Xi’X>
g =y (XX" +AD"| —Zy,. x4
(%, %)_

« Orthogonal projection — no generalization




General Case
Voo =Y b (XX +AD 0a X, X X=U,  E, V' o
=y 5 (UZU" + D) a UEV' X
=y b (U + ADU" ) o UZVTXT
=y 1 UE*+ A" U0ZV' X’
=y s:UE +AD"ZV'X"

= Uty ) a (B + ADTZVIXT

=N oy, Wk (O +/11)—12v1 f|
= (UTanynxl) vy +ADTE TR

Xn

xXn

"+ How to interpret this? Does this still make sense?




Physical Meaning of SVD

« Assume that n > d

« X 18 of rank d at most

« U are the body (data)-fitted axes

+» U' is a projection from » to d space

+ 2. 1s the importance of the dimensions

X ol e

nxd
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Interpretation

AT - v —
i

< In the new, uncorrelated space, there are only d
training vectors and d decisions

<+ Red: dxI uncorrelated decision vector

+ Green: weighting of the significance of the
components in the uncorrelated decision vector

< Blue: transformed (uncorrelated) training samples

< Still the same interpretation: similarity
measurement in a new space by

O Gram matrix
Q Inner product of training samples and new sample

22




First Important Concept

« The computation involves only inner product

A For training samples in computing the Gram
matrix

A For new sample 1in computing regression or
classification results

< Similarity 1s measured 1n terms of angle,
instead of distance
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Second Important Concept

< Using angle or distance for similarity
measurement doesn’t make problems easier or
harder
O If you cannot separate data, 1t doesn’t matter what
similarity measures you use
<+ “Massage” data

QO Transform data (into higher — even infinite -
dimensional space)

a Data become “more likely” to be linearly separable
(caveat: choice of the kernel function 1s important)

0O Cannot perform inner product efficiently
a Kernel trick — do not have to
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Why?

< There are a lot more “bases”
features now

FICA Income

¢,(FICA, Income, ...)
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Example - Xor

>>d

X1%X2
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How W 1

Example (Doesn’t quite work vyet)

-1 08 08 04 D2 a 02 0.4\0.8 0.8 1

Coinciding Means Well separated means
(a) Input Space (b) Feature Space
P:x=(x,%) > 0x)=(x,x,,x +x;)e F=R’
< Need to keep the nice property of requiring only inner product in the

computation (dual formulation)

< But what happens if the feature dimension is very high (or even
infinitely high)?

< Inner product in the high (infinitely high) dimensional feature space
can be calculated without explicit mapping through a kernel function
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In More Details

(%, %)
g(X) =< W,X >= <Z a’l.xi,x> = Zai<xi7x> - yT(XXT + ﬂl)_l <X2:’ X>
1 <Xn’X>_
a7 i ESEE = {Hy %S
[y, Y = 1 =" b= (eap=lrec ) LA - A S —ux)
Ly px,)" il | | L=z & p(x,) -
Q)P I) 90 e SRV PO ey
[yl y, Ny ]1 ¢(X2) ¢(X1) ¢(X2) ¢(X2)+l .- ¢(X2) Xn) ~ ~
' ' : ' - Px,) %) -
| P 0x) (X, 9%, LT Sy ) P
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Example

O:x=(x,%,)— Ox)=(x2xx,,x.)e F =R’
k(X,Y) = (x,y; + x,9,)°

= X0+ 240X, Y, + X, Y,

= (%7, V25,55, %3) - (3 N 2,75, V3)
=9(x)-P(y)
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More Example

P:x=(x,%,) = ¢x)=(x",x%,,%%,, %) F=R"
k(X,y) = (%, +X,y,)°

=29 2405, + %Y,

F (e 0590, ) = 80 335 D)

=@(x)-(y)
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Even More Example
@:X=(x,x,) > oX)= \/E(xl —x3,2%,%,x, +x.)e F=R’

k(x,y) = (x, +x2y2)2

= xlz)’f X %Y, +x22y22

= (22 N 2x,%,, 22) - (72 V2,95, ¥2)
1

1
:ﬁ(xf—x22,2x1x2,x12+3€22)'ﬁ(y12—Y§a2Y1Y2,y12+Y22)
= P(x)-4(y)

+ The interpretation of mapping ¢ 1s not
unique even with a single kK function
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Observations

« The 1nterpretation of mapping ¢ 1s not
unique even with a single K function

« The K function 1s special. Certainly not all
functions have such properties (1.e.,
corresponding to the inner product in a
feature space)

< Such functions are called kernel functions
0 Kernel 1s a function that for all x, z in X, K(X,
Z)=<0(Xx), 0(z)>, where ¢ 1s a mapping from X
to an (1inner product) feature space F
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Important Theorem

« A function K: K(X,X)-> R can be
decomposed into K(x,z)-> <O(Xx),0(z)> (¢
forms a Hilbert space) if and only 1f it
satisfies finitely positive semi-definite

property

Q Finitely positive semi-definite: If k(X,X)-> R 1s
symmetrical and for any finite subset of space
X, the matrix formed by applying K is positive
semi-definite (1.e., Gram matrix 1s SPD for any
choices of training samples)
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Only if Condition

« G1ven bi-linear function K: K(X,X)-> R
K(X,z)-> <0(x),0(z)> then the Gram matrix
from K satisfies finitely positive semi-definite

ropert - .
p p y K(x,x) KkK(x,x,) - K(x,x,)
v N K(x,,%) K(x,,x,) oo K(x55x.) -
KT X2 Yot K525 o K (B0, X )Y
P(x,) |

1Py gy sy

P(X,)

2
>0 34
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If Condition Proof Strategy

« More complicated
« First: Establish a Hilbert (function) space

« Second: Establish the reproducing property
in this function space

« Third: Establish the (Fourier) basis of such
a function space

< Fourth: Establish K as expansion on such a
Fourier basis
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What?

P:x=(x,x,)— dx)=(x'2xx,,x;)€ F=R’

k(x,y)=(xy, + szz)z

="
=XV

2 2
2l Vi ealadia Dy

¥ (Xlz"/axlxzvxzz)'()’fa\/a)ﬁyz’ )’22)

=2(%)

Z{y)

+ In this case, ¢ 1s a 3 dimensional space

< Each “dimension’ 1s a function of x

« There are three (not unique) “‘eign”
functions that form the basis
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A Function Space Example
< All (well-behaved, square-integrable)
functions defined over a domain R form a
vector space (a function space, ¥)

afe ¥, thencfe &
Qfe &, and g € &, then (af+bg) € &

« Such a space 1s a Hilbert space 1f 1t 1s
complete with an inner product (real valued,
symmetrical, bilinear)

A2 =< A 5 ) By
<3 oS [ F idray 7 (x)de 0

« You can define an orthogonal basis (e.g.,

[ ] L] L]
3 ;
DG > TSIty OT{C. Lk
. ytaB:
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Hilbert Space
« The proof is harder and not very intuitive

« Suffice 1t to say that someone has figured
out that the desired feature space 1s a
function space of the form

[
F :{Zaik(xi,.):le N,x.€ X,c. € R, i :1,---,1}
: i=1 :
< With an inner product defined as

[
F :{Z eleeX A MeN, xeen X o e R,i=1,---,l}

i=1

y— Z Ry = Zm: Bk(z.,)

m

< [, 9%

l
j=1 i=1

aiﬁjk(xi?zj) = Zaig(xi) = iﬂ]f(zj)
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Why

<+ Because then we have SPD properties regardless
of choice of x;

[
:{Z ok(x;,):le N,x,. € X,x, R,i=1,“',l}
[ m
T akx..), g =Zﬁ,.k(zi,.)
=] i

<f,g>—22aﬂk<xl,z >—Zag<x>—2ﬂ f(z))

j=li=l

l [
<f.f>=) ) aakix,z,)=0"ka>0

]:1 i=1

< Still have to prove completeness (not here, see
page 62 of Shawe-Taylor and Christianini)
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Reproducing Property

« Special Hilbert space called Reproducing
Kernel Hilbert space (RKHS)

REcdll .f = Zl:aik(xi,.), g = Zm:ﬂik(zi,.)
<fg>=Y Y afkx.z)=Y agx)=> ffx)

1 i

If we take g = k(x,.)

< f,g>=x< f,k(X;.)>= Zl:aik(xi,x): f(x)
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Mercer Kernel Theorem

< Denote an orthonormal basis of the RKHS
with kernel x as ¢y.)

+ K(X,.) belongs 1n this space

+ Expand K(X,.) onto the orthonormal basis ¢y.)
k(x) = Y < k(D). 4,0 > 6,0

= k(x,z) = i <k(X,2),0(z)> ¢, (z)

= k(x,2) =Y < k(x.2),0,(2) > ¢, (2)

= k(x.2)=) ¢, (X)w> Reproducing property
i=1
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Practically

« The explicit computation of feature
mapping 1S not necessary

« Instead, we can compose different ¥ and
manipulate Gram matrices using all kinds of
mathematical tricks (Kernel design), as long
as the finite positive definite property 1s
preserved

« Research intensive topic, not covered 1n
detail here
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Composition of Kernels

+ The space of kernel functions 1s closed under
certain operations

aI.e., the composition of valid kernel functions
using such operations result in valid kernels

A Can be proven by showing the resulting function
preserves the finite positive definite property

aE.g., sum and multiplication of kernels, and
constant multiplication by a positive number

o'ko>0 a'k,a>0
o' ckoa=co'ka>0,if c>0

o' (k, +k,)o=0'ka+a’'k,a>0
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Other Rules

k(x, z) =4k, (x,2)+ k,(X, z)
k(x, z) = ak (X, 2), a > 0
k N 2=k (X ZN ki o ("X 7

"
=>

—

kK (X)|z')
k (X, z)
k (X, z)

p (k,(x, z))
exp( k,(x, z))
exp( k,(x —z) /(20 %))
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Kernel Shaping

+ Adding a constant to all entries

d Adding an extra constant features

« Adding a constant to diagonal

a Ridge regression, drop smaller features
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Example Kernels

« Pattern classification 1s a hard problem

« Massaging classifiers 1s difficult and
massaging data (using different kernels)
only allocate the complexity differently
(you cannot turn a NP problem into a P
problem by a magic trick)

+ Whether Kernel methods work will depend
on your kernels

« Some examples are discussed below (there
are many more ...)
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Polynomial Kernel

k(x,z2) = p(k,(X,2)) = (< X,Z2 > +c)?

(if feature is two dimensional and d = 2)

= (x,2, + X,2, +¢)’

=(x,z, + x2z2)2 2T (X, 2o X )P c’

= X720 +2X,2,%,2, + X525 +2¢x,2, +2X,2, +C°

= (xlz, x/axlxz, X;,\/Exl,\/%xz,c) : (zf, x/azlzz, z22, «/2cz1,«/2cz2, c)

= (x).9(2) = ) 4,(x).4,(2)
+ The feature space is made of all monomials of the form
X2 ---x,i”,Zij =s,5<d
s |

% The dimension is (’Hd j
d

< Instead of calculating so many terms, we can do a simple
polynomial evaluation — the beauty of kernel methods (less

control over weighting of individual monomials)
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All-Subsets Kernel

If there are n features,1,...,n
¢A o A g {1,2,...,n}

: . . . n
() =Tl x} =xix;x0 )i <mi; € {011 j<n
JE =1

+ The feature space 1s made of all monomials
of the form

o . . . i
[Ix) =xix---xr > <nief0}1<j<n
=1

€A

< The dimension 1s 2

48



All-Subsets Kernel (cont.)

+ Instead of calculating so many terms, we
can do a sitmple polynomial evaluation

If there are n features,1,...,n

0.,Ac{l2,..,n}

L) =X JX), $(2) >=- {g ¢A} (%)@, (z) = H 1+ x,2,)
More generally =3

K(X,2) =< §(X), p(z) >= {Z ¢nA}<x)¢A<z) H (14 axz)

Different weights for different features
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ANOVA Kernel

« All-subset kernel of a fixed cardinality

d

If there are n features, 1,...,n
¢A 9A C {1,2,,n},|A| = d

< Dimensionality 1s (H)

A0 =1 x} =xjxg x| D, =d}i; € {01},1< j<n
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Gaussian Kernel

< Identical to the Radial Basis Function

K(X,2) =< J(X), §(z) >= exp(

< Recall that S ixl

=0 1!

« The feature dimension 1s infinitely high in
this case
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Representing Texts

+ Bag-of-words model
A Presence + frequency

A Ordering, grammatical relations, phrases
1ignored

a Terms: words
a Dictionary: all possible words
A Corpses: all documents
a Document
d — ¢(d) = (if (t,,d).1f (1,,d),--, f(t,,d)) € R
a Similarity 1s measured by the inner product of

Ad)
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Mapping between terms and docs

« Document-term matrices (D)

QX 1n our previous notation

+ Term-document matrices (D')

Q X’ 1n our previous notation

% Document-document matrices (D D)

0 Gram matrix, dual formulation

% Term-term matrices (D' D)

A Primary formulation

d — ¢(d) = (tf (t,,d),1f (t,,d),"+

D(X) =

1 (1,,d,)
if (t,d,)

i (t.d,)

if (t,.d,)
if (t,,d,)

if (t,,d,)

S (t.d))e R*

if (1, d,) |
if (1. d,)

if (t,,d3)) |



Strings and Sequences

<« DNA, protein, virus signatures, etc.
a Different lengths
A Partial matching
0d Multiple matched sub-regions

a Good example of kernels on non-numerical
data set

a Dynamic programming (DP) 1s the standard
(expensive) matching technique to define
similarity
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Spectrum Kernels

« p-spectrum: histogram of (contiguous)
substring of length p

« Kernel as inner product of p-spectrum of
tWO Example 11.8

ncar" and "cat". Their 2-spectra are given in the following table:

[2-spectrum kernel] Consider the strings "bar", "bat",

Q@ ar at ba ca
bar | | 0 1 ()

bat | 0 1 I [
car | 1 () () 1
cat | 0 | 0 1

with all the other dimensions indexed by other strings of length 2 having

value (. so that the resulting kernel matrix 1s:

K bar bat car cat
bar | 2 | 1 0
batw | 2 () I
car | I 0 & |
cat | 0 | | 2
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All Subsequences Kernel

Example 11.16 All the (non-contiguous) subsequences in the words
"bar", "baa", "car" and "cat" are given in the following two tables:

¢ € a b ¢ r t aa ar at ba br bt
bar (1 1 1 0 1 0 O 1 0 1 1 0
baa|l 2 1 0 0O O 1 O O 2 0 O
car (1 1 O 1 1 O O 1 0O 0 0 O
cat {1 1 O 1 O 1 O O 1 0 0 O
¢ ca cr ct bar baa car cat
bar | 0 0 0 1 0 0 0
baa |0 0 0 O 1 0 0
car | 1 1 0 0 0 1 0
cat | 1 0 1 0 0 0 1

and since all other (infinite) coordinates must have value zero, the kernel

matrix is
K bar baa car cat
bar | 8 6 4 2
baa | 6 12 3 3
car | 4 3 8 4
cat | 2 3 4 8




