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Simple Idea of Data Fitting

� Given (xi,yi)

� i=1,…,n

� xi is of dimension d

� Find the best linear function w (hyperplane) that fits the 
data

� Two scenarios

� y: real, regression

� y: {-1,1}, classification

� Two cases

� n>d, regression, least square

� n<d, ridge regression

� New sample: x, <x,w>: best fit (regression), best decision 
(classification)
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Primary and Dual

� There are two ways to formulate the problem:

� Primary

� Dual

� Both provide deep insight into the problem

� Primary is more traditional

� Dual leads to newer techniques in SVM and 

kernel methods
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Regression
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� X is a n (sample size) by d (dimension of data) matrix 

� w combines the columns of X to best approximate y

� Combine features (FICA, income, etc.) to decisions (loan)

� H projects y onto the space spanned by columns of X

� Simplify the decisions to fit the features

yXXXXyXXXXHyXwy
TTTT 11

)()(
−− ====

)

Graphical Interpretation

n

d

X=

FICA Income



6

Problem #1

� n=d, exact solution 

� n>d, least square, (most likely scenarios) 

� When n < d, there are not enough 

constraints to determine coefficients w

uniquely 

n

d

X=

W
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Problem #2 

� If different attributes are highly correlated 
(income and FICA)

� The columns become dependent 

� Coefficients are then poorly determined 
with high variance

� E.g., large positive coefficient on one can be 
canceled by a similarly large negative 
coefficient on its correlated cousin 

� Size constraint is helpful

� Caveat: constraint is problem dependent 
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Ridge Regression

� Similar to regularization 
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Ugly Math
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How to Decipher This

� Red: best estimate (y hat) is composed of 
columns of U (“basis” features, recall U and X
have the same column space)

� Green: how these basis columns are weighed

� Blue: projection of target (y) onto these 
columns

� Together: representing y in a body-fitted 
coordinate system (ui)
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Sidebar
� Recall that 

� Trace (sum of the diagonals) of a matrix is the 

same as the sum of the eigenvalues

� Proof: every matrix has a standard Jordan form 

(an upper triangular matrix) where the 

eigenvalues appear on the diagonal (trace=sum 

of eigenvalues)

� Jordan form results from a similarity transform 

(PAP-1) which does not change eigenvalues
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Physical Interpretation

� Singular values of X represents the spread 
of data along different body-fitting
dimensions (orthonormal columns)

� To estimate y(=<x,wridge>) regularization 
minimizes the contribution from less 
spread-out dimensions

� Less spread-out dimensions usually have much 
larger variance (high dimension eigen modes) 
harder to estimate gradients reliably

� Trace X(XTX+λI)-1XT is called effective 
degrees of freedom
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More Details

� Trace X(XTX+λI)-1XT is called effective 

degrees of freedom

� Controls how many eigen modes are actually 

used or active

� Different methods are possible

� Shrinking smoother: contributions are scaled 

� Projection smoother: contributions are used (1) 

or not used (0)
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Dual Formulation

� Weight vector can be expressed as a sum of 

the n training feature vectors
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Dual Formulation (cont.)
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In More Details
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Observations

� Primary

� XTX is d by d 

� Training: Slow for 

high feature dimension

� Use: fast O(d)

� Dual

� Only inner products 

are involved

� XXT is n by n

� Training: Fast for high 

feature dimension

� Use: Slow O(nd)

� N inner product to 

evaluate, each requires 

d multiplications
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Graphical Interpretation
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One Extreme – Perfect Uncorrelated
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General Case

T
d

T

nnd
T

TT
d

T

nnd
T

nd

TT
d

T

nnd
T

nd

TT
n

T

nd

TT
n

T

nd

TT
nn

T
n

T

nd

TT
nn

T
n

T

dd
T

dddnnd

T

dnnn
T

n
T

n
T

VV

V

V

V

V

V

V

UΣIΣyU

ΣUΣIΣyU

XΣIΣyU

XΣIΣUy

XUΣUIΣUy

XUΣUIΣUy

XUΣIUUΣy

ΣUXXXIXXyy

212
11

12
11

12
11

12
1

112
1

12
1

12
1

1
11

)()(

)()(

)()(

)(

)(

))((

)(

)(ˆ

−
×××

−
×××

×

−
×××

×

−
×

×

−−
×

×
×

−
×

×
×

−
×

××××××
−

××

+=

+=

+=

+=

+=

+=

+=

=+=

λ

λ

λ

λ

λ

λ

λ

λ

� How to interpret this? Does this still make sense? 



21

Physical Meaning of SVD

� Assume that n > d

� X is of rank d at most

� U are the body (data)-fitted axes

� UT is a projection from n to d space

� Σ is the importance of the dimensions

�� VV is the representation of the is the representation of the XX in the d spacein the d space

dd
T

dddn V ×××= ΣUX
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Interpretation

� In the new, uncorrelated space, there are only d 
training vectors and d decisions 

� Red: dx1 uncorrelated decision vector 

� Green: weighting of the significance of the 
components in the uncorrelated decision vector

� Blue: transformed (uncorrelated) training samples

� Still the same interpretation: similarity 
measurement in a new space by 

� Gram matrix

� Inner product of training samples and new sample
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First Important Concept

� The computation involves only inner product

� For training samples in computing the Gram 

matrix

� For new sample in computing regression or 

classification results

� Similarity is measured in terms of angle, 

instead of distance
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Second Important Concept

� Using angle or distance for similarity 
measurement doesn’t make problems easier or 
harder

� If you cannot separate data, it doesn’t matter what 
similarity measures you use

� “Massage” data

� Transform data (into higher – even infinite -
dimensional space)

� Data become “more likely” to be linearly separable 
(caveat: choice of the kernel function is important)

� Cannot perform inner product efficiently 

� Kernel trick – do not have to 
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Why?

n

d

X=

FICA Income

nX=

φi(FICA, Income, …)

� There are a lot more “bases”
features now

>>d
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Example - Xor

n

d=2

X=

X1 X2

nX=

X1*X2

>>d
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Example (Doesn’t quite work yet)

32

2

2

12121 ),,()(),(: RFxxxxxx =∈+=→= xx φφ

� Need to keep the nice property of requiring only inner product in the 
computation (dual formulation)

� But what happens if the feature dimension is very high (or even 
infinitely high)?

� Inner product in the high (infinitely high) dimensional feature space 
can be calculated without explicit mapping through a kernel function
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In More Details
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Example
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More Example
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Even More Example

� The interpretation of mapping φ is not 

unique even with a single κ function
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Observations

� The interpretation of mapping φ is not 
unique even with a single κ function

� The κ function is special. Certainly not all 
functions have such properties (i.e., 
corresponding to the inner product in a 
feature space)

� Such functions are called kernel functions

� Kernel is a function that for all x, z in X, κ(x, 
z)=<φ(x), φ(z)>, where φ is a mapping from X
to an (inner product) feature space F
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Important Theorem

� A function κ: κ(X,X)-> R can be 
decomposed into κ(x,z)-> <φ(x),φ(z)> (φ 
forms a Hilbert space) if and only if it 
satisfies finitely positive semi-definite 
property

� Finitely positive semi-definite: If κ(X,X)-> R is 
symmetrical and for any finite subset of space 
X, the matrix formed by applying κ is positive 
semi-definite (i.e., Gram matrix is SPD for any 
choices of training samples)
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Only if Condition

� Given bi-linear function κ: κ(X,X)-> R 

κ(x,z)-> <φ(x),φ(z)> then the Gram matrix 

from κ satisfies finitely positive semi-definite 

property
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If Condition Proof Strategy

� More complicated

� First: Establish a Hilbert (function) space

� Second: Establish the reproducing property 

in this function space

� Third: Establish the (Fourier) basis of such 

a function space 

� Fourth: Establish κ as expansion on such a 

Fourier basis
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What? 

� In this case, φ is a 3 dimensional space

� Each “dimension” is a function of x

� There are three (not unique) “eign”

functions that form the basis
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A Function Space Example
� All (well-behaved, square-integrable) 

functions defined over a domain R form a 
vector space (a function space, F)

� f ε F, then cf ε F

� f ε F, and g ε F, then (af+bg) ε F

� Such a space is a Hilbert space if it is 
complete with an inner product (real valued, 
symmetrical, bilinear)

� You can define an orthogonal basis (e.g., 
Fourier basis) on it
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Hilbert Space
� The proof is harder and not very intuitive

� Suffice it to say that someone has figured 

out that the desired feature space is a 

function space of the form 

� With an inner product defined as  
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Why

� Because then we have SPD properties regardless 

of choice of xi

� Still have to prove completeness (not here, see 

page 62 of Shawe-Taylor and Christianini)

0),(,

)()(),(,

,.)(,,.)(

,,1,,,:,.)(

1 1

111 1

11

1

≥=>=<

==>=<

==









=∈∈∈=

∑∑

∑∑∑∑

∑∑

∑

= =

=== =

==

=

kααzx

zxzx

zx

Xxx

T
l

j

l

i

jiji

m

j

jj

l

i

ii

m

j

l

i

jiji

m

i

ii

l

i

ii

l

i

iiii

kff

fgkgf

kgkf

liRNlkF

αα

βαβα

βα

αα L



40

Reproducing Property

� Special Hilbert space called Reproducing 

Kernel Hilbert space (RKHS)
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Mercer Kernel Theorem

� Denote an orthonormal basis of the RKHS 

with kernel κ as φi(.)

� κ(x,.) belongs in this space 

� Expand κ(x,.) onto the orthonormal basis φi(.)
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Practically

� The explicit computation of feature 

mapping is not necessary

� Instead, we can compose different κ and 

manipulate Gram matrices using all kinds of 

mathematical tricks (Kernel design), as long 

as the finite positive definite property is 

preserved

� Research intensive topic, not covered in 

detail here
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Composition of Kernels

� The space of kernel functions is closed under 

certain operations

� I.e., the composition of valid kernel functions 

using such operations result in valid kernels

� Can be proven by showing the resulting function 

preserves the finite positive definite property 

� E.g., sum and multiplication of kernels, and 

constant multiplication by a positive number 
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Other Rules
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Kernel Shaping

� Adding a constant to all entries

� Adding an extra constant features

� Adding a constant to diagonal 

� Ridge regression, drop smaller features
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Example Kernels

� Pattern classification is a hard problem

� Massaging classifiers is difficult and 
massaging data (using different kernels) 
only allocate the complexity differently 
(you cannot turn a NP problem into a P 
problem by a magic trick)

� Whether Kernel methods work will depend 
on your kernels

� Some examples are discussed below (there 
are many more …) 
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Polynomial Kernel

� The feature space is made of all monomials of the form 

� The dimension is 

� Instead of calculating so many terms, we can do a simple 
polynomial evaluation – the beauty of kernel methods (less 
control over weighting of individual monomials)
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All-Subsets Kernel

� The feature space is made of all monomials 

of the form 

� The dimension is 2n
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All-Subsets Kernel (cont.)

� Instead of calculating so many terms, we 

can do a simple polynomial evaluation
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ANOVA Kernel

� All-subset kernel of a fixed cardinality d

� Dimensionality is 

� Evaluation through recursion (DP)
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Gaussian Kernel

� Identical to the Radial Basis Function

� Recall that 

� The feature dimension is infinitely high in 

this case

)
2

exp()(),()(
2

2

σ
φφκ

zx
zxzx,

−
>==<

∑
∞

=

=
0 !i

i
x

i

x
e



52

Representing Texts

� Bag-of-words model

� Presence + frequency

� Ordering, grammatical relations, phrases 
ignored

� Terms: words

� Dictionary: all possible words

� Corpses: all documents

� Document

� Similarity is measured by the inner product of 
φ(d)

k
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Mapping between terms and docs
� Document-term matrices (D)

� X in our previous notation

� Term-document matrices (DT)

� X’ in our previous notation

� Document-document matrices (D DT)

� Gram matrix, dual formulation

� Term-term matrices (DT D)

� Primary formulation
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Strings and Sequences

� DNA, protein, virus signatures, etc.

� Different lengths

� Partial matching

� Multiple matched sub-regions 

� Good example of kernels on non-numerical 

data set

� Dynamic programming (DP) is the standard 

(expensive) matching technique to define 

similarity
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Spectrum Kernels

� p-spectrum: histogram of (contiguous) 

substring of length p 

� Kernel as inner product of p-spectrum of 

two strings
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All Subsequences Kernel


