Correlated And Time-Varving

Events

Correlated And Time-Varying Events

* So far, events and statistics are
\square independent
\square time (space) invariant
* Many applications violate the above
\square speech signals
\square images (textures)
* Need a more sophisticated model

Possibilities

* This problem (and its variants) has been studied in many fields over a long period of time
* We will briefly discuss
aFinite automata (computer science, syntactic pattern recognition)
- Markov chain (mathematics, statistics)
- Hidden Markov model (signal processing, speech processing)

Finite Automata

* As a language (or more generally, a pattern) recognition device
* A machine with a fixed number of states (memory)
: It parses a string (a pattern) and based on the current state and current input to decide on the next state
* Eventually, when the string (the pattern) is exhausted, the machine will halt and either accept (recognize) or reject (not recognize) the input

Finite Automata (cont.)

input

Finite Automata (cont.)

* A deterministic finite automata is a quintuple

$$
M=(K, \Sigma, \delta, s, F)
$$

- $K \quad$ is a finite set of states
- Σ is an alphabet
- $s \in K$ is the initial state
- $F \subset K$ is the set of final states
- $\delta(K \times \Sigma) \rightarrow K$ transition function

Example

* A finite automata that accepts all strings in $\{a, b\}^{*}$ that have an even number of b 's
\square alphabet: $\{\mathrm{a}, \mathrm{b}\}$
\square state: $\left\{\mathrm{q}_{\mathrm{o}}, \mathrm{q}_{1}\right\}$
\square initial state: q_{0}
\square final states: $\left\{q_{0}\right\}$
\square transition rules

$$
\begin{array}{ccc}
q & \sigma & \delta(q, \sigma) \\
\hline q_{0} & a & q_{0} \\
q_{0} & b & q_{1} \\
q_{1} & a & q_{1} \\
q_{1} & b & q_{0}
\end{array}
$$

More Example

* A finite automata that accepts strings over $\{\mathrm{a}, \mathrm{b}\} *$ that does not contain three consecutive b's

More Example

* A finite automata that accepts $L=(a b \cup a b a)^{*}$

An Opposite Definition

* Grammar: as a language (or pattern) generation device
* A grammar is a quadruple
- V an alphabet
$\square \Sigma$
subset of V (terminals)
- $R:(V-\Sigma) \rightarrow V^{*}$ rewriting rules
- S
start symbol

An Opposite Definition

* A language
\square all the strings (patterns) that can be generated by applying the rewriting rules from the start symbol

$$
L(G)=\left\{w \mid w \in \Sigma^{*}, S \Rightarrow w\right\}
$$

Regular Grammar

*The rewriting rule must be

$$
R:(V-\Sigma) \rightarrow \Sigma^{*}((V-\Sigma) \cup\{e\})
$$

At most one non-terminal on the right-hand side
Non-terminal, if present, must be the last symbol in the string

Example

$$
\begin{aligned}
& R: \\
& S \rightarrow a M b \\
& M \rightarrow A \\
& M \rightarrow B \\
& A \rightarrow a A \\
& A \rightarrow e \\
& B \rightarrow b B \\
& B \rightarrow e
\end{aligned}
$$

Equivalency

\because A type of automata (as a recognition device) can be made to recognize languages generated by a particular grammar (as a generation device)

* E.g., the class of languages accepted by finite automata is exactly the class of languages generated by regular grammars

Generalization

* Non-deterministic automata (allows multiple transitions out of a state)
* Pushdown automata (context free languages)
* Stochastic grammar
* The whole area of syntactic pattern recognition
$\%$ etc. etc.

String (Pattern) Grammar

babcbabdbabcbabd
(a)

bebabcba
(b)

Figure 3.19. (a) Submedium chromosome; (b) telocentric chromosome.
$G=\left(V_{N}, V_{T}, P,\{\right.$＜submedian chromosome, ，＜telocentric chromosome〉\})
where
$V_{N}=\{\langle$ submedian chromosome \rangle,\langle telocentric chromosome \rangle,\langle arm pair \rangle,
$\quad\langle$ left part \rangle,\langle inight part \rangle,\langle arm \rangle,\langle side \rangle,\langle bottom $\rangle\}$

$$
v_{T}=\{\bigcap_{a}, \bigcup_{b}, \cup_{d}, \underbrace{}_{e}\}
$$

and P ：

$$
\begin{aligned}
& \text { 〈submedian chromosome〉 } \rightarrow \text { 〈arm pair〉〈arm pair〉 } \\
&\langle\text { telocentric chromosome〉 } \rightarrow \text { 〈bottom〉〈arm pair〉 } \\
& \text { 〈arm pair〉 } \rightarrow \text { 〈side〉〈arm pair〉 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 〈arm pair〉 } \longrightarrow \text { 〈arm pair〉〈side〉 } \\
& \langle\text { arm pair〉 } \rightarrow \text { 〈arm〉 〈right part〉 } \\
& \text { 〈arm pair〉 } \rightarrow \text { 〈left part〉 〈arm〉 } \\
& \text { 〈left part〉 } \longrightarrow \text { 〈arm>c } \\
& \langle\text { right part〉 } \rightarrow c \text { 〈arm〉 } \\
& \text { 〈bottom> } \rightarrow b \text { 〈bottom> } \\
& \text { 〈bottom> } \rightarrow \text { 〈bottom> } b \\
& \text { 〈bottom> } \rightarrow e \\
& \text { 〈side〉 } \rightarrow b \text { 〈side〉 } \\
& \langle\text { side〉 } \rightarrow\langle\text { side〉 } b \\
& \text { 〈side〉 } \rightarrow \boldsymbol{b} \\
& \text { 〈side〉 } \rightarrow d \\
& \text { 〈arm〉 } \rightarrow b \text { 〈arm〉 } \\
& \langle\mathrm{arm}\rangle \rightarrow\langle\operatorname{arm}\rangle b \\
& \langle\mathrm{arm}\rangle \rightarrow a
\end{aligned}
$$

(a)

Figure 3.20. Three sample chromosomes: (a) median string representation; (b) submedian representation; (c) arcocentric string representation.

Tree Grammar

Figure 4.6. (a) Patterns; (b) corresponding tree representations.

Difficulty

* How to extract primitives reliably from images?
$*$ How to parse the the extracted primitives?
* How to correct errors?

Figure 3.2. Cursive strokes of the word "globe."

Figure 3.3. Stroke-sequence representation of the word "globe."

Hidden Markov Model

* Internal states: short-time, steady, wellbehaved part of a signal or an image
* State transition: characterize how one state evolves into the next
* Initial states: the starting point of evolution
* "Hidden" implies that the states are usually not directly observable, but will influence the behavior of the model

An example - urn-and-ball-model

urn1
$P(R)=. \quad P(R)=. \quad P(R)=$.
$P(B)=. \quad P(B)=. \quad P(B)=$.

Time
urn (hidden) state ball (observation)
$1 \quad 2 \quad 3 \quad \ldots \quad$ T
u1 u9 u5 ... u7
$R \quad B \quad Y \quad \ldots \quad G$

Another example - competing HMMs

2-fair coins

2-biased coins

Observation: HTTHTHH

1. Which model best describes the observation?
2. What are the most likely state transitions over time?

Terminology

$\square \mathrm{T}$: length of the observation sequence
$\square \mathrm{N}$: number of states (urns) in the model
$\square \mathrm{M}$: number of observation symbols (colors)
$\square \mathrm{O}$: observations (colors)
$\left\{O_{1}, O_{2}, \ldots, O_{T}\right\}$
$\square \mathrm{Q}$: states (urns)
$\square \mathrm{V}$: set of possible symbols
$\left\{q_{1}, q_{2}, \ldots, q_{N}\right\}$
$\left\{v_{1}, v_{2}, \ldots, v_{M}\right\}$
\square A: state transition density

$$
a_{i j}=p\left(q_{j}^{t+1} \mid q_{i}^{t}\right)
$$

\square B: observation symbol density in a state
π : initial state distribution $\quad b_{j}(k)=p\left(v_{k}{ }^{t} \mid q_{j}{ }^{t}\right)$

$$
\pi_{i}=P\left(q_{i}^{1}\right)
$$

Three Problems of HMMs

\square Evaluation: Given an observation sequence O, and a model $\lambda=(A, B, \pi)$ how to compute $P(O \mid \lambda)$

- Estimation: Given an observation sequence O , and a model $\lambda=(A, B, \pi)$ how to choose a state sequence $I=i_{1}, i_{2}, \ldots, i_{T}$ which is optimal
- Training: How to adjust the model parameters to maximize $\quad \lambda=(A, B, \pi) \quad P(O \mid \lambda)$

Example - Evaluation

2-biased coins

Observation: $\mathrm{H} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{T} \quad \mathrm{H} \quad \mathrm{H} \ldots$.

How good can the states explain the output?

Intuition: Given a Model ...

* A good (or likely) sequence of states is one that
\square Each state can well explain the corresponding observation
\square Each transition has high likelihood to happen
* A bad (or unlikely) sequence of states does not have either (or both) properties
* A probabilistic framework
\square Enumerate all possible state transitions in a model to determine how good is a model

Example - Evaluation

2-biased coins

Observation: $\begin{array}{lllllll}\mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{H}\end{array}$.

$$
0.8 * 0.5 * 0.2 * 0.5 * 0.2 * 0.5 * 0.2 * 0.5 * 0.8
$$

Evaluation

* Enumerates all possible state transitions in T steps
* For each possible state sequence, compute the possibility of observing O
$P(O \mid \lambda)=\sum_{\text {allI }} P(O, I \mid \lambda)=\sum_{\text {allI }} p(O \mid I, \lambda) p(I \mid \lambda)$
$P(O \mid I, \lambda)=b_{i_{1}}\left(O_{1}\right) b_{i_{2}}\left(O_{2}\right) \ldots b_{i_{T}}\left(O_{T}\right)$
$p(I \mid \lambda)=\pi_{i_{1}} a_{i_{i} i_{2}} a_{i_{2} i_{3}} \ldots a_{i_{T-1} i_{T}}$
$P(O \mid \lambda)=\sum_{\text {alli }} \pi_{i_{1}} b_{i_{1}}\left(O_{1}\right) a_{i_{i i_{2}}} b_{i_{2}}\left(O_{2}\right) a_{i_{2} i_{3}} \ldots a_{i_{T-1} i_{T}} b_{i_{T}}\left(O_{T}\right)$

Graphical Interpretation

* Brute force method * Dynamic Programming
- Every leaf node requires a full path evaluation
\square Interior edges are traversed multiple times
Level, \# of nodes

Level, \# of nodes
0,1
1,2
2, 4
3, 8
k,2
$\square N$ states and T steps require $O\left(N^{T}\right)$ computation

- Efficient forward -backward procedure (based on dynamic programming)

\square Remember all costs

Intuition

* At each node, the cost is the sum of all possible paths from start to that node

* To proceed one more stage $(t$ to $t+1)$, the total cost is
\square Total cost at stage t
- Transition cost from t to $t+1$ Extending all paths at once!

N states per stage/Tstages

* Forward approach

$$
\begin{aligned}
& \alpha_{t}(i)=p\left(O_{1}, O_{2}, \ldots, O_{t}, i_{t}=q_{i} \mid \lambda\right) \\
& \text { 1. } \alpha_{1}(i)=\pi_{i} b_{i}\left(O_{1}\right) \quad 1 \leq i \leq N \\
& \text { 2. for } t=1,2, \ldots, T-1 \quad 1 \leq j \leq N \\
& \qquad \alpha_{t+1}(j)=\left[\sum_{i=1}^{N} \alpha_{t}(i) a_{i j}\right] b_{j}\left(O_{t+1}\right) \\
& \text { 3. } P(O \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
\end{aligned}
$$

* Backward approach

$$
\begin{aligned}
& \beta_{t}(i)=p\left(O_{t+1}, O_{t+2}, \ldots, O_{T} \mid i_{t}=q_{i}, \lambda\right) \\
& \text { 1. } \beta_{T}(i)=1 \quad 1 \leq i \leq N \\
& \text { 2. for } t=T-1, T-2, \ldots, 1 \quad 1 \leq i \leq N \\
& \qquad \beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j) \\
& \text { 3. } P(O \mid \lambda)=\sum_{i=1}^{N} \beta_{1}(i)
\end{aligned}
$$

Estimation \#1

* Optimize each stage individually
* Does not take into consideration if a path can be built with those individual states
\square Usually fine, but not if $a_{i j}$ is zero for some transition
* Does not take into consideration the transition costs between those states
* A localized, greedy approach

Estimation \#1

$$
\begin{aligned}
& \gamma_{t}(i)=p\left(q_{t}=i \mid O, \lambda\right)=\frac{p\left(O, q_{t}=i, \lambda\right)}{p(O, \lambda)}=\frac{p\left(O, q_{t}=i \mid \lambda\right) p(\lambda)}{p(O \mid \lambda) p(\lambda)}=\frac{p\left(O, q_{t}=i \mid \lambda\right)}{p(O \mid \lambda)} \\
& =\frac{p\left(O, q_{t}=i \mid \lambda\right)}{\sum_{j=1}^{N} p\left(O, q_{t}=j \mid \lambda\right)}=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{N} \alpha_{t}(j) \beta_{t}(j)} \text { All possible ways through stage } t \text { vil possible ways through stage } t
\end{aligned}
$$

Estimation 2

$\%$ Find the best state sequence (path)
\square Viterbi algorithm: a dynamic programming solution for finding the shortest (best) path

$$
\begin{array}{rlr}
\text { 1. } \delta_{1}(i) & =\pi_{i} b_{i}\left(O_{1}\right) & 1 \leq i \leq N \\
\psi_{1}(i) & =0 & \\
\text { 2. } \delta_{t}(j) & =\max _{1 \leq i \leq N}\left[\delta_{t-1}(i) a_{i j}\right] b_{j}\left(O_{t}\right) & 1 \leq j \leq N \\
\psi_{t}(j) & =\arg \max _{1 i \leq N}\left[\delta_{t-1}(i) a_{i j}\right] & 2 \leq t \leq T \\
\text { 3. cost } & =\max _{1 \leq i \leq N}\left[\delta_{T}(i)\right] &
\end{array}
$$

path through back tracking on ψ

\square Efficient forward -backward procedure (based on dynamic programming)

\square Remember the best cost instead of all cost

Graphical Illustration

Training

* Observations: All known or partially known
* Structures: known or not known
* Parameters: known or not known
* If we don't know the structure (hence, not parameters either), it is an arbitrarily hard problem
\square You better have some domain knowledge or some hypothesis of the structures, otherwise, you are doomed

Training

* A much more reasonable assumption
- Observations are available for training
\square Network structure is known
\square Need to determine or fine tune parameters
$>$ Initial probability
> Transition probability
> Observation probability
\square Formulated as EM optimization

Training: Baum-Welch

* Probability of in state i at time t and state j at time $t+1$

Training: Baum-Welch

$$
\begin{aligned}
& \xi_{t}(i, j)=p\left(i_{t}=q_{i}, i_{t+1}=q_{j} \mid O, \lambda\right) \\
& =\frac{p\left(i_{t}=q_{i}, i_{t+1}=q_{j}, O, \lambda\right)}{P(O, \lambda)}
\end{aligned}
$$

$$
=\frac{p\left(i_{t}=q_{i}, i_{t+1}=q_{j}, O \mid \lambda\right)}{P(O \mid \lambda)}
$$

$$
=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}{\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{t}(i) a_{i j} b_{j}\left(O_{t+1}\right) \beta_{t+1}(j)}
$$

More definitions

- $\gamma_{t}(i)=\sum_{j=1}^{n} \xi_{t}(i, j)$ Being in state i at time t
- $\sum_{t=1}^{T-1} \gamma_{t}(i)$ Expected number of transitions made
from state q_{i}
- $\sum_{t=1}^{T-1} \xi_{t}(i, j)$ Expected number of transitions from state q_{i} to state q_{j}

Intuition

$* \pi$: expected frequency (\# of times) in state i at time $t=1$
$* a_{i j}:$ expected number of transition from i to $j /$ expected transition from I

* $B_{j}(k)$: expected number of times in state j and observing $k /$ expected number of times in state j

Baum-Welch procedure

\square iterate on

$$
\hat{\lambda}=\left(\hat{\pi}, \hat{a}_{i j}, \hat{b}_{j}(k)\right)
$$

$$
\begin{aligned}
& \hat{\pi}_{i}=\gamma_{1}(i) \\
& \hat{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \\
& \sum_{t=1}^{T-1} \gamma_{t}(i) \\
& \hat{b}_{i}(k)=\frac{O_{1}=k}{\sum_{t=1}^{-1}} \gamma_{t}(i)
\end{aligned}
$$

EM Algorithms

