Nonparametric Techniques

Nonparametric Techniques

* w/o assuming any particular distribution
\square the underlying function may not be known (e.g. multi-modal densities)
\square too many parameters
* Estimating density distribution directly
* Transform into a lower-dimensional space where parametric techniques may apply (more on this later on dimension reduction)

Example

* Estimate the population growth, annual rainfall, etc. in the US
$* p(x, y) d x d y$ is the probability of rain fall in [x,x+dx,y,y+dy]

Example (cont.)

* A simple parametric model for $\mathrm{p}(\mathrm{x}, \mathrm{y})$ probably does not exist
\therefore In stead
\square partition the area into a lattice
- At each (x, y), count the amount of rain $r(x, y)$
\square Do that for a whole year
- Normalize $\Sigma \mathrm{r}(\mathrm{x}, \mathrm{y})=1$

Density estimation

probability

probability

$$
P=\int_{x_{i}}^{x_{j}} p(x) d x
$$

Density estimation

*From equation

$$
P=\int_{x_{i}}^{x_{j}} p(x) d x \cong p(x)\left(x_{j}-x_{i}\right)
$$

*From observation

$$
P=\frac{k}{n}
$$

* Hence

$$
p(x) \cong \frac{k / n}{\left(x_{j}-x_{i}\right)}=\frac{k / n}{V}
$$

Comparison

* In Reality:
* The number of training samples is limited
* if V is too small, k becomes erratic
\square What does 0 mean?
* if V is too large, $p(x)$ is not representative
* In theory:
* If n becomes infinitely large, k / n approaches the probability, $p(x)=$ $(k / n) / V$ is then only a space average
* Hence, V must be allowed to go to zero as n goes to infinity

$$
p(x) \cong \frac{k / n}{\left(x_{j}-x_{i}\right)}=\frac{k / n}{V}
$$

In Theory

* Theoretically, we can use a sequence of samples with increasing size for estimation
* Then

$$
\begin{aligned}
p_{n}(x) \rightarrow p(x) & \text { if } \\
\text { (1) } \lim _{n \rightarrow \infty} V_{n} & =0 \\
\text { (2) } \lim _{n \rightarrow \infty} k_{n} & =\infty \\
\text { (3) } \lim _{n \rightarrow \infty} \frac{k_{n}}{n \rightarrow \infty} n & =0
\end{aligned}
$$

Two different approaches

* Constrain the region size
\square Shrink the region to maintain good locality (Parzen Windows)
* Constrain the sample size
\square Enlarge the number of samples to maintain good resolution (K_{n}-nearest-neighbors)

Parzen Windows

Use a windowing function, e.g.

* A sequence of n regions can be defined

$$
\phi(x)=\left\{\begin{array}{cc}
1 & |x| \leq \frac{1}{2} \\
0 & \text { otherwise }
\end{array} \text { or } \quad \frac{1}{2 \pi} e^{-\frac{x^{2}}{2}}\right.
$$

$$
\begin{aligned}
& \phi_{n}(x)=\phi\left(x / h_{n}\right) \\
& h_{n}=\frac{h_{1}}{\sqrt{n}}
\end{aligned}
$$

$$
\begin{aligned}
& k_{n}=\sum_{i=1}^{n} \phi_{n}\left(x-x_{i}\right)=\sum_{i=1}^{n} \phi\left(\frac{x-x_{i}}{h_{n}}\right) \\
& p_{n}(x)=\frac{1}{n} \sum_{i=1}^{n} \xrightarrow[\text { DR, ANN, ©LML }]{\frac{1}{V_{n}} \phi\left(\frac{x-x_{i}}{h_{n}}\right)=\frac{1}{n} \sum_{i=1}^{n} \delta_{n}\left(x-x_{i}\right)} \text { By definition }
\end{aligned}
$$

Parzen Window (cont.)

* As n increases
- The window becomes narrower (by h_{n})
\square The window becomes taller (by $1 / V_{n}$)
\square Sampling with smaller aperture but higher focus
\square The same 100 dollars collected from 100 people and from 1 person is different (per person)

$$
{ }_{1}^{\delta,}
$$

$p_{n}(x) \quad$ Small n : large aperture, smoothed, fuzzy estimate Large n : small aperture, sharp, erratic estimate

2D Sampling

* Five samples
* Windowing func:

FIGURE 4.6. Parzen-window estimates of a bivariate normal density using different window widths and num bers of samples. The vertical axes have been scaled to best show the structure in each graph. Note particula that the $n=\infty$ estimates are the same (and match the true distribution), regardless of window width.
Examples of the Parzen Window Estimation -contiouc

$$
n=1
$$

$$
n=16
$$

0.001

$$
n=256
$$

$$
n=\infty
$$

Does it work?

$\%$ "Work" in the sense that you if you are able to shrink down the window size as much as you want (certainly, you must simultaneously increase the number of samples available), then the limit of the profile should be the correct probability

* This implies (treating p_{n} as a random variable)
$\square E\left(p_{n}(\mathbf{x})\right)=p(\mathbf{x})$
$\square \operatorname{Var}\left(\mathrm{p}_{\mathrm{n}}(\mathbf{x})\right)->0$

Convergence of Mean

$\%$ Will $\mathrm{p}_{\mathrm{n}}(\mathbf{x})$ goes to $\mathrm{p}(\mathbf{x})$?
\square If n goes to infinity
$>\mathbf{x}_{\mathrm{i}}$ will cover all possible \mathbf{x} (summation to integration)
> with $\mathrm{p}(\mathbf{x})$ distribution (weighted by $\mathrm{p}(\mathbf{x})$)

$$
\begin{aligned}
\bar{p}_{n}(\mathbf{x}) & =E\left[p_{n}(\mathbf{x})\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left[\frac{1}{V_{n}} \varphi\left(\frac{\mathbf{x}-\mathbf{x}_{i}}{h_{n}}\right)\right] \\
& =\int \frac{1}{V_{n}} \varphi\left(\frac{\mathbf{x}-\mathbf{v}}{h_{n}}\right) p(\mathbf{v}) d \mathbf{v} \\
& =\int \delta_{n}(\mathbf{x}-\mathbf{v}) p(\mathbf{v}) d \mathbf{v}=p(\mathbf{x})
\end{aligned}
$$

Convergence of Variance

* Will $p_{n}(\mathbf{x})$ always end up at $p(\mathbf{x})$ for certain?
$\square \mathrm{nV}_{\mathrm{n}}$ must approach infinity, even V_{n} when goes to zero

$$
\begin{aligned}
& \sigma_{n}^{2}(\mathbf{x})=\sum_{i=1}^{n} E\left[\left(\frac{1}{n V_{n}} \phi\left(\frac{\mathbf{x}-\mathbf{x}_{i}}{h_{n}}\right)-\frac{1}{n} \bar{p}_{n}(\mathbf{x})\right)^{2}\right] \\
& =\sum_{i=1}^{n} n E\left[\left(\frac{1}{n^{2} V_{n}^{2}} \phi^{2}\left(\frac{\mathbf{x}-\mathbf{x}_{i}}{h_{n}}\right)\right]-\frac{1}{n} \bar{p}_{n}^{2}(\mathbf{x})\right. \\
& =\frac{1}{n V_{n}} \int \frac{1}{V_{n}} \phi^{2}\left(\frac{\mathbf{x}-\mathbf{v}}{h_{n}}\right) p(\mathbf{v}) d \mathbf{v}-\frac{1}{n} \bar{p}_{n}^{2}(\mathbf{x}) \rightarrow 0 \text { as n-> infinity } \\
& \leq \frac{1}{n V_{n}} \sup (\phi(\cdot)) \int \frac{1}{V_{n}} \phi\left(\frac{\mathbf{x}-\mathbf{v}}{h_{n}}\right) p(\mathbf{v}) d \mathbf{v} \\
& \sigma_{n}^{2}(\mathbf{x}) \leq \frac{\sup (\phi(\cdot)) \bar{p}_{n}(\mathbf{x})}{n V_{n}}
\end{aligned}
$$

$$
k_{n} \text {-nearest-neighbor }
$$

* Parzen window size hard to estimate
* Constrain the number of data items instead of the size of the window
*. $k_{n}=\sqrt{n}$ enlarge window around \mathbf{x} to enclose that many samples, then

$$
p_{n}(x)=\frac{k_{n} / n}{V_{n}}
$$

$$
k_{n} \text {-nearest-neighbor }
$$

$*$ Intuitively, as n increases
$\square \mathrm{k}_{\mathrm{n}}$ should increase (for good representation)
$\square \mathrm{V}_{\mathrm{n}}$ should decrease (for good localization)
\square The following conditions guarantee convergence

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} k_{n}=\infty \\
& \lim _{n \rightarrow \infty} \frac{k_{n}}{n}=\infty
\end{aligned}
$$

FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density estimates, for $k=3$ and 5 . Note especially that the discontinuities in the slopes in the estimates generally lie away from the positions of the prototype points.

Sharp spikes around data points:
$\mathrm{Kn}=1$, the probability estimate is infinity at data point (region size is zero to capture 1 sample)

FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spherical region until it encloses k training samples, and it labels the test point by a majority vote of these samples. In this $k=5$ case, the test point \mathbf{x} would be labeled the category of the black points.

Examples of the k_{n}-Nearest-Neighbor Method

$$
\begin{array}{llll}
n=\infty & n=256 & n=16 & n=1 \\
k_{n}=\infty & k_{n}=16 & k_{n}=4 & k_{n}=1
\end{array}
$$

An Example

- Estimating $p\left(\sigma_{i} \mid \mathbf{x}\right)$
$\square \mathrm{n}$ tagged samples
\square a volume V around \mathbf{x} captures k samples, k_{i} of them are ϖ_{i}
$p_{n}\left(\mathbf{x}, \varpi_{i}\right)=\frac{k_{i} / n}{V}$
$p_{n}\left(\varpi_{i} \mid \mathbf{x}\right)=\frac{p_{n}\left(\mathbf{x}, \varpi_{i}\right)}{\sum_{j=1}^{c} p_{n}\left(\mathbf{x}, \varpi_{j}\right)}=\frac{\frac{k_{i} / n}{V}}{\sum_{j=1}^{c} \frac{k_{i} / n}{V}}=\frac{\frac{k_{i} / n}{V}}{\frac{k / n}{V}}=\frac{k_{i}}{k}$

Comparison

* Parametric
\square simple and analytical
a may not fit well real-world densities
* Non-parametric
\square flexible and fit all densities
\square need to remember all samples

One Final Note

* Here we talk about Parzen window and $\mathrm{k}_{\mathrm{n}}{ }^{-}$ nearest-neighbor rule as a way to estimate a single probability density
* This rule is equally useful at labeling a sample against multiple probable classes (densities)
* More on that in linear discriminant function

More Realistic Scenarios

* Drake's Equation
\square Rate of start formation, fraction of stars having planets, average \# of planets per star that support life, fraction of such stars actually develop life, fractions of such stars actually develop civilization, such civilization have communication, length of time such civilization actually release signals

More Realistic Scenarios

* Chance of a person develops cancer (ancestry, birth place, how raised, living habits, education history, work history, exercise habit, income, debt, food intake, etc.)
* Chance of a person contributes to political campaign (...)

Curse of Dimensionality

* Not possible to estimate distributions in such high-dimensional space
* \# of samples needed are generally infinitely large

Practical Usage

* $\mathrm{X}=\operatorname{rand}(3,3)$
* Sampling based on certain distribution (default is uniform)
* Need to evaluate certain expectation
* Technology advances by alien contact
* Life expectancy (for cancer case)
* Amount of money for political campaigns

General Idea

* Finite number samples: sample mean/variance to estimate population mean/variance
$\square z^{(1)}, l=1, \ldots, L$

$$
\begin{gathered}
\widehat{f}=\frac{1}{L} \sum_{l=1}^{L} f\left(\mathbf{z}^{(l)}\right) . \\
\operatorname{var}[\hat{f}]=\frac{1}{L} \mathbb{E}\left[(f-\mathbb{E}[f])^{2}\right]
\end{gathered}
$$

\square Samples may not be independent
\square Some distribution (uniform) is easier to sample than others
$\square f(\mathbf{z})$ is small in regions where $p(\mathbf{z})$ is large and vice versa

From One to Another

$$
\begin{aligned}
& p(y)=p(z)\left|\frac{d z}{d y}\right| \\
& z=h(y) \equiv \int_{-\infty}^{y} p(\widehat{y}) \mathrm{d} \widehat{y} \\
& y=h^{-1}(z)
\end{aligned}
$$

z: uniform

y : any known distribution Sample z uniformly == Sample y based on $\mathrm{p}(\mathrm{y})$

Multi-Dimensional

* Much more difficult
$*$ Do not know the form
* Cannot get enough samples to populate the landscape
* How to generate IID samples?

Rejection Sampling

* A real distribution $\mathrm{p}(\mathrm{z}) \quad p(z)=\frac{1}{Z_{p}} \tilde{p}(z)$
* A proposal distribution $\mathrm{q}(\mathrm{z})$

$$
k q(z) \geqslant \widetilde{p}(z)
$$

* Procedure
\square Generate z_{o} from $\mathrm{q}(\mathrm{z})$
\square Generate u_{o} from $\left[0, \mathrm{kq}\left(\mathrm{z}_{\mathrm{o}}\right)\right.$] uniformly
\square Reject sample if $u_{0}>\widetilde{p}\left(z_{0}\right)$
\square Otherwise, accept

$$
\begin{aligned}
p(\text { accept }) & =\int\{\widetilde{p}(z) / k q(z)\} q(z) \mathrm{d} z \\
& =\frac{1}{k} \int \widetilde{p}(z) \mathrm{d} z .
\end{aligned}
$$

Importance Sampling

* A real distribution $\mathrm{p}(\mathrm{z})$
* A proposal distribution $q(z)$
* Procedure
\square Generate z_{o} from $\mathrm{q}(\mathrm{z})$, nothing rejected
$\left.\square \mathrm{p}\left(\mathrm{z}^{(\mathrm{I})}\right) / \mathrm{q}\left(\mathrm{z}^{(\mathrm{I})}\right)\right)$: importance weight to account for sampling from wrong distribution

$$
\begin{aligned}
\mathbb{E}[f] & =\int f(\mathbf{z}) p(\mathbf{z}) \mathrm{d} \mathbf{z} \\
& \left.=\int f(\mathbf{z}) \frac{p(\mathbf{z})}{q(\mathbf{z})} q \mathbf{z}\right) \mathrm{d} \mathbf{z} \\
& \simeq \frac{1}{L} \sum_{l=1}^{L} \frac{p\left(\mathbf{z}^{(l)}\right)}{q\left(\mathbf{z}^{(l)}\right)} f\left(\mathbf{z}^{(l)}\right) .
\end{aligned}
$$

MCMC

* Imagine
- A very high-dimensional space
\square Samples occupy low-dimensional manifold in such a high-dimensional space
\square Choose a random start point
\square Wander about in the space, seeking out places with sample
\square With right "seek" strategy, samples generated along the walk have the right population characteristics

MCMC

* Successive sampling points are NOT independent, but form a Markov chain $q\left(\mathbf{z} \mid \mathbf{z}^{(\tau)}\right)$
$* Z^{*}$ is generated at each step, accepted if probability $>$ preset threshold $A\left(z^{*}, z^{(t)}\right)=\min \left(1, \frac{\tilde{p}\left(z^{+}\right)}{\tilde{p}\left(z^{(T)}\right)}\right)$
\therefore Can be shown that the distribution of $\mathrm{z}^{(\tau)}$ tends to $\mathrm{p}(\mathrm{z})$ as $\tau->$ infinity
* So distribution of steps z's after some initial steps can be used to approximate $\mathrm{p}(\mathrm{z})$
* For Metropolis algorithm, q has to be symmetrical $q(a \mid b)=q(b \mid a)$

Meropolis - Hastings

$* \mathrm{f}(\mathrm{x})$: proportional to $\mathrm{p}(\mathrm{x})$ - target distribution

* Given:
$\square x_{0}$: first sample
$\square \mathrm{Q}\left(\mathrm{x}^{\prime} \mid \mathrm{x}\right)$: Markov process to generate next sample (x ') given current sample (x), Q must be symmetrical (e.g., Gaussian)
* Iteration:
$\square X^{\prime}$ picking from $Q\left(x^{\prime} \mid x\right)$
$\square \mathrm{r}=\mathrm{f}\left(\mathrm{x}^{\prime}\right) / \mathrm{f}(\mathrm{x})>=1$ accept, otherwise accept with prob r. If rejected, $x^{\prime}=x$

Intuition

* A random walk model
- Move into more likely region with prob 1
\square Move into less likely region with prob \propto likelihood
\square Stay in the high-density region of $\mathrm{p}(\mathrm{x})$
* Caveats:
\square Samples are correlated
> Discard initial samples
> Take 1 out of n-th samples
\square Slow mixing for high-dimensional data (Gibbs

Gibbs Sampling

* Special case of MCMC MetropolisHastings
*From $\mathrm{X}^{(\mathrm{i})}$ to $\mathrm{X}^{(\mathrm{i}+1)}$ by component-wide sampling, j -th variable in $\mathrm{x}^{(\mathrm{i}+1)}$ depends on
$\square 1$ to $\mathrm{j}-1$ in ($\mathrm{i}+1$)-th iterations
$\square \mathrm{j}+1$ to n in (i)-th iteration

$$
p\left(x_{j}^{(i+1)} \mid x_{1}^{(i+1)}, \ldots, x_{j-1}^{(i+1)}, x_{j+1}^{(i)}, \ldots, x_{n}^{(i)}\right)
$$

Slice Sampling

* Random walk under the probability curve
* Start from an x_{o} with $\mathrm{f}(\mathrm{x})>0$
* Randomly select height $\mathrm{y}, 0<\mathrm{y}<=\mathrm{f}(\mathrm{x})$
* Randomly select x' lie within the slice, repeat

