Performance and
Generalization




Classifier Performance

<+ Intuitively, performance of classifiers
(learning algorithms) depends on

0 Complexity of the classifiers (e.g., how many
layers and how many neurons per layers)

a Training samples (generally more is better)

a Training procedures (e.g., how many
searches/epochs are allowed)

Q Etc.
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Generalization Performance

<+ You can make a classifier performs very
well on any training data set

2 Given enough structure complexity
2 Given enough training cycles
«» But how does It do on a validation (unseen)
data set?
2 Or how Is the generalization performance?
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Generalization Performance (cont.)

<« FIrst, try to do better on unseen data by doing
better on training data might not work

<+ Because overfitting can be a problem

0 You can fit the training data arbitrarily well, but there Is
no prediction of what it will do on data not seen

« Example: curve fitting
VLYY \

o Using a large network or complicated classifier does
not necessarily lead to good generalization (they

_almost always lead to good training results)
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Generalization Performance (cont.)

< In fact, some relations must exist in the data set even
when the data set 1S made of random numbers

< Example: given n people, each
0 Has a credit card

0 Has a phone

0 The credit card and phone number association 1S captured
by an n-1-degree polynomial

0 But can you extrapolate (predict other credit card, phone
number association)?

0 A problem of overfitting
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Intuitively

«» Meaningful associations usually imply
Q Simplicity (capacity)
> The association function should be simple
> More generally to determine how much capability a
classifier possesses
Q Repeatability (stability)

> The association function should not change drastically
when different training data sets are used to derive the
function, or E(f)=0 (over different data set)

> Average salary of Ph.D. iIs higher than that of high-
school dropout — simple and repeatable relation (not
sensitive to the particular training data set)
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Generalization Performance (cont.)

<+ S0 does that mean we should always prefer
simplicity?
«» Occam’s Razor: nature prefers simplicity

0 Explanations should not be multiplied beyond
necessity

% Sometimes, It Is a bias or preference over
the forms and parameters of a classifier

PR, ANN, L ML



No free lunch theorem

« Under very general assumption, one should
not prefer one classifier (or learning
algorithm) over another for the
generalization performance

< Why?

0 Because given certain training data, there is no
telling (in general) what unseen data will
behave
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Example

<« Training data might not
provide any information
about F(X)

<+ There are multiple (2°)
target functions that are

consistent with the n=3
patterns in training set

< Each inversion of F (-F)

Unseen

will make one good and
the other bad combinatior|

target

X “Mife (D,
[looo [1 |1 |1
vaning [001 [-1 |1 |71
Hoto 1k J1\=e
o112 ) 5
100 FES TN

105 [t A = -2
i s Ead &
111 o -1
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Example (cont.)

«» However, In reality, we also expect that learning
(training) Is effective
a given a large number of representative samples and
0 a target function that is smooth

<« Or the sampling theorem says that extrapolation
and reconstruction Is possible under certain
conditions

PR, ANN, L ML 10



How do we reconcile?

+ S0 the choice of a classifier or a training
algorithm depends on our preconceived
notion of the relevant target functions

< In that sense, both Occam’s Razor and no
free lunch theorem can co-exist

PR, ANN, L ML
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Make it More Concrete

<+ Let’s assume that there are two classes {+1,
-1} and n samples (X, y,) ... (X, Y,)

<« The classifier Is f(x,a) ->y (a.: tunable
parameters of 7, e.g., hyperplane)

= Loss (error) is 51»-/(x.a)l

<« Then there are two types of errors (risks)
a Empirical error eemp(a)zigyi—f(xi,an

0 Expected error :
e (@)= [1y= /(x| dP(x, )

PR, ANN, L ML
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Issues with the Two Risks

«» How do we estimate how good Is a
classifier based on a particular run of the
experiment?

0 How best to compute e, , from samples

+» How do we estimate e from €%

2 Practically (with some particular data sets), and
2 Theoretically (with an upper bound)

PR, ANN, L ML
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Answers

+ Computing e,,,,

2 There are statistical resampling techniques to
give better estimate of a classifier’s performance

<+ Estimating e from e,

p
2 Theoretically
> There is an upper bound on e given o

2 Practically

> Glven a particular set(s) of training data, a procedure
exists to estimate e frome,, ,

PR, ANN, L ML
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Practical Issues

+» OK, so philosophically nothing Is better
than anything else

<+ In reality, we have to choose classifiers and
learning algorithms

«» Run some classification experiments in
supervised mode (with labeled data)

«» What should we look for in a “good”
classifier or learning algorithm?

PR, ANN, L ML 15



Assumption

«» Use RBF Interpretation

a Interpolation a function with given data points
> True function F(x)
> Interpolation function g(x; D)
> D Is the given data set

PR, ANN, L ML
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Bias and Variance

E,|(g(x; D)= F(x))?|= (E,[g(X; D) - F(X)])? + E,, (g (x; D) - E,, [g(x; D)])? ]

bias? variance

E, |(g(x; D)~ F(x))*]
— E,[g%]-2E, [g]F + F?

A D[gz]_ZED[g]F+F2+(En[g])z_Z(ED[g])2+(ED[g])2

:(ED[g])Z_ZED[g]F_l_FZ+ED[gz]_ZED[g]ED[g]+(ED[g])2
:(ED[g_F])2+ED(g_ED[g])2

PR, ANN, L ML
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Bias and Variance

Ep|(g06 D) = (X))’ |= (E,[g(x: D)~ F)D)* + E, (g% D) - E,[g(x; D)])’)
: bias? — variance ‘

<« Blas — measure the accuracy

0 How good are the classifiers confirm to reality

0 High bias implies a poor match
<« \ariance — measure the precision or specificity of a

match
0 How good is the classifiers confirm to one another
0 High variance implies a weak match

PR, ANN, L ML 18




Graphic Interpretation

Low Variance High Variance

i}
=
iy
=
i -
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Tradeoff

<« Intuitively, increasing the flexibility (more
parameters)

2 Gives better fit (low bias)
2 Produces harder to control fit (high variance)

<+ Blas-variance tradeoff Is a lot like precision-
recall, you cannot have both

PR, ANN, L ML
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Bias and Variance in Fitting

< With more parameters, a
better fit (low bias) is
possible, at the expense
that parameter values may
vary widely given
different sampled data
(high variance)

a, b: fixed linear model
c: learned cubic model
d: learned linear model
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Bias and Variance in Classifiers

LS I.: s

I':
PR = —
hiplh Varianees

= "'-I rrairls
» Simple models "’:‘" RRS
0 capture aggregate class T id
properties which are usually = - 5-};{_-5’ ) =-( 0
more stable (hence low . — =
variance) | . ‘e‘%\x e
0 However, they miss fine details LT |
and give poor fit (hence high L r ) :
ies) I A LS I
<+ Complicated models L B L
O capture aggregate class | RN .
properties and fine variance A AL DN P " ;@
(hence low bias) ) . I T,
0 However, fine details depend - -
on _samples used (hence high ; ® » ‘ '
variance) =3




Curse of Dimensionality

<« What happens to bias and variance when the
dimensionality increase?

<+ |t depends

+ F(X) depends on all dimensions of X

0 Bias is likely to go up for nn classifier because
neighbors will be further away from a data point for
faithful interpolation

+» F(X) depends on some dimensions of X

0 Variance Is likely to go up for nn classifier because
spread along the used dimensions might go up

PR, ANN, L ML
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Practical Issues (cont.)

+ S0 you choose a labeled data set and test your
classifier

<« But that Is just on one particular data set

< How do you know how it will do for other labeled
data set? or

+ How do you estimate bias and variance? (or how
do you know the particular relation is stable and
repeatable?)

0 We do not really know F' for other data sets
0 We have only one data set, not an ensemble

+ How do you extrapolate (from e, , t0 e)?
«» How do you improve bias and variance?

PR, ANN, L ML
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Example: Estimation - Jackknife

<« Perform many “leave-one-out” estimations
+ E.g., to estimate mean and variance

Traditional | eave-one-out
EE 1 e
gl U.=— > U, where u,.—=—— X
u—n;xi () n; () O gl

A = Bk =
§° == 12(?6,- —i1)° Varlu] :%Z(’“‘(i) —u,)’
= i=1

This does not work for This is applicable to
other statistics, such as other statistics, such as
1lan and mode median and mode

PR, ANN, L ML 25




Estimation — Jackknife (cont.)
< Jackknife estimation i1s defined as function of leave-
one-out results

<« Enable mean and variance computation from one

data set
U :%Z”m Varlu] = Z(“m )’
¢ =~ 12(“0) —1)°
e 1Z(nu 5y
Biw 12(12

nss
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General Jackknife Estimation

< Similar to mean and variance estimation

<« Perform many leave-one-out estimations
of the parameter

Oy =0(x1, %5, X, 4, X040 51 X,)
2 M[{Zm
6’_ = — iy €.g., dcan be the hyperplane equation
() = (i)
i=1
var[é]—n_lzn:(é 0,,)°
- b Y i) ()

PR, ANN, L ML 27



Bias and Variance of
General Jackknife Estimation

Bias = 60— E(6)
biaSjackkm’fe = (I’Z _1) (é() Y é)
Var[@] = E(0 — E(0))

- e 2 P s y
Varjackkm’fe [9] o % Z_ll (e(z) T 9())2

PR, ANN, L ML
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Example: Mode Estimate

<+ N=06
D={0,10,10,10,20,20}

- 1, 1
6, =;Zlem = 110+15+15+15+10+10] =12.5
bias e = (1—=1(6,, —0) =5(12.5-10) =12.5

Var.ackkn#e[é]zn—_lZ(ér(i) ~0,)? = {3(10 12.5)? +3(15-12.5)*} =31.25
n

Mode: (1)most common elements, (2) two equal peaks, midpoint btw
If two elements are equally likely, the mode is the midway point

PR, ANN, L ML 29




Lstimation - Bootstrap

<« Perform many subset estimations (n out of n) with
replacement

0 There are n"possible samples

> E.g., two samples (x1,x2) generate 22 subsets (x1,x1), (x1,x2),
(x2,x1), (x2,x2)

—~

1 5 * = T
bias , . =§Ze W _p=0-tL g
b=1

= PRE
var,,,, [0]= 3 [0 -0
b=1

PR, ANN, L ML
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The Question Remained

< From data sets we can

estimate e
i # eemp (1 e eemp)
<+ We desire e A"
n
« They are related by _ :
n .samplesize
o =40 ¢ . confidence interval

o 28 correct and 12 incorrect
O eemp =12/40=.3
o With a confidence interval of 95%, ¢=1.96

3x.7
40

=.3%.14

e = .3i1.96\/

PR, ANN, L ML
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What?

<« The formula is valid if
0 Hypothesis is discrete-valued
0 Samples are independently drawn
0 With a fixed probabilistic distribution

<+ Then the experiment outcomes can be
described by a binomial distribution

PR, ANN, L ML

32



Comparison

<+ Repeat an experiment
many times

+ Each time, toss a coin
n times to see If It
lands on head (%) or
tail (¢?) h+t=n

< A coln of an

(unknown) probability
p to land on head

< Use a classifier for

many sets of data

<+ Each data set, the

classifier gets 2 wrong
and ¢ correct out of »
samples, h+t=n

< The classifier has an

(unknown, but fixed)
probability p to
classify data
Incorrectly
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Comparison (cont.)

<« Results of each coin <+ Results of each sample

toss Is a random classification Is a random
variable variable

+» Results of how many < Results of how many
heads In » toss IS also Incorrect labels in »
a random variable samples Is also a random

variable

+» Repetitive experiments + Repetitive classifications
give outcomes in give outcomes In
binomial distribution binomial distribution

PR, ANN, L ML
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Binomial Distributions

binamial distribution, n=20, p=0.2 binomial distribution, n=20, p=0.5

RN N
P(h) = in ﬂh)!p (1-p)

n :sample size
h :number | of heads

025

02F

| P(h/n)

o1t . 4 .
p . head propbabilty
0.osf 15k
D
00 binarial distribution, =100, p=0.5 binomial distribution, n=100, p=0.8 -
N T T T T 01 T T T T T
0.07 oat
005l oat
o7t
0.05
06
0.04 o5t
0.03F D4
Dot wr
o2t
0.01
o1k
DD 01 02 08 08 1 0




Binomial Distribution

< Then It can be shown that

7l
P = P 0 p)
E(h)=np
Var(h) = np(1- p)

= \np(1- p)

PR, ANN, L ML
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o

# head

Estimators

<« An estimator for p Is

(number of heads)/n

< This estimator IS an

unblased estimator
because

n

< Standard deviation In

the estimator Is

<« An estimator for e (p)

IS e,,,

< This estimator IS an

unblased estimator
because

# error
E ( ) =

n n

< Standard deviation In

n

): Jnp(L=p) :\/p(l—p) #

o

the estimator 1s

PR, ANN, L ML
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Confidence Interval

«» An N% confidence interval for some
parameter p Is an Interval that is expected
with probability N% to contain p

< For binomial distribution, this can be
approximated by normal

0.05
il af eemp (1 S eemp )
e 508 NE'C 3

n :samplesize
¢ . confidence interval

D 1 L L II ! II L L L
0 o1 02 03 04 05 OB 07 O0OF 09 1

PR, ANN, T ML p
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Capacity (Simplicity)

<« We have just discussed the repeatability
Issue

a
t

d

"he assumption is that the classification error is
ne same for training and new data

The misclassification rate 1s drawn from the

same population

2 True for simple classifiers, but not for
complicated classifiers

<« The other Issue IS simplicity (Or more
generally the capacity) of the classifier

PR, ANN, L ML
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General Theoretical Bound

<+ The sample size

2 The larger the sample size, the more confident
we should be about “we have seen enough”

+» The complexity of the classifier

2 The simpler the classifier, the more confident
we should be about “we have observed enough”

0 Or complex classifier can do wired things when
you are not looking ©

PR, ANN, L ML
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V'C Dimension

<« Vapnik-Chervonenkis dimension
<« Defined for a class of functions f(alpha)

< The maximum number of points that can be
shattered by the function

0 Shatter means that given, say, » points, there are 2"
ways to label them {+1, -1}. These points are shattered
If an f(alpha) can be found to correctly assign those
labels

Q0 E.g., three points can be shattered by 1 line, but not four
points

0 Linear function in n space iIs of VC dimension n+1
«» A measure of “capacity” of a classifier

PR, ANN, L ML 41



Generalization

< It can be shown that e(a)Seemp(a>+\/’“('°g(2”’ h)+1)=10g(n/4)

< Baslcally, the expected error Is bounded
above, the bound depends on

2 Empirical error (e

2 VC dimension (h)

an: training sample size

0 Expected performance ( 7 ), say loss of 0.05
with a probability of 0.95

emp)
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Capacity Interpretation
e(@) Seemp(am/ n{log(an/ k) +1) ~logn/4)

n
<« A simple classifier
a Has low VC dimension and small second term
0 Has high empirical error and large first term

«» A complicated classifier
2 Has high VC dimension and large second term
2 Has low empirical error and small first term

< Some trade-off to achieve the lowest right-
hand side

PR, ANN, L ML
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Generalization Performance

«» Hence, a classifier should be chosen to give
the lowest bound

«» However, many times the bound is not tight,
easily the bound can reach 1 and make it
useless

<« Only useful for small VC dimension

PR, ANN, L ML
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Upper Bound

< 95% confidence level

<+ 10,000 samples
% h/n >0.37

Vi Confidence

1.4

1.2

1

0.8

0.6

0.4 t

0.2

01 02 03 04 05 06 0.7 08 09 1
h /1 =VC Dimension / Sample Size



Ensemble Classifiers

«» Combining simple classifiers by majority
Votes
<« Famous ones: bagging and boosting
«» Why It works:
2 Might reduce error (bias)
2 Reduce variance

PR, ANN, L ML
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Reduce Bias

<« |f each classifier makes error, say 30%

«» How likely it is for a committee of n classifiers to
make mistake by majority rule

<« Answer: Bonelli distribution
<« Big IF: they must perform indenendentlv

Ci{n,n 2y p"n/2)*(1-p{n/2), where p=0.3
0.45 T T T T T T T

Probability

0.16 -

|@ Binomial Distribution, = 04}

014

012

oA

0.08

0.06

0.04
0.02

——

0




Improvement - Averaging

< Each machine reach a local minimum
«» Majority vote

Same training data

i Different starting point

W

PR, ANN, L ML
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Improvement - Bagging

<« Bootstrap AGGregation

«» Asimple “parallel processing” model using multiple
component classifiers
<« Help stability problem
Different (splitting) training data
i Different starting point
%\
< X D
RRERAN B
W

«—@

PR, ANN, L ML
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Why Bagging Works?
< It can reduce both bias and variance
<+ Blas: not necessarily improve

E,|(g(x; D)~ F(x))?|= (E,[g(x; D) - F(3)])? + E, |(g(x; D) - E,,[g(x; D)])? ]
Eole(6. D)~ FOOI= B, X8, (, D) F(X)]

=[%ZEDg,-<x:D)—%ZF(x)]

— E[Z E,g.(x;D)-) F(X)]= E{bias of a constituent}
n n

= average bias of a constituent
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Why Bagging Works?
< It can reduce both bias and variance

< Variance: reduce to 1/n — IF all constituents
are independent

E,|(g(x; D) - F())?|= (E,[g(x; D)~ F(X)]) + E,,|(g(X; D) - E, [g(; D)])?

E,|(5(6 D)~ Ex g (< D)))’]
- B[ Y8 06D) - By~ 38, (< DY

= niED[ni O (g.(x;D)-Epg, (%, D))’]

1 1 !
= —{average variance of all constituents}
n
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Boosting by Filtering

<« Bagging 1s competition model while
boosting Is a collaborative model

< Component Classifiers
2 should be introduced when needed
2 should then be trained on ambiguous samples

< |terative refinement of results to reduce
error and ambiguity
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Boosting by Filtering (cont)

« If ¢l and c2 agree, use that
<« Otherwise, use c3

PR, ANN, L ML
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Boosting by Filtering (cont.)

a Head: samples from D-D,, where c1 is wrong
a Tail: samples from D-D, where cl is correct

a Half correct/half wrong for D,, D, is learning what
D, has difficulty with

0 D-(D1+D§where cl and c2 disagree
a D, Is learning what the previous two cannot agree




Component

classtfiers

Boosting by Filtering (cont.)

ny =4

by vatin

final classification

PR, ANN, L ML
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Boosting by Filtering (cont.)

< |f each committee machine has an error rate
of ¢, then the combined machine has an error
rate of 3g2 -2¢3

0.5

045}
0.4}
D35}
03t
D25}
02t
015t 382 '283
01t

0.0a

|:| | | | | | | | |
a oos o1 015 02 025 03 035 04 045 05

PR, ANN, ¢l ML 56



AdaBoost —Adaptive Boosting

<+ Basic Idea Is very simple
2 Add more component classifiers if error is
higher than preset threshold

0 Samples are weighted: If samples are accurately
classified by combined component classifiers,
the chance of being picked for the new
classifier Is reduced

0 Adaboost focuses on difficult patterns

PR, ANN, L ML
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Adaboost Algorithm

Initialization

D={(x", 3", (x", "V} Konas Wy () =

Procedure
for(k=1, k<k, , . k++)
train weak clearner C, using D sampled according to (i)

E, < problh, (x,)# y,]= ZDt () Error rate of C,

i’izl’...’n
n

e (x;)#y;
a, <—%In[1_E"] Weighting of C, |
k A 2t
e h(x)=y
A )=y
W,..(@i) « X 3 5
4 e™ h(x)=y, i
return
C.anda,,k=1-k.,,
Final hypothesis .

kmax

H(x) = Sign(z a,h,(x))
= k=1

w2 0 PR, ANN, LML
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H-\-
final

—sign| 0.42

+ 0.65

PR, ANN; T ML
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Comparison

Multilayer Perceptron Boosting

< Many neurons «» Many weak classifiers

< Train together <« Trained individually

<« Hard to train <« Easy to train

<+ Same data set <+ FIne-tuned data set

<« Require nonlinearity <« Require different data
In thresholding sets

< Complicated decision < Simple decision
boundary boundary

« Overfitting likely < Less susceptible to

overfitting
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Adaboost Algorithm (cont.)

<« As long as each individual weak learner has
a better than chance performance, Adaboost
can boost the performance arbitrarily well
(Freund and Schapire, JCSS 1997)

I 234837678 9 3105118 1314 1%

PR, ANN, L ML
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Applications

<« Adaboost has been used successfully In
many applications

< One famous one Is to the use In face
detection from images

PR, ANN, L ML
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Viola and Jones

'S D

Figure 1. Example rectangle features shown relative to the enclos-
ing detection window. The sum of the pixels which lie within the
white rectangles are subtracted from the sum of pixels in the grey
rectangles. Two-rectangle features are shown in (A) and (B). Figure
(C) shows a three-rectangle feature, and (D) a four-rectangle feature,
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ast Feature Computation

A B
1 12

C D
.3 .4

Figure 3. The sum of the pixels within rectangle I can be computed
with four array references. The value of the integral image at location
1 is the sum of the pixels in rectangle A. The value at location 2 is

The value of the integral image at point (x, y) is the sum A -+ B. at location 3 is A + C. and at location 4 is A + B 4+ C 4 D.
The sum within I can be computed as 4 4+ 1 — (2 + 3).

Figure 2.
of all the pixels above and to the left.
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Classifier

<« Adaboost 1dea — greedy feature (classifier)
selection

«» \Weak leaner (4) — select a single rectangular
feature

a f: feature
: o | if pfix) = p#
2 0: threshold hix, f, p.0)= _
; : 0  otherwise
Q p: polarity

0 X: 24x24 1xel sub window
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e Given example images (X, i), ..., (Xy, Vp) where
v; =0, 1 for negative and positive examples respectively.

A lgo V l t h m e Initialize weights wy; = 5, 5 for y; = 0, 1 respectively,

where m and [ are the number of negatives and positives

respectively.
e Forr=1,..., T
. . Blie 7
. Normalize the weights, wy ; «— =——
P =t W j
5

Select the best weak classifier with respect to the
weighted error

€ = MiNg pa Z w; |l f,op, 8 —w

See Section 3.1 for a discussion of an efficient
implementation.

3. Define hix) = hix, f;, p;, %) where j;, p;, and &
are the mimmizers of «,.

4. Update the weights:

11—y
W10 = H-‘;,a‘ﬁr '

where ¢; = 0 if example x; is classified correctly, ¢; = 1
otherwise, and 8, = =

l—g; "
o The final strong classifier is:

T T
1
1 E aphe(x) = 5 E oty
=1 ==l

0  otherwise

Cir) =

where o; = log %




Efficiency

< Use attention cascade

All Sub-windows

O_G—@'_h Processin
F F F

4 ¥ ¥

Rejeci Sub—w.r'ndmi//

Figure 6. Schematic depiction of a the detection cascade. A series
of classifiers are applied to every sub-window. The initial classifier
eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negative s but require
additional computation. After several stages of processing the num-
ber of sub-windows have been reduced radically. Further processing
can take any form such as additional stages of the cascade (as in our
detection system) or an alternative detection system.

PR, ANN, L ML
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Results |§




Results

ROC curve for 200 feature classifier

0.9 -

correct detection rate
o =

= i

L 1

=

e

o
T
1

0.7 -
0E5F -1

06 ! L L L L L L
Q 0.5 1 1.5 2 2.5 3 3.5 4
false positive rate K102

Table 3. Detection rates for various numbers of false positives on the MIT 4 CMU test set containing 130

images and 507 faces.

False detections
Detector 10 31 50 65 TR Q5 167 422
Yiola-Jones Tol%  BR49%  9l4ds 92.0% 02 1% 9209%  939% 94.1%
Wiola-Jones {voting) Al.1% B9.79% 9219  931% 93.1% 932% 93 7% -
Rowley-Baluja-Kanade  832%  86.0% - - - 802% 90.1%  B9.9%
Schneiderman-Kanade - - - 94 4% - - - -
Roth-Yang-Ahuja - - - - (94.8%) - - -

PR, ANN, & ML
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Learning with Queries

< Glven a weak classifier or several weak
component classifiers

<« FInd out where ambiguity Is

2 Where weak classifier gives high reading for
the top two discrimination functions (e.g., in a
linear machine)

2 Where component classifiers yield the greatest
disagreement

<« Train the classifiers with those ambiguous
samples

PR, ANN, L ML
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Learning with Queries (cont.)

X2
[}
= X
E, = 0.02275 ’
X2 X; : .
f ii.d, samples T active learning

Samples generated with
queries

o

E = 0.02422
PR, ANN, & ML




