
Performance and 
Generalization
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Classifier Performance
 Intuitively, performance of classifiers 

(learning algorithms) depends on
Complexity of the classifiers (e.g., how many 

layers and how many neurons per layers)
Training samples (generally more is better)
Training procedures (e.g., how many 

searches/epochs are allowed)
Etc.
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Generalization Performance
 You can make a classifier performs very 

well on any training data set
Given enough structure complexity
Given enough training cycles

 But how does it do on a validation (unseen) 
data set?
Or how is the generalization performance?
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Generalization Performance (cont.)
 First, try to do better on unseen data by doing 

better on training data might not work
 Because overfitting can be a problem 

 You can fit the training data arbitrarily well, but there is 
no prediction of what it will do on data not seen 

 Example: curve fitting

 Using a large network or complicated classifier does 
not necessarily lead to good generalization (they 
almost always lead to good training results)
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Generalization Performance (cont.)
 In fact, some relations must exist in the data set even 

when the data set is made of random numbers
 Example: given n people, each

 Has a credit card
 Has a phone 
 The credit card and phone number association is captured 

by an n-1-degree polynomial
 But can you extrapolate (predict other credit card, phone 

number association)?
 A problem of overfitting
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Intuitively
 Meaningful associations usually imply

 Simplicity (capacity)
 The association function should be simple
More generally to determine how much capability a 

classifier possesses

Repeatability (stability)
 The association function should not change drastically 

when different training data sets are used to derive the 
function, or  E(f)=0 (over different data set)

Average salary of Ph.D. is higher than that of high-
school dropout – simple and repeatable relation (not 
sensitive to the particular training data set)
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Generalization Performance (cont.)
 So does that mean we should always prefer 

simplicity? 
 Occam’s Razor: nature prefers simplicity

Explanations should not be multiplied beyond 
necessity

 Sometimes, it is a bias or preference over 
the forms and parameters of a classifier
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No free lunch theorem
 Under very general assumption, one should 

not prefer one classifier (or learning 
algorithm) over another for the 
generalization performance

 Why?
Because given certain training data, there is no 

telling (in general) what unseen data will 
behave
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Example

 Training data might not 
provide any information 
about F(x)

 There are multiple (25) 
target functions that are 
consistent with the n=3 
patterns in training set

 Each inversion of F (-F) 
will make one good and 
the other bad

x F h1 h2

000 1 1 1
001 -1 -1 -1
010 1 1 1
011 -1 1 -1
100 1 1 -1
101 -1 1 -1
110 1 1 -1
111 1 1 -1

training

Unseen

25

combinations

target
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Example (cont.)

 However, in reality, we also expect that learning 
(training) is effective
 given a large number of representative samples and 
 a target function that is smooth  

 Or the sampling theorem says that extrapolation 
and reconstruction is possible under certain 
conditions
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How do we reconcile?

 So the choice of a classifier or a training 
algorithm depends on our preconceived 
notion of the relevant target functions

 In that sense, both Occam’s Razor and no 
free lunch theorem can co-exist
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Make it More Concrete
 Let’s assume that there are two classes {+1, 

-1} and n samples (x1, y1) … (xn, yn)
 The classifier is f(x,) -> y (: tunable 

parameters of f, e.g., hyperplane)
 Loss (error) is 
 Then there are two types of errors (risks)

Empirical error
Expected error 
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Issues with the Two Risks
 How do we estimate how good is a 

classifier based on a particular run of the 
experiment? 
How best to compute eemp from samples

 How do we estimate e from eemp?
 Practically (with some particular data sets), and
Theoretically (with an upper bound)
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Answers
 Computing eemp

There are statistical resampling techniques to 
give better estimate of a classifier’s performance

 Estimating e from eemp
Theoretically

 There is an upper bound on e given eemp

 Practically
Given a particular set(s) of training data, a procedure 

exists to estimate e from eemp
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Practical Issues
 OK, so philosophically nothing is better 

than anything else
 In reality, we have to choose classifiers and 

learning algorithms
 Run some classification experiments in 

supervised mode (with labeled data)
 What should we look for in a “good” 

classifier or learning algorithm?
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Assumption
 Use RBF interpretation

 Interpolation a function with given data points
 True function F(x)
 Interpolation function g(x; D)
D is the given data set
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Bias and Variance
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Bias and Variance

 Bias – measure the accuracy
 How good are the classifiers confirm to reality
 High bias implies a poor match

 Variance – measure the precision or specificity of a 
match
 How good is the classifiers confirm to one another
 High variance implies a weak match

bias2 variance
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Graphic Interpretation

PR , ANN, & ML
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Tradeoff 
 Intuitively, increasing the flexibility (more 

parameters)
Gives better fit (low bias)
 Produces harder to control fit (high variance)

 Bias-variance tradeoff is a lot like precision-
recall, you cannot have both
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Bias and Variance in Fitting
 With more parameters, a 

better fit (low bias) is 
possible, at the expense 
that parameter values may 
vary widely given 
different sampled data 
(high variance)

a, b: fixed linear model
c: learned cubic model
d: learned linear model
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Bias and Variance in Classifiers
 Simple models

 capture aggregate class 
properties which are usually 
more stable (hence low 
variance)

 However, they miss fine details 
and give poor fit (hence high 
bias)

 Complicated models
 capture aggregate class 

properties and fine variance 
(hence low bias)

 However, fine details depend 
on samples used (hence high 
variance)
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Curse of Dimensionality
 What happens to bias and variance when the 

dimensionality increase? 
 It depends
 F(X) depends on all dimensions of X

 Bias is likely to go up for nn classifier because 
neighbors will be further away from a data point for 
faithful interpolation

 F(X) depends on some dimensions of X
 Variance is likely to go up for nn classifier because 

spread along the used dimensions might go up 
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Practical Issues (cont.)
 So you choose a labeled data set and test your 

classifier
 But that is just on one particular data set
 How do you know how it will do for other labeled 

data set? or 
 How do you estimate bias and variance? (or how 

do you know the particular relation is stable and 
repeatable?)
 We do not really know F for other data sets
 We have only one data set, not an ensemble

 How do you extrapolate (from eemp to e)?
 How do you improve bias and variance?
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Example: Estimation - Jackknife
 Perform many “leave-one-out” estimations
 E.g., to estimate mean and variance
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Traditional Leave-one-out
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This does not work for 
other statistics, such as 
median and mode

This is applicable to 
other statistics, such as 
median and mode
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Estimation – Jackknife (cont.)
 Jackknife estimation is defined as function of leave-

one-out results
 Enable mean and variance computation from one 

data set 
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General Jackknife Estimation
 Similar to mean and variance estimation
 Perform many leave-one-out estimations 

of the parameter 
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e.g.,  can be the hyperplane equation
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Bias and Variance of
General Jackknife Estimation
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Example: Mode Estimate
n=6
D={0,10,10,10,20,20}
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Mode: (1)most common elements, (2) two equal peaks, midpoint btw
If two elements are equally likely, the mode is the midway point
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Estimation - Bootstrap
 Perform many subset estimations (n out of n) with

replacement 
 There are nn possible samples

 E.g., two samples (x1,x2) generate 22 subsets (x1,x1), (x1,x2), 
(x2,x1), (x2,x2)
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The Question Remained
 From data sets we can 

estimate eemp

 We desire e
 They are related by 

interval confidence:
size sample:

)1(

c
n

n
ee

cee empemp
emp




 n=40
 28 correct and 12 incorrect
 eemp =12/40=.3
 With a confidence interval of 95%, c=1.96

14.3.
40

7.3.96.13. 


e
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What?
 The formula is valid if 

Hypothesis is discrete-valued
 Samples are independently drawn 
With a fixed probabilistic distribution

 Then the experiment outcomes can be 
described by a binomial distribution
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Comparison
 Repeat an experiment 

many times
 Each time, toss a coin 

n times to see if it 
lands on head (h) or 
tail (t) h+t=n

 A coin of an 
(unknown) probability 
p to land on head

 Use a classifier for 
many sets of data

 Each data set, the 
classifier gets h wrong 
and t correct out of n
samples, h+t=n

 The classifier has an 
(unknown, but fixed) 
probability p to 
classify data 
incorrectly
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Comparison (cont.)
 Results of each coin 

toss is a random 
variable

 Results of how many 
heads in n toss is also 
a random variable

 Repetitive experiments 
give outcomes in 
binomial distribution

 Results of each sample 
classification is a random 
variable

 Results of how many 
incorrect labels in n
samples is also a random 
variable

 Repetitive classifications 
give outcomes in 
binomial distribution
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Binomial Distributions

probabilty head :
heads ofnumber  :

size sample:
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P(h/n)
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Binomial Distribution
 Then it can be shown that 
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Estimators
 An estimator for p is 

(number of heads)/n
 This estimator is an 

unbiased estimator 
because

 Standard deviation in 
the estimator is  

p
n

npE )
n

head#(

n
pp

n
pnp

n
head )1()1(

)#( 





 An estimator for e (p) 
is eemp

 This estimator is an 
unbiased estimator 
because

 Standard deviation in 
the estimator is  

p
n

npE )
n

error#(

n
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n
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n
error )1()1(
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Confidence Interval
 An N% confidence interval for some 

parameter p is an interval that is expected 
with probability N% to contain p

 For binomial distribution, this can be 
approximated by normal 

p

interval confidence:
size sample:

)1(

c
n

n
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Capacity (Simplicity)
 We have just discussed the repeatability 

issue
The assumption is that the classification error is 

the same for training and new data 
The misclassification rate is drawn from the 

same population
True for simple classifiers, but not for 

complicated classifiers
 The other issue is simplicity (or more 

generally the capacity) of the classifier
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General Theoretical Bound
 The sample size

The larger the sample size, the more confident 
we should be about “we have seen enough”

 The complexity of the classifier
The simpler the classifier, the more confident 

we should be about “we have observed enough”
Or complex classifier can do wired things when 

you are not looking 
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VC Dimension
 Vapnik-Chervonenkis dimension
 Defined for a class of functions f(alpha)
 The maximum number of points that can be 

shattered by the function
 Shatter means that given, say, n points, there are 2n

ways to label them {+1, -1}. These points are shattered 
if an f(alpha) can be found to correctly assign those 
labels

 E.g., three points can be shattered by 1 line, but not four 
points

 Linear function in n space is of VC dimension n+1
 A measure of “capacity” of a classifier
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Generalization
 It can be shown that
 Basically, the expected error is bounded 

above, the bound depends on
Empirical error (eemp)
VC dimension (h)
 n: training sample size
Expected performance (     ), say loss of 0.05 

with a probability of 0.95

n
hnhee emp

)4/log()1)/2(log()()(  
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Capacity Interpretation

 A simple classifier
 Has low VC dimension and small second term
 Has high empirical error and large first term

 A complicated classifier
Has high VC dimension and large second term
Has low empirical error and small first term

 Some trade-off to achieve the lowest right-
hand side

n
hnhee emp

)4/log()1)/2(log()()(  
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Generalization Performance
 Hence, a classifier should be chosen to give 

the lowest bound
 However, many times the bound is not tight, 

easily the bound can reach 1 and make it 
useless

 Only useful for small VC dimension
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Upper Bound
 95% confidence level
 10,000 samples
 h/n >0.37 
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Ensemble Classifiers
 Combining simple classifiers by majority 

votes
 Famous ones: bagging and boosting
 Why it works:

Might reduce error (bias)
Reduce variance 

PR , ANN, & ML
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Reduce Bias
 If each classifier makes error, say 30% 
 How likely it is for a committee of n classifiers to 

make mistake by majority rule
 Answer: Bonelli distribution 
 Big IF: they must perform independently

PR , ANN, & ML
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Improvement - Averaging
 Each machine reach a local minimum
 Majority vote

Same training data

Different starting point

Majority vote
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Improvement - Bagging
 Bootstrap AGGregation
 A simple “parallel processing” model using multiple 

component classifiers
 Help stability problem

Majority vote

Different (splitting) training data

Different starting point
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Why Bagging Works?
 It can reduce both bias and variance
 Bias: not necessarily improve

PR , ANN, & ML
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Why Bagging Works?
 It can reduce both bias and variance
 Variance: reduce to 1/n – IF all constituents 

are independent

PR , ANN, & ML
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Boosting by Filtering
 Bagging is competition model while 

boosting is a collaborative model
 Component Classifiers 

 should be introduced when needed 
 should then be trained on ambiguous samples

 Iterative refinement of results to reduce 
error and ambiguity
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Boosting by Filtering (cont)

 If c1 and c2 agree, use that
 Otherwise, use c3

c1 c2 c3
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Boosting by Filtering (cont.)
 D1: 

 subset from D (without replacement) to train c1
 D2:

Head: samples from D-D1, where c1 is wrong 
Tail: samples from D-D1 where c1 is correct
Half correct/half wrong for D1, D2 is learning what 

D1 has difficulty with 
 D3:

D-(D1+D2) where c1  and c2 disagree
D3 is learning what the previous two cannot agree
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Boosting by Filtering (cont.)
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Boosting by Filtering (cont.)
 If each committee machine has an error rate 

of , then the combined machine has an error 
rate of 32 -23


32 -23



57PR , ANN, & ML

AdaBoost –Adaptive Boosting
 Basic idea is very simple

Add more component classifiers if error is 
higher than preset threshold

 Samples are weighted: if samples are accurately 
classified by combined component classifiers, 
the chance of being picked for the new 
classifier is reduced

Adaboost focuses on difficult patterns
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Adaboost Algorithm

Error rate of Ck

Weighting of Ck
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Comparison
Multilayer Perceptron
 Many neurons
 Train together
 Hard to train
 Same data set
 Require nonlinearity 

in thresholding
 Complicated decision 

boundary
 Overfitting likely

Boosting
 Many weak classifiers
 Trained individually
 Easy to train
 Fine-tuned data set
 Require different data 

sets
 Simple decision 

boundary
 Less susceptible to 

overfitting
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Adaboost Algorithm (cont.)
 As long as each individual weak learner has 

a better than chance performance, Adaboost 
can boost the performance arbitrarily well 
(Freund and Schapire, JCSS 1997)
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Applications
 Adaboost has been used successfully in 

many applications
 One famous one is to the use in face 

detection from images
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Viola and Jones
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Fast Feature Computation
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Classifier
 Adaboost idea – greedy feature (classifier) 

selection 
 Weak leaner (h) – select a single rectangular 

feature 
 f: feature
 : threshold
 p: polarity
X: 24x24 ixel sub window
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Algorithm
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Efficiency
 Use attention cascade
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Results
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Results
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Learning with Queries
 Given a weak classifier or several weak 

component classifiers
 Find out where ambiguity is

Where weak classifier gives high reading for 
the top two discrimination functions (e.g., in a 
linear machine)

Where component classifiers yield the greatest 
disagreement

 Train the classifiers with those ambiguous 
samples
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Learning with Queries (cont.)

Samples generated with 
queries


