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Generalization
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Classifier Performance
 Intuitively, performance of classifiers 

(learning algorithms) depends on
Complexity of the classifiers (e.g., how many 

layers and how many neurons per layers)
Training samples (generally more is better)
Training procedures (e.g., how many 

searches/epochs are allowed)
Etc.
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Generalization Performance
 You can make a classifier performs very 

well on any training data set
Given enough structure complexity
Given enough training cycles

 But how does it do on a validation (unseen) 
data set?
Or how is the generalization performance?
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Generalization Performance (cont.)
 First, try to do better on unseen data by doing 

better on training data might not work
 Because overfitting can be a problem 

 You can fit the training data arbitrarily well, but there is 
no prediction of what it will do on data not seen 

 Example: curve fitting

 Using a large network or complicated classifier does 
not necessarily lead to good generalization (they 
almost always lead to good training results)
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Generalization Performance (cont.)
 In fact, some relations must exist in the data set even 

when the data set is made of random numbers
 Example: given n people, each

 Has a credit card
 Has a phone 
 The credit card and phone number association is captured 

by an n-1-degree polynomial
 But can you extrapolate (predict other credit card, phone 

number association)?
 A problem of overfitting
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Intuitively
 Meaningful associations usually imply

 Simplicity (capacity)
 The association function should be simple
More generally to determine how much capability a 

classifier possesses

Repeatability (stability)
 The association function should not change drastically 

when different training data sets are used to derive the 
function, or  E(f)=0 (over different data set)

Average salary of Ph.D. is higher than that of high-
school dropout – simple and repeatable relation (not 
sensitive to the particular training data set)
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Generalization Performance (cont.)
 So does that mean we should always prefer 

simplicity? 
 Occam’s Razor: nature prefers simplicity

Explanations should not be multiplied beyond 
necessity

 Sometimes, it is a bias or preference over 
the forms and parameters of a classifier
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No free lunch theorem
 Under very general assumption, one should 

not prefer one classifier (or learning 
algorithm) over another for the 
generalization performance

 Why?
Because given certain training data, there is no 

telling (in general) what unseen data will 
behave
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Example

 Training data might not 
provide any information 
about F(x)

 There are multiple (25) 
target functions that are 
consistent with the n=3 
patterns in training set

 Each inversion of F (-F) 
will make one good and 
the other bad

x F h1 h2

000 1 1 1
001 -1 -1 -1
010 1 1 1
011 -1 1 -1
100 1 1 -1
101 -1 1 -1
110 1 1 -1
111 1 1 -1

training

Unseen

25

combinations

target
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Example (cont.)

 However, in reality, we also expect that learning 
(training) is effective
 given a large number of representative samples and 
 a target function that is smooth  

 Or the sampling theorem says that extrapolation 
and reconstruction is possible under certain 
conditions
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How do we reconcile?

 So the choice of a classifier or a training 
algorithm depends on our preconceived 
notion of the relevant target functions

 In that sense, both Occam’s Razor and no 
free lunch theorem can co-exist
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Make it More Concrete
 Let’s assume that there are two classes {+1, 

-1} and n samples (x1, y1) … (xn, yn)
 The classifier is f(x,) -> y (: tunable 

parameters of f, e.g., hyperplane)
 Loss (error) is 
 Then there are two types of errors (risks)

Empirical error
Expected error 
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Issues with the Two Risks
 How do we estimate how good is a 

classifier based on a particular run of the 
experiment? 
How best to compute eemp from samples

 How do we estimate e from eemp?
 Practically (with some particular data sets), and
Theoretically (with an upper bound)
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Answers
 Computing eemp

There are statistical resampling techniques to 
give better estimate of a classifier’s performance

 Estimating e from eemp
Theoretically

 There is an upper bound on e given eemp

 Practically
Given a particular set(s) of training data, a procedure 

exists to estimate e from eemp
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Practical Issues
 OK, so philosophically nothing is better 

than anything else
 In reality, we have to choose classifiers and 

learning algorithms
 Run some classification experiments in 

supervised mode (with labeled data)
 What should we look for in a “good” 

classifier or learning algorithm?
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Assumption
 Use RBF interpretation

 Interpolation a function with given data points
 True function F(x)
 Interpolation function g(x; D)
D is the given data set
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Bias and Variance
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Bias and Variance

 Bias – measure the accuracy
 How good are the classifiers confirm to reality
 High bias implies a poor match

 Variance – measure the precision or specificity of a 
match
 How good is the classifiers confirm to one another
 High variance implies a weak match

bias2 variance
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Graphic Interpretation

PR , ANN, & ML
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Tradeoff 
 Intuitively, increasing the flexibility (more 

parameters)
Gives better fit (low bias)
 Produces harder to control fit (high variance)

 Bias-variance tradeoff is a lot like precision-
recall, you cannot have both
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Bias and Variance in Fitting
 With more parameters, a 

better fit (low bias) is 
possible, at the expense 
that parameter values may 
vary widely given 
different sampled data 
(high variance)

a, b: fixed linear model
c: learned cubic model
d: learned linear model
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Bias and Variance in Classifiers
 Simple models

 capture aggregate class 
properties which are usually 
more stable (hence low 
variance)

 However, they miss fine details 
and give poor fit (hence high 
bias)

 Complicated models
 capture aggregate class 

properties and fine variance 
(hence low bias)

 However, fine details depend 
on samples used (hence high 
variance)



23PR , ANN, & ML

Curse of Dimensionality
 What happens to bias and variance when the 

dimensionality increase? 
 It depends
 F(X) depends on all dimensions of X

 Bias is likely to go up for nn classifier because 
neighbors will be further away from a data point for 
faithful interpolation

 F(X) depends on some dimensions of X
 Variance is likely to go up for nn classifier because 

spread along the used dimensions might go up 
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Practical Issues (cont.)
 So you choose a labeled data set and test your 

classifier
 But that is just on one particular data set
 How do you know how it will do for other labeled 

data set? or 
 How do you estimate bias and variance? (or how 

do you know the particular relation is stable and 
repeatable?)
 We do not really know F for other data sets
 We have only one data set, not an ensemble

 How do you extrapolate (from eemp to e)?
 How do you improve bias and variance?



25PR , ANN, & ML

Example: Estimation - Jackknife
 Perform many “leave-one-out” estimations
 E.g., to estimate mean and variance
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Estimation – Jackknife (cont.)
 Jackknife estimation is defined as function of leave-

one-out results
 Enable mean and variance computation from one 

data set 
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General Jackknife Estimation
 Similar to mean and variance estimation
 Perform many leave-one-out estimations 

of the parameter 
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Bias and Variance of
General Jackknife Estimation
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Example: Mode Estimate
n=6
D={0,10,10,10,20,20}
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Estimation - Bootstrap
 Perform many subset estimations (n out of n) with

replacement 
 There are nn possible samples

 E.g., two samples (x1,x2) generate 22 subsets (x1,x1), (x1,x2), 
(x2,x1), (x2,x2)
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The Question Remained
 From data sets we can 

estimate eemp

 We desire e
 They are related by 

interval confidence:
size sample:

)1(

c
n

n
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
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 n=40
 28 correct and 12 incorrect
 eemp =12/40=.3
 With a confidence interval of 95%, c=1.96
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What?
 The formula is valid if 

Hypothesis is discrete-valued
 Samples are independently drawn 
With a fixed probabilistic distribution

 Then the experiment outcomes can be 
described by a binomial distribution
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Comparison
 Repeat an experiment 

many times
 Each time, toss a coin 

n times to see if it 
lands on head (h) or 
tail (t) h+t=n

 A coin of an 
(unknown) probability 
p to land on head

 Use a classifier for 
many sets of data

 Each data set, the 
classifier gets h wrong 
and t correct out of n
samples, h+t=n

 The classifier has an 
(unknown, but fixed) 
probability p to 
classify data 
incorrectly
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Comparison (cont.)
 Results of each coin 

toss is a random 
variable

 Results of how many 
heads in n toss is also 
a random variable

 Repetitive experiments 
give outcomes in 
binomial distribution

 Results of each sample 
classification is a random 
variable

 Results of how many 
incorrect labels in n
samples is also a random 
variable

 Repetitive classifications 
give outcomes in 
binomial distribution
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Binomial Distributions

probabilty head :
heads ofnumber  :

size sample:
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Binomial Distribution
 Then it can be shown that 
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Estimators
 An estimator for p is 

(number of heads)/n
 This estimator is an 

unbiased estimator 
because

 Standard deviation in 
the estimator is  
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Confidence Interval
 An N% confidence interval for some 

parameter p is an interval that is expected 
with probability N% to contain p

 For binomial distribution, this can be 
approximated by normal 

p

interval confidence:
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Capacity (Simplicity)
 We have just discussed the repeatability 

issue
The assumption is that the classification error is 

the same for training and new data 
The misclassification rate is drawn from the 

same population
True for simple classifiers, but not for 

complicated classifiers
 The other issue is simplicity (or more 

generally the capacity) of the classifier
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General Theoretical Bound
 The sample size

The larger the sample size, the more confident 
we should be about “we have seen enough”

 The complexity of the classifier
The simpler the classifier, the more confident 

we should be about “we have observed enough”
Or complex classifier can do wired things when 

you are not looking 
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VC Dimension
 Vapnik-Chervonenkis dimension
 Defined for a class of functions f(alpha)
 The maximum number of points that can be 

shattered by the function
 Shatter means that given, say, n points, there are 2n

ways to label them {+1, -1}. These points are shattered 
if an f(alpha) can be found to correctly assign those 
labels

 E.g., three points can be shattered by 1 line, but not four 
points

 Linear function in n space is of VC dimension n+1
 A measure of “capacity” of a classifier
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Generalization
 It can be shown that
 Basically, the expected error is bounded 

above, the bound depends on
Empirical error (eemp)
VC dimension (h)
 n: training sample size
Expected performance (     ), say loss of 0.05 

with a probability of 0.95

n
hnhee emp

)4/log()1)/2(log()()(  



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Capacity Interpretation

 A simple classifier
 Has low VC dimension and small second term
 Has high empirical error and large first term

 A complicated classifier
Has high VC dimension and large second term
Has low empirical error and small first term

 Some trade-off to achieve the lowest right-
hand side

n
hnhee emp

)4/log()1)/2(log()()(  
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Generalization Performance
 Hence, a classifier should be chosen to give 

the lowest bound
 However, many times the bound is not tight, 

easily the bound can reach 1 and make it 
useless

 Only useful for small VC dimension
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Upper Bound
 95% confidence level
 10,000 samples
 h/n >0.37 
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Ensemble Classifiers
 Combining simple classifiers by majority 

votes
 Famous ones: bagging and boosting
 Why it works:

Might reduce error (bias)
Reduce variance 

PR , ANN, & ML
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Reduce Bias
 If each classifier makes error, say 30% 
 How likely it is for a committee of n classifiers to 

make mistake by majority rule
 Answer: Bonelli distribution 
 Big IF: they must perform independently

PR , ANN, & ML
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Improvement - Averaging
 Each machine reach a local minimum
 Majority vote

Same training data

Different starting point

Majority vote
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Improvement - Bagging
 Bootstrap AGGregation
 A simple “parallel processing” model using multiple 

component classifiers
 Help stability problem

Majority vote

Different (splitting) training data

Different starting point
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Why Bagging Works?
 It can reduce both bias and variance
 Bias: not necessarily improve

PR , ANN, & ML
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Why Bagging Works?
 It can reduce both bias and variance
 Variance: reduce to 1/n – IF all constituents 

are independent

PR , ANN, & ML
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Boosting by Filtering
 Bagging is competition model while 

boosting is a collaborative model
 Component Classifiers 

 should be introduced when needed 
 should then be trained on ambiguous samples

 Iterative refinement of results to reduce 
error and ambiguity
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Boosting by Filtering (cont)

 If c1 and c2 agree, use that
 Otherwise, use c3

c1 c2 c3
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Boosting by Filtering (cont.)
 D1: 

 subset from D (without replacement) to train c1
 D2:

Head: samples from D-D1, where c1 is wrong 
Tail: samples from D-D1 where c1 is correct
Half correct/half wrong for D1, D2 is learning what 

D1 has difficulty with 
 D3:

D-(D1+D2) where c1  and c2 disagree
D3 is learning what the previous two cannot agree
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Boosting by Filtering (cont.)
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Boosting by Filtering (cont.)
 If each committee machine has an error rate 

of , then the combined machine has an error 
rate of 32 -23


32 -23
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AdaBoost –Adaptive Boosting
 Basic idea is very simple

Add more component classifiers if error is 
higher than preset threshold

 Samples are weighted: if samples are accurately 
classified by combined component classifiers, 
the chance of being picked for the new 
classifier is reduced

Adaboost focuses on difficult patterns
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Comparison
Multilayer Perceptron
 Many neurons
 Train together
 Hard to train
 Same data set
 Require nonlinearity 

in thresholding
 Complicated decision 

boundary
 Overfitting likely

Boosting
 Many weak classifiers
 Trained individually
 Easy to train
 Fine-tuned data set
 Require different data 

sets
 Simple decision 

boundary
 Less susceptible to 

overfitting
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Adaboost Algorithm (cont.)
 As long as each individual weak learner has 

a better than chance performance, Adaboost 
can boost the performance arbitrarily well 
(Freund and Schapire, JCSS 1997)
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Applications
 Adaboost has been used successfully in 

many applications
 One famous one is to the use in face 

detection from images
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Viola and Jones
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Fast Feature Computation
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Classifier
 Adaboost idea – greedy feature (classifier) 

selection 
 Weak leaner (h) – select a single rectangular 

feature 
 f: feature
 : threshold
 p: polarity
X: 24x24 ixel sub window
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Algorithm
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Efficiency
 Use attention cascade
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Results
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Results
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Learning with Queries
 Given a weak classifier or several weak 

component classifiers
 Find out where ambiguity is

Where weak classifier gives high reading for 
the top two discrimination functions (e.g., in a 
linear machine)

Where component classifiers yield the greatest 
disagreement

 Train the classifiers with those ambiguous 
samples
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Learning with Queries (cont.)

Samples generated with 
queries


