
Quadratic Programming
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Outline

 Linearly constrained minimization

Linear equality constraints

Linear inequality constraints

 Quadratic objective function
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SideBar: Matrix Spaces

 Four fundamental subspaces of a matrix

Column space, col(A)

Row space, row(A)

Null space Ax=0, null(A)

Left Null space xTA=0, lnull(A)

Rank =dim(col(A))=dim(row(A))

Dim(col(A))+Dim(lnull(A)) = # column

 col(A) ad lnull(A) are orthogonal

Dim(row(A))+Dim(null(A)) =# row

 row(A) and null(A) are orthogonal
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Linear Equality Constraints

 min
x 
F(x)

 s.t. Ax = b

 Assume constraints are consistent and 
linearly independent

 t contraints remove t 
degrees of freedom from 
solution x 

 x = ATx
a

+ Zx
z

Row space Null space



5

Graphical Interpretation

 x = ATx
a

+ Zx
z

 ATx
a : 

a particular solution (AX=b)

 Zx
z : 

a homogeneous solution (AX=0)
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Feasible Search Directions

 Feasible points x
1
, x

2
have Ax

1
= Ax

2
= b

 Feasible step p satisfies Ap = A(x
1

– x
2
) = 0 

 If Z is a basis for null(A), feasible directions 
p are such that p = Zp

z

 I.e., direction of change (p) should be in the 
null space of A

Ap=0

Ax2=A(x1+p) = Ax1=b



7PR , ANN, & ML

Optimality Conditions

 Taylor series expansion along feasible direction

 F(x + єZp
z
) = F(x) + єp

z
TZTg(x) + ½є2p

z
TZTG(x + єϴZp

z
)Zp

z

 g is the gradient [f1,f2,…, fn]
T

 єp
z
TZTg(x) = feasible direction * gradient = change

 Projected gradient p
z
TZTg(x) = 0 for all p

z 
at constrained 

stationary points

 Therefore, ZTg(x) = 0 is first-order optimality condition

 This implies that 

 g(x) ϵ null(ZT) 

 g(x) must in row(A)

 so g(x) = ATλ at local minimum

 Gradient direction is orthogonal to the feasible direction

 Change is zero or local landscape is flat (extreme or saddle 
point)
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Optimality Conditions

 First-order condition necessary but not 
sufficient; only guarantees critical point

 Second order condition: projected Hessian G 
is positive semi-definite

 Positive semi-definite G guarantees weak 
minimum
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Summary

 Necessary conditions for constrained 
minumum:

Ax = b

ZTg(x) = 0

ZTG(x)Z positive semi-definite
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Algorithm

 Step 1: If conditions satisfied, terminate

 Step 2: Compute feasible search direction

 Step 3: Compute step length

 Step 4: Update estimate of minimum

 Search direction computed by Newton's 
Method:
 F(x + єZp

z
) = F(x) + єp

z
TZTg(x) + ½є2p

z
TZTG(x + єϴZp

z
)Zp

z

 F(x + єZp
z
)’=0 (derivative with respect to p

z
)

 ZTg+ ZTGZp
z
=0

 solve ZTGZp
z

= -ZTg for p
z

and set p = Zp
z

 Cf. g + H(f) p = 0 (for 1D case), This says that 1D condition is 
true along the direction p
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Linear Inequality Constraints

 min
x 

F(x)

 s.t. Ax <= b

Each row aTx <= b is a half plane

 Active constraint: aTx = b

 Inactive constraint: aTx < b

 If set of active constraints at solution was 
known, could convert to equality constraints

 Active Set Methods: maintain current active 
constraints, use equality constraint methods 

 KKT condition applies here – those inactive 
constraints have lambda of zero 
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Unconstrained 

inimum cost

Constant cost curves

Constrained 

Minimum cost

Active constraint

Active constraint

Inactive constraint
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Feasible Search Directions

 Recall that, before a new search

 aTx = b (active) or aTx < b (inactive, don’t care)

 Feasible search must not invalid these 
constraints 

 Concentrate on the active set

 Binding perturbation: aTp = 0; constraint 
remains active (aT (x+tp) = aTx =b)

 Non-binding perturbation: aTp <0 ; constraint 
becomes inactive (aT(x+tp) = aTx +t aTp = b+ 
t aTp <b)
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Optimality Conditions
 First and second order conditions from linear 

equality case apply for binding perturbations

 Added condition: g(x)Tp <= 0 for all non-binding 
perturbations p satisfying Ap <= 0 

 g(x)Tp != 0 means gradient * direction = change

 If g(x)Tp >0, then some constraints will be violated 
(because we start with Ax=b)

 Since g(x) = ATλ, g(x)Tp <= 0 implies λAp <= 0

 This holds only if all λ ≥ 0

 Because, If λ
j
< 0, choose p such that (a

j
)Tp = 1, (a

i
)Tp = 

0, then:         

 g(x)Tp = λ
j
(a

j
)Tp = λ

j
< 0
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Summary

 Necessary conditions for constrained 
minimum:

Ax = b

ZTg(x) = 0

ZTG(x)Z positive semi-definite

 λ
i
≥ 0, i = 1,...,t
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Algorithm

 Step 1: If conditions satisfied, terminate

 Step 2: Decide if a constraint should be 
deleted from working set; if so, go to step 6

 Step 3: Compute feasible search direction

 Step 4: Compute step length

 Step 5: Add a constraint to working set if 
necessary, go to step 7

 Step 6: Delete a constraint from the working 
set and update Z

 Step 7: Update estimate of minimum
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Computing Search Direction

 Newton's method computes feasible step with 
respect to currently active constraints

 Need to check if aTp < 0 for any inactive 
constraints

 Find intersection x + αp to closest constraint

 Line search between x and x + αp determines 
optimal step єp

 If  є = α, new constraint added to working set 
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Quadratic Programming

 Simplifications possible when using 
quadratic objective function

 Hessian becomes constant matrix

 Newton's method becomes exact rather than 
approximate
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Quadratic Programming

 Newton method finds minimum in 1 iteration

 Line search not needed; either take full step, 
or shorten to nearest constraint

 Constant Hessian need not be evaluated at 
each iteration
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Quadratic Programming

 Special factorization updates can be applied

 Example: Cholesky factor of G is updated by 
a single column when a constraint deleted

 Decomposition need only be done once at the 
beginning of execution


