Quadratic Programming

Outline

* Linearly constrained minimization
\square Linear equality constraints
\square Linear inequality constraints
* Quadratic objective function

SideBar: Matrix Spaces

* Four fundamental subspaces of a matrix
\square Column space, $\operatorname{col}(\mathrm{A})$
\square Row space, row(A)
\square Null space $\mathrm{Ax}=0$, null(A)
\square Left Null space $\mathrm{x}^{\mathrm{T}} \mathrm{A}=0$, $\operatorname{lnull(A)}$
$\square \operatorname{Rank}=\operatorname{dim}(\operatorname{col}(\mathrm{A}))=\operatorname{dim}(\operatorname{row}(\mathrm{A}))$
$\square \operatorname{Dim}(\operatorname{col}(\mathrm{A}))+\operatorname{Dim}(\operatorname{lnull}(\mathrm{A}))=$ \# column
$-\operatorname{col}(\mathrm{A}) \mathrm{ad} \operatorname{lnull}(\mathrm{A})$ are orthogonal
$\square \operatorname{Dim}(\operatorname{row}(\mathrm{A}))+\operatorname{Dim}($ null(A) $)=\#$ row
$\square \operatorname{row}(\mathrm{A})$ and null(A) are orthogonal

Linear Equality Constraints

: $\min _{x} F(x)$
\square s.t. $A x=b$

* Assume constraints are consistent and linearly independent
* t contraints remove t degrees of freedom solution X
$\star \mathrm{x}=\mathrm{A}^{\mathrm{T}} \mathrm{X}_{\mathrm{a}}+\mathrm{Zx}$
Row space Null space

Graphical Interpretation

* $x=A^{T} x_{a}+Z x_{z}$
- $A^{T} X_{a}$ a particular solution ($\mathrm{AX}=\mathrm{b}$)
- Zx_{z} a homogeneous solution $(\mathrm{AX}=0)$

Feasible Search Directions

$*$ Feasible points $\mathrm{x}_{1}, \mathrm{x}_{2}$ have $\mathrm{Ax}_{1}=\mathrm{Ax}_{2}=\mathrm{b}$

* Feasible step p satisfies $\mathrm{Ap}=\mathrm{A}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0$
* If Z is a basis for null(A), feasible directions p are such that $p=Z p_{z}$
* I.e., direction of change (p) should be in the null space of A
- $\mathrm{Ap}=0$
$\square \mathrm{Ax}_{2}=\mathrm{A}\left(\mathrm{x}_{1}+\mathrm{p}\right)=\mathrm{Ax}_{1}=\mathrm{b}$

Optimality Conditions

* Taylor series expansion along feasible direction $\square F\left(x+\epsilon Z p_{z}\right)=F(x)+\epsilon p_{z}^{\top} Z^{\top} g(x)+1 / 2 \epsilon^{2} p_{z}^{\top} Z^{\top} G\left(x+\epsilon \Theta Z p_{z}\right) Z p_{z}$
$\% \mathrm{~g}$ is the gradient $\left[\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}\right]^{\mathrm{T}}$
$* \in p_{z}^{\top} Z^{\top} g(x)=$ feasible direction * gradient $=$ change
* Projected gradient $\mathrm{p}_{\mathrm{z}}{ }^{\mathrm{T}} \mathrm{Z}^{\mathrm{T}} \mathrm{g}(\mathrm{x})=0$ for all p_{z} at constrained stationary points
*Therefore, $\mathrm{Z}^{\mathrm{T}} \mathrm{g}(\mathrm{x})=0$ is first-order optimality condition
* This implies that
$\square \mathrm{g}(\mathrm{x}) \in \operatorname{null}\left(\mathrm{Z}^{\mathrm{T}}\right)$
- $g(x)$ must in row(A)
- so $g(x)=A^{T} \lambda$ at local minimum

$$
\left[\begin{array}{ccc}
- & z_{1}^{T} & - \\
\cdots & \cdots & \cdots \\
- & z_{k}^{T} & -
\end{array}\right] g(x)=0
$$

* Gradient direction is orthogonal to the feasible direction
* Change is zero or local landscape is flat (extreme or saddle ppint)

Optimality Conditions

* First-order condition necessary but not sufficient; only guarantees critical point
* Second order condition: projected Hessian G is positive semi-definite
* Positive semi-definite G guarantees weak minimum

Summary

* Necessary conditions for constrained minumum:
$\square A x=b$
$\square Z^{T} g(x)=0$
$\square \mathrm{Z}^{\mathrm{T}} \mathrm{G}(\mathrm{x}) \mathrm{Z}$ positive semi-definite

Algorithm

* Step 1: If conditions satisfied, terminate
* Step 2: Compute feasible search direction
* Step 3: Compute step length
* Step 4: Update estimate of minimum
* Search direction computed by Newton's Method:
- $F\left(x+\epsilon Z p_{z}\right)=F(x)+\epsilon p_{z}^{\top} Z^{\top} g(x)+1 / 2 \epsilon^{2} p_{z}^{\top} Z^{\top} G\left(x+\epsilon \Theta Z p_{z}\right) Z p_{z}$
$\square \mathrm{F}\left(\mathrm{x}+\epsilon Z \mathrm{p}_{\mathrm{z}}\right)^{\prime}=0$ (derivative with respect to p_{z})
$-Z^{\top} g+Z^{\top} G Z p_{z}=0$
\square solve $Z^{T} G Z p_{z}=-Z^{T} g$ for p_{z} and set $p=Z p_{z}$
\square Cf. $g+H(f) p=0$ (for 1D case), This says that 1 D condition is true along the direction p

Linear Inequality Constraints

- $\min _{x} F(x)$
\square s.t. $A x<=b$
\square Each row $\mathrm{a}^{\mathrm{T}} \mathrm{x}<=\mathrm{b}$ is a half plane

$$
\left[\begin{array}{c}
a_{1}^{T} \\
a_{2}^{T} \\
a_{k}^{T}
\end{array}\right] x \leq\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{k}
\end{array}\right]
$$

* Active constraint: $a^{T} x=b$
* Inactive constraint: $\mathrm{a}^{\mathrm{T}} \mathrm{x}<\mathrm{b}$
* If set of active constraints at solution was known, could convert to equality constraints
* Active Set Methods: maintain current active constraints, use equality constraint methods
* KKT condition applies here - those inactive constraints have lambda of zero

Feasible Search Directions

* Recall that, before a new search
$\square \mathrm{a}^{\mathrm{T}} \mathrm{x}=\mathrm{b}$ (active) or $\mathrm{a}^{\mathrm{T}} \mathrm{x}<\mathrm{b}$ (inactive, don't care)
* Feasible search must not invalid these constraints
* Concentrate on the active set
- Binding perturbation: $\mathrm{a}^{\mathrm{T}} \mathrm{p}=0$; constraint remains active $\left(\mathrm{a}^{\mathrm{T}}(\mathrm{x}+\mathrm{tp})=\mathrm{a}^{\mathrm{T}} \mathrm{x}=\mathrm{b}\right)$
* Non-binding perturbation: $\mathrm{a}^{\mathrm{T}} \mathrm{p}<0$; constraint becomes inactive $\left(\mathrm{a}^{\mathrm{T}}(\mathrm{x}+\mathrm{tp})=\mathrm{a}^{\mathrm{T}} \mathrm{x}+\mathrm{t} \mathrm{a}^{\mathrm{T}} \mathrm{p}=\mathrm{b}+\right.$ t $\mathrm{a}^{\mathrm{T}} \mathrm{p}<\mathrm{b}$)

Optimality Conditions

* First and second order conditions from linear equality case apply for binding perturbations
* Added condition: $\mathrm{g}(\mathrm{x})^{\mathrm{T}} \mathrm{p}<=0$ for all non-binding perturbations p satisfying $\mathrm{Ap}<=0$
$\square g(x)^{T} p!=0$ means gradient * direction = change
\square If $g(x)^{\mathrm{T}} \mathrm{p}>0$, then some constraints will be violated (because we start with $A x=b$)
* Since $g(x)=A^{T} \lambda, g(x)^{T} p<=0$ implies $\lambda A p<=0$
* This holds only if all $\lambda \geq 0$
\square Because, If $\lambda_{j}<0$, choose p such that $\left(\mathrm{a}_{\mathrm{j}}\right)^{\mathrm{T}} \mathrm{p}=1,\left(\mathrm{a}_{\mathrm{i}}\right)^{\mathrm{T}} \mathrm{p}=$ 0 , then:
$\square g(x)^{T} p=\lambda_{j}\left(a_{j}\right)^{T} p=\lambda_{j}<0$

Summary

* Necessary conditions for constrained minimum:
$\square \mathrm{Ax}=\mathrm{b}$
$\square Z^{T} g(x)=0$
$\square \mathrm{Z}^{\mathrm{T}} \mathrm{G}(\mathrm{x}) \mathrm{Z}$ positive semi-definite
$\square \lambda_{i} \geq 0, i=1, \ldots, t$

Algorithm

* Step 1: If conditions satisfied, terminate
* Step 2: Decide if a constraint should be deleted from working set; if so, go to step 6
* Step 3: Compute feasible search direction
* Step 4: Compute step length
* Step 5: Add a constraint to working set if necessary, go to step 7
* Step 6: Delete a constraint from the working set and update Z
* Step 7: Update estimate of minimum

Computing Search Direction

* Newton's method computes feasible step with respect to currently active constraints
* Need to check if $\mathrm{a}^{\mathrm{T}} \mathrm{p}<0$ for any inactive constraints
* Find intersection $x+\alpha p$ to closest constraint
* Line search between x and $x+\alpha p$ determines optimal step $\in p$
* If $\epsilon=\alpha$, new constraint added to working set

Quadratic Programming

* Simplifications possible when using quadratic objective function
* Hessian becomes constant matrix
* Newton's method becomes exact rather than approximate

Quadratic Programming

* Newton method finds minimum in 1 iteration
* Line search not needed; either take full step, or shorten to nearest constraint
* Constant Hessian need not be evaluated at each iteration

Quadratic Programming

* Special factorization updates can be applied
* Example: Cholesky factor of G is updated by a single column when a constraint deleted
* Decomposition need only be done once at the beginning of execution

