LIGH

RB

Outline

Linearly constrained minimization

 Linear equality constraints
 Linear inequality constraints

 Quadratic objective function

SideBar: Matrix Spaces

 Four fundamental subspaces of a matrix \Box Column space, col(A) \Box Row space, row(A) □ Null space Ax=0, null(A) □ Left Null space x^TA=0, lnull(A) \Box Rank =dim(col(A))=dim(row(A)) \Box Dim(col(A))+Dim(lnull(A)) = # column □ col(A) ad lnull(A) are orthogonal Dim(row(A))+Dim(null(A)) =# row □ row(A) and null(A) are orthogonal

Linear Equality Constraints

- * $\min_{x} F(x)$ • s.t. Ax = b
- Assume constraints are consistent and linearly independent
- t contraints remove t degrees of freedom solution x

Graphical Interpretation

Feasible Search Directions

- ★ Feasible *points* x₁, x₂ have Ax₁ = Ax₂ = b
 ★ Feasible *step* p satisfies Ap = A(x₁ x₂) = 0
 ★ If Z is a basis for null(A), feasible directions p are such that p = Zp_z
 ★ I.e., direction of change (p) should be in the
 - null space of A
 - □ Ap=0
 - $\Box Ax_2 = A(x_1 + p) = Ax_1 = b$

Optimality Conditions

- ★ Taylor series expansion along feasible direction
 $F(x + \epsilon Zp_z) = F(x) + \epsilon p_z^T Z^T g(x) + \frac{1}{2} \epsilon^2 p_z^T Z^T G(x + \epsilon \Theta Zp_z) Zp_z$
- * g is the gradient $[f_1, f_2, ..., f_n]^T$
- $rightarrow \epsilon p_z^T Z^T g(x) = \text{feasible direction } * \text{ gradient} = \text{change}$
- Projected gradient $p_z^T Z^T g(x) = 0$ for all p_z at constrained stationary points
- * Therefore, $Z^{T}g(x) = 0$ is first-order optimality condition
- ★ This implies that $\begin{bmatrix}
 & z_1^T & -\\
 & g(x) \in null(Z^T)
 \end{bmatrix}$
 - $\Box g(x) must in row(A)$
 - □ so $g(x) = A^T \lambda$ at local minimum
- Gradient direction is orthogonal to the feasible direction
- Change is zero or local landscape is flat (extreme or saddle

 z_k^T

Optimality Conditions

- First-order condition necessary but not sufficient; only guarantees critical point
- Second order condition: projected Hessian G is positive semi-definite
- Positive semi-definite G guarantees weak minimum

Summary

Necessary conditions for constrained minumum:

Ax = b
Z^Tg(x) = 0
Z^TG(x)Z positive semi-definite

Algorithm

- Step 1: If conditions satisfied, terminate
- Step 2: Compute feasible search direction
- Step 3: Compute step length
- Step 4: Update estimate of minimum
- Search direction computed by Newton's Method:
 - $\Box F(x + \epsilon Zp_z) = F(x) + \epsilon p_z^T Z^T g(x) + \frac{1}{2} \epsilon^2 p_z^T Z^T G(x + \epsilon \Theta Zp_z) Zp_z$
 - □ $F(x + \epsilon Z p_z)' = 0$ (derivative with respect to p_z)
 - $\Box Z^{T}g + Z^{T}GZp_{z} = 0$
 - □ solve $Z^TGZp_z = -Z^Tg$ for p_z and set $p = Zp_z$
 - Cf. g + H(f) p = 0 (for 1D case), This says that 1D condition is true along the direction p

Linear Inequality Constraints

 $\star \min_{\mathbf{x}} F(\mathbf{x})$ \Box s.t. Ax <= b

$$\begin{bmatrix} a_1^T \\ a_2^T \\ a_k^T \end{bmatrix} x \le \begin{bmatrix} b_1 \\ b_2 \\ b_k \end{bmatrix}$$

- \Box Each row $a^{T}x \le b$ is a half plane
- Active constraint: $a^{T}x = b$
- * Inactive constraint: $a^{T}x < b$
- If set of active constraints at solution was known, could convert to equality constraints
- Active Set Methods: maintain current active constraints, use equality constraint methods
- KKT condition applies here those inactive constraints have lambda of zero

Feasible Search Directions

- ✤ Recall that, before a new search
 □ $a^T x = b$ (active) or $a^T x < b$ (inactive, don't care)
- Feasible search must not invalid these constraints
- Concentrate on the active set
- Sinding perturbation: a^Tp = 0; constraint remains active (a^T(x+tp) = a^Tx =b)
- * Non-binding perturbation: $a^{T}p < 0$; constraint becomes inactive $(a^{T}(x+tp) = a^{T}x + t a^{T}p = b + t a^{T}p < b)$

Optimality Conditions

- First and second order conditions from linear equality case apply for binding perturbations
- * Added condition: $g(x)^T p \le 0$ for all non-binding perturbations p satisfying $Ap \le 0$
 - \Box g(x)^Tp != 0 means gradient * direction = change
 - If g(x)^Tp >0, then some constraints will be violated (because we start with Ax=b)
- * Since $g(x) = A^T \lambda$, $g(x)^T p \le 0$ implies $\lambda A p \le 0$
- ♦ This holds only if all $\lambda \ge 0$
 - □ Because, If $\lambda_j < 0$, choose p such that $(a_j)^T p = 1$, $(a_i)^T p = 0$, then:

$$\Box g(\mathbf{x})^{\mathrm{T}} \mathbf{p} = \lambda_{j} (\mathbf{a}_{j})^{\mathrm{T}} \mathbf{p} = \lambda_{j} < 0$$

Summary

 Necessary conditions for constrained minimum:

Ax = b
Z^Tg(x) = 0
Z^TG(x)Z positive semi-definite
λ_i ≥ 0, i = 1,...,t

Algorithm

- Step 1: If conditions satisfied, terminate
- Step 2: Decide if a constraint should be deleted from working set; if so, go to step 6
- Step 3: Compute feasible search direction
 Step 4: Compute step length
- Step 4: Compute step length
- Step 5: Add a constraint to working set if necessary, go to step 7
- Step 6: Delete a constraint from the working set and update Z
- Step 7: Update estimate of minimum

Computing Search Direction

- Newton's method computes feasible step with respect to currently active constraints
- Need to check if a^Tp < 0 for any inactive constraints</p>
- Find intersection $x + \alpha p$ to closest constraint
- Line search between x and x + αp determines optimal step εp
- If $\epsilon = \alpha$, new constraint added to working set

- Simplifications possible when using quadratic objective function
- Hessian becomes constant matrix
- Newton's method becomes exact rather than approximate

- Newton method finds minimum in 1 iteration
- Line search not needed; either take full step, or shorten to nearest constraint
- Constant Hessian need not be evaluated at each iteration

- Special factorization updates can be applied
 Example: Cholesky factor of G is updated by a single column when a constraint deleted
- Decomposition need only be done once at the beginning of execution

