Radial Basis Function Networks

Radial Basis Function Networks

* A special types of ANN that have three layers
\square Input layer
- Hidden layer
\square Output layer
* Mapping from input to hidden layer is nonlinear
* Mapping from hidden to output layer is linear

Comparison

Multi-layer perceptron RBF Networks

* Multiple hidden layers * Single hidden layer
* Nonlinear mapping * Nonlinear + linear
* W: inner product
* W: distance
* Global mapping
* Warp classifiers
* Stochastic approximation

Another View: Curve Fitting

* We try to estimate a mapping from patterns into classes f (patterns)-> classes, $f(\boldsymbol{X})->d$
* Patterns are represented as feature vector \mathbf{X}
* Classes are decisions d
* Training samples: $f\left(\boldsymbol{X}_{\mathrm{i}}\right)->d_{\mathrm{i}}, i=1, \ldots, n$
* Interpolation of the f based on samples

Yet Another View: Warping Data

* If the problem is not linearly separable, MLP will use multiple neurons to define complicated decision boundaries (warp classifiers)
* Another alternative is to warp data into higher dimensional space that they are much more likely to be linearly separable (single perceptron will do)
\therefore This is very similar to the idea of Support Vector Machine

Example

* XOR
* Warpped XOR

$$
\varphi(\mathbf{x})=\varphi\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
\varphi_{1}(\mathbf{x}) \\
\varphi_{2}(\mathbf{x})
\end{array}\right]
$$

x

$$
\varphi_{2}(\mathbf{x})=e^{-\mathbf{x}-[0,0]^{\prime} \mid}
$$

More Example

Fig. 4. Two dimensional classification example. Using the second order monomials $x_{1}^{2}, \sqrt{2} x_{1} x_{2}$ and x_{2}^{2} as features a separation in feature space can be found using a linear hyperplane (right). In input space this construction corresponds to a non-linear ellipsoidal dectsion boundary (left) (figure from [48]).

A Pure Interpolation Approach

* Given: $\left(\mathbf{X}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right), \mathrm{i}=1, \ldots, \mathrm{n}$
* Desired: $f\left(\mathbf{X}_{\mathrm{i}}\right)=\mathrm{d}_{\mathrm{i}}$
* Solution: $f(\mathbf{X})$, with $f\left(\mathbf{X}_{i}\right)=d_{i}$
* Radial basis function solution
- $\phi\left(\mathbf{X}, \mathbf{X}_{\mathrm{i}}\right)$ - general form

$$
f(\mathbf{X})=\sum_{i} w_{i} \varphi\left(\left\|\mathbf{X}-\mathbf{X}_{i}\right\|\right)
$$

- ϕ is shift and rotation invariant
- Shift invariant requires $\mathbf{X}-\mathbf{X}_{\mathrm{i}}$
- Rotation invariant requires || $\mathbf{X}-\mathbf{X}_{\mathrm{i}} \|$
* Example
- Multiquadrics
- Inserve Multiquadrics
- Gaussan

$$
\begin{gathered}
\varphi(r)=\sqrt{r^{2}+c^{2}} \\
\varphi(r)=\frac{1}{\sqrt{r^{2}+c^{2}}} \\
\varphi(r)=e^{-\frac{r^{2}}{2 \sigma^{2}}}
\end{gathered}
$$

Graphical Interpretation

* Each neuron responds based on the distance to the center of its receptive field
* The bottom level is a nonlinear mapping
* The top level is a linear weighted sum

Other Alternatives: Global

* Lagrange polynomials

$$
\begin{aligned}
& y=f(x)=\sum_{k=0}^{n} y_{k} L_{n, k} \\
& L_{n, k}=\frac{\left(x-x_{o}\right)\left(x-x_{1}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n}\right)}{\left(x_{k}-x_{o}\right)\left(x_{k}-x_{1}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n}\right)}
\end{aligned}
$$

Other Alternatives: Local

* Bezier Basis
* B-spline basis

B-Spline Interpolation

* A big subject in mathematics
* Used in many disciplines
- Approximation
\square Pattern recognition
- Computer graphics
* As far as pattern recognition is concerned
\square Determine order of spline (DOFs)
> Knot vectors (partition into intervals)
$>$ Fitting in each interval

$$
\begin{aligned}
& \text { Interpolation Solution } \\
& f(\mathbf{X})=\sum_{i} w_{i} \varphi\left(\mathbf{X}, \mathbf{X}_{i}\right) \\
& {\left[\begin{array}{cccc}
\varphi_{11} & \varphi_{12} & \cdots & \varphi_{1 n} \\
\varphi_{21} & \varphi_{22} & \cdots & \varphi_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
\varphi_{n 1} & \varphi_{n 2} & \cdots & \varphi_{n n}
\end{array}\right]\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
\mathbf{\Phi W}=\mathbf{D}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right] \varphi_{i j}=\varphi\left(\mathbf{X}_{i}, \mathbf{X}_{j}\right)} \\
& \mathbf{W}=\boldsymbol{\Phi}^{-1} \mathbf{D}
\end{aligned}
$$

$* \Phi$ is symmetrical

* Φ is invertable (if all \mathbf{X}_{i} 's are distinct)

Practical Issue: Accuracy (cont.)

* The Φ function represents the Green's function for a certain differential operator
* When it is shift and rotational invariant, we can write $\Phi\left(\mathbf{X}, \mathbf{X}_{\mathrm{i}}\right)$ as $G\left(\left\|\mathbf{X}-\mathbf{X}_{\mathrm{i}}\right\|\right)$, again, Gaussian Kernel is a popular choice here

Practical Issues

* Accuracy
\square How about data are noisy?
* Speed
\square How about there are many sample points?
* Training
\square What is the training procedure?

Practical Issue: Accuracy

* When data are noisy, pure interpolation represents a form of "overfitting"
* Need a stabilizing (or smoothing, regularization) term
* The solution should achieve two things
-Good fitting
- Smoothness

Practical Issue: Accuracy (cont.)

$$
\begin{aligned}
& \xi=\frac{1}{2} \sum_{i=1}^{n}\left(f\left(\mathbf{X}_{i}\right)-d_{i}\right)^{2}+\frac{1}{2} \lambda|D f|^{2} \\
& \xi=\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\sum_{i=1}^{m} w_{j} G\left(\left\|\mathbf{X}_{i}-\mathbf{T}_{j}\right\| \mid\right)\right)^{2}+\frac{1}{2} \lambda\left|D f^{*}\right|^{2} \\
& \left(\mathbf{G}^{T} \mathbf{G}+\lambda \mathbf{G}_{o}\right) \mathbf{W}=\mathbf{G}^{T} \mathbf{D} \\
& \mathbf{W}=\left(\mathbf{G}^{T} \mathbf{G}+\lambda \mathbf{G}_{o}\right)^{-1} \mathbf{G}^{T} \mathbf{D}
\end{aligned}
$$

* The solution is rooted in the regularization theory, which is way beyond the scope of this course (read the papers on the class Web sites for more details)
* Try to minimize error as a weighted sum of two terms which impose the fitting and the smoothness

Sidebar I

* It can be proven that MAP estimator (Baysian rule) gives the same results as regularized RBF solution
* Un-regularized (fitting) solution assumes the same prior

$$
\begin{aligned}
& \xi=\frac{1}{2} \sum_{i=1}^{n}\left(f\left(\mathbf{X}_{i}\right)-d_{i}\right)^{2}+\frac{1}{2} \lambda|D f|^{2} \\
& P(f \mid \mathbf{X})=\frac{P(\mathbf{X} \mid f) P(f)}{P(\mathbf{X})} \\
& -\log P(f \mid \mathbf{X})=-\log P(\mathbf{X} \mid f)+(-\log P(f))+c
\end{aligned}
$$

Sidebar II

* Regularization is also similar to (or call) ridge regression in statistics
* The problem here is to fit a model to data without overfitting
* In linear case, we have

$$
\begin{aligned}
& \mathbf{w}^{\text {ridge }}=\underset{\mathbf{w}}{\arg \min }\left\{\sum_{i}\left(y_{i}-w_{o}-\sum_{j} x_{i j} w_{j}\right)^{2}+\lambda \sum_{j} w_{j}^{2}\right\} \\
& \mathbf{w}^{\text {ridge }}=\underset{\mathbf{w}}{\arg \min }\left\{\sum_{i}\left(y_{i}-w_{o}-\sum_{j} x_{i j} w_{j}\right)^{2}\right\} \\
& \text { subjectto } \lambda \sum_{j} w_{j}^{2} \leq S
\end{aligned}
$$

Intuition

* When variables x_{i} are highly correlated, their coefficients become poorly determined with high variance
םE.g. widely large positive coefficient on one can be canceled by a similarly large negative coefficient on its correlated cousin
\square Size constraint is helpful
\square Caveat: constraint is problem dependent

Solution to Ridge Regression

* Similar to regularization

$$
\begin{aligned}
& \mathbf{w}^{\text {ridge }}=\underset{\mathbf{w}}{\arg \min }\left\{\sum_{i}\left(y_{i}-w_{o}-\sum_{j} x_{i j} w_{j}\right)^{2}+\lambda \sum_{j} w_{j}^{2}\right\} \\
& \mathbf{w}^{\text {ridge }}=\underset{\mathbf{w}}{\arg \min }(\mathbf{X W}-\mathbf{Y})^{T}(\mathbf{X W}=\mathbf{Y})+\lambda \mathbf{W}^{T} \mathbf{W} \\
& \Rightarrow \frac{d(\mathbf{X W}-\mathbf{Y})^{T}(\mathbf{X W}-\mathbf{Y})+\lambda \mathbf{W}^{T} \mathbf{W}}{d \mathbf{w}}=0 \\
& \Rightarrow \mathbf{X}^{T}(\mathbf{X W}-\mathbf{Y})+\lambda \mathbf{W}=0 \\
& \Rightarrow\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \mathbf{W}=\mathbf{X}^{T} \mathbf{Y} \\
& \Rightarrow \mathbf{w}^{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}^{-1} \mathbf{X}^{T} \mathbf{Y}\right.
\end{aligned}
$$

Ugly Math

$$
\begin{aligned}
& \mathbf{w}^{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
& \mathbf{Y}=\mathbf{X w}^{\text {ridge }}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{Y} \\
& =\mathbf{U} \boldsymbol{\Sigma} V^{T}\left(\mathbf{V} \mathbf{\Sigma}^{T} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} V^{T}+\lambda \mathbf{I}\right)^{-1} \mathbf{V} \mathbf{\Sigma}^{T} \mathbf{U}^{T} \mathbf{Y} \\
& =\mathbf{U} \boldsymbol{\Sigma}\left(V^{-T}\right)^{-1}\left(\mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} V^{T}+\lambda \mathbf{I}^{-1}\left(\mathbf{V}^{-1}\right)^{-1} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{Y}\right. \\
& =\mathbf{U} \boldsymbol{\Sigma}\left(\mathbf{V}^{-1} \mathbf{V} \mathbf{\Sigma}^{T} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} V^{T} V^{-T}+\mathbf{V}^{-1} \lambda \boldsymbol{\lambda} \boldsymbol{V}^{-T}\right)^{-1} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{Y} \\
& =\mathbf{U} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{Y} \\
& =\sum_{i} \mathbf{u}_{i} \frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda} \mathbf{u}_{i}^{T} \mathbf{Y}
\end{aligned}
$$

Physical Interpretation

* Singular values of \mathbf{X} represents the spread of data along different body-fitting dimensions
* To estimate $\mathbf{Y}\left(=\mathbf{X} \mathbf{w}^{\text {ridge }}\right)$ regularization minimizes the contribution from less spread-out dimensions
\square Less spread-out dimensions usually have much larger variance (high dimension eigen modes)
\square Trace $X\left(X^{T} X+\lambda I\right)^{-1} X^{T}$ is called effective degrees of freedom

More Details

* Trace $\mathrm{X}\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}+\lambda \mathrm{I}\right)^{-1} \mathrm{X}^{\mathrm{T}}$ is called effective degrees of freedom
\square Controls how many eigen modes are actually used or active
* Different methods are possible
\square Shrinking smoother: contributions are scaled
\square Projection smoother: contributions are used (1) or not used (0)

Practical Issue: Speed

* When there are many training samples, \mathbf{G} and Φ matrices are of size n by n
* Inverting such a matrix is of $\mathrm{O}\left(\mathrm{n}^{3}\right)$
* Reducing the number of bases used

Practical Issue: Speed (cont.)

$$
\begin{aligned}
& f^{*}(\mathbf{X})=\sum_{j=1}^{m} w_{j} G\left(\left\|\mathbf{X}-\mathbf{T}_{j}\right\|\right) \\
& \xi=\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\sum_{i=1}^{m} w_{j} G\left(\left\|\mathbf{X}_{i}-\mathbf{T}_{j}\right\|\right)\right)^{2}+\frac{1}{2} \lambda\left|D f^{*}\right|^{2} \\
& \left(\mathbf{G}^{T} \mathbf{G}+\lambda \mathbf{G}_{o}\right) \mathbf{W}=\mathbf{G}^{T} \mathbf{D}
\end{aligned}
$$

$$
\mathbf{G}=\left[\begin{array}{cccc}
G\left(\mathbf{X}_{1}, \mathbf{T}_{1}\right) & G\left(\mathbf{X}_{1}, \mathbf{T}_{2}\right) & \cdots & G\left(\mathbf{X}_{1}, \mathbf{T}_{m}\right) \\
G\left(\mathbf{X}_{2}, \mathbf{T}_{1}\right) & G\left(\mathbf{X}_{2}, \mathbf{T}_{2}\right) & \cdots & G\left(\mathbf{X}_{2}, \mathbf{T}_{m}\right) \\
\ldots & \ldots & \cdots & \cdots \\
G\left(\mathbf{X}_{n}, \mathbf{T}_{1}\right) & G\left(\mathbf{X}_{n}, \mathbf{T}_{2}\right) & \cdots & G\left(\mathbf{X}_{n}, \mathbf{T}_{m}\right)
\end{array}\right]_{n \times m}
$$

$$
\mathbf{G}_{o}=\left[\begin{array}{cccc}
G\left(\mathbf{T}_{1}, \mathbf{T}_{1}\right) & G\left(\mathbf{T}_{1}, \mathbf{T}_{2}\right) & \cdots & G\left(\mathbf{T}_{1}, \mathbf{T}_{m}\right) \\
G\left(\mathbf{T}_{2}, \mathbf{T}_{1}\right) & G\left(\mathbf{T}_{2}, \mathbf{T}_{2}\right) & \cdots & G\left(\mathbf{T}_{2}, \mathbf{T}_{m}\right) \\
\ldots & \ldots & \cdots & \cdots \\
G\left(\mathbf{T}_{n}, \mathbf{T}_{1}\right) & G\left(\mathbf{T}_{n}, \mathbf{T}_{2}\right) & \cdots & G\left(\mathbf{T}_{n}, \mathbf{T}_{m}\right)
\end{array}\right]_{m \times m}
$$

Practical Issue: Training

* How can the center of radial basis functions for the reduced basis set be determined?
* Chosen randomly
* Training involves finding $\mathrm{w}_{\mathrm{i},}$, using SVD
Training with K-mean
* Using unsupervised clustering
* Find where data are clustered - that is where the radial basis functions should be placed
* With k-mean

$$
\begin{aligned}
& \text { K-Means Algorithm } \\
& \text { (fixed \# of clusters) }
\end{aligned}
$$

* Arbitrarily pick N cluster centers, assign samples to nearest center
* Compute sample mean of each cluster
* Reassign samples to clusters with the nearest mean (for all samples)
* Repeat if there are changes, otherwise stop

Training with Gradient Decent

* Error Expression

$$
\xi^{(n)}=\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\sum_{j=1}^{m} w_{j}^{(n)} G\left(\left\|\mathbf{X}_{i}-\mathbf{T}_{j}^{(m)}\right\|\right)\right)^{2}
$$

* Free variables in the error expression are
\square Weight
- Center location
\square Basis spread

Effect of Weights

$$
\begin{aligned}
& \xi^{(m)}=\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\sum_{j=1}^{m} w_{j}^{(w)} G\left(\left\|\mathbf{X}_{i}-\mathbf{T}_{j}^{(m)}\right\|\right)\right)^{2} \\
& \xi_{i}^{(n)}=d_{i}-\sum_{j=1}^{m} w_{j}^{()^{(1)}} G\left(\left|\mathbf{X}_{i}-\mathbf{T}_{j}^{(m)}\right|\right) \\
& \frac{\partial \xi^{(m)}}{\partial w_{j}}=\sum_{i=1}^{n} \xi_{i}^{(m)} G\left(\left|\mathbf{X}_{i}-\mathbf{T}_{j}^{(i)}\right|\right) \\
& w_{j}^{(n+1)}=w_{j}^{(m)}-\eta_{w} \frac{\partial \xi^{(m)}}{\partial w_{j}^{(m)}}
\end{aligned}
$$

Effect of Center Positions

$$
\begin{aligned}
& \xi^{(n)}=\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\sum_{j=1}^{m} w_{j}^{(m)} G\left(\left\|\mathbf{X}_{i}-\mathbf{T}_{j}^{(1)}\right\|\right)\right)^{2} \\
& \xi_{i}^{(n)}=d_{i}-\sum_{j=1}^{m} w_{j}^{(m)} G\left(\left\|\mathbf{X}_{i}-\mathbf{T}_{j}^{(1)}\right\|\right) \\
& \frac{\partial \xi^{(n)}}{\partial \mathbf{T}_{j}^{(n)}}=2 w_{j}^{(n)} \sum_{i=1}^{n} \xi_{i}^{(n)} G^{\prime}\left\|\mathbf{X}_{i}-\mathbf{T}_{j}^{(1)}\right\| \mathbf{\Sigma}^{-1}\left(\mathbf{X}_{i}-\mathbf{T}_{j}^{\left({ }_{j}^{(n)}\right)}\right) \\
& \mathbf{T}_{j}^{(n+1)}=\mathbf{T}_{j}^{(n)}-\eta_{\mathrm{T}} \frac{\partial \xi^{(n)}}{\partial \mathbf{T}_{j}^{(1)}}
\end{aligned}
$$

Effect of Basis Spread

$$
\begin{aligned}
& \xi^{(n)}=\frac{1}{2} \sum_{i=1}^{n}\left(d_{i}-\sum_{j=1}^{m} w_{j}^{(m)} G\left(\mid \mathbf{X}_{i}-\mathbf{T}_{j}^{(w)} \|\right)^{2}\right. \\
& \xi_{i}^{(n)}=d_{i}-\sum_{j=1}^{m} w_{j}^{(1)} G\left\|\mathbf{X}_{i}-\mathbf{T}_{j}^{(n)}\right\| \\
& \frac{\partial \xi^{(n)}}{\partial \mathbf{\Sigma}_{j}^{-j^{(n)}}}=-w_{j}^{(n)} \sum_{i=1}^{n} \xi_{i}^{(n)} G^{\prime}\left\|\mathbf{X}_{i}-\mathbf{T}_{j}^{(i)}\right\| \mathbf{Q}_{i j}^{(n)} \\
& \mathbf{Q}_{i j}^{(n)}=\left(\mathbf{X}_{i}-\mathbf{T}_{j}^{(i)}\right)\left(\mathbf{X}_{i}-\mathbf{T}_{j}^{(m)}\right)^{T} \\
& \boldsymbol{\Sigma}_{j}^{-(n+1)}=\boldsymbol{\Sigma}_{j}^{-(n)}-\eta_{\mathbf{\Sigma}_{j}^{-\frac{1}{2}}} \frac{\partial \boldsymbol{\xi}_{j}^{(n)}}{\partial \mathbf{\Sigma}_{j}^{-n^{(n)}}}
\end{aligned}
$$

Details

* A lot of theoretical development results are omitted here
\square E.g., relation to kernel regression and SVM
* A lot of tuning considerations are not covered here
\square E.g., how to determine λ ?
* This is an active research area

Examples

544,000 data points w. 80,000 centers Accuracy of $1.4 \times 10^{2} \mathrm{C}$ forvall

Problem Definition

* Given a point cloud of data
\square From laser range scanner, or
$\square \mathrm{CT}, \mathrm{MR}$, etc.
* Find a single analytical surface approximation
* Or an inside-outside function
\square Range data are $s(\mathbf{X})=0$
\square Outside is $s(\mathbf{X})>0$
\square Inside is $s(\mathbf{X})<0$
* Just sample data $s(\mathbf{X})=0$ is not enough
a s can be a trivial zero function
\square Need off-surface data generation

Procedures

1. Off surface data generation
2. Choose a subset from the interpolation node \mathbf{x}_{i} and fit an RBF only to these
3. Evaluate the resideual $\mathrm{e}_{\mathrm{i}}=\mathbf{f}_{\mathrm{i}}-\mathrm{s}\left(\mathbf{x}_{\mathrm{i}}\right)$
4. If $\max \left(\mathrm{e}_{\mathrm{i}}\right)<a c c u r a c y$, then stop
5. Else append new centers where e_{i} is large
6. Re-fit RBF and go back to step 2

More Results

Figure 8: RBF approximation of noisy LIDAR data. (a) 350,000 point-cloud, (b) the smooth RBF surface approximates the original pointcloud data, (c) cut-away view illustrating the RBF distance field and the preservation of the gap between the amm and the torso.

(a)

(b)

(c)

