
Radial Basis Function NetworksRadial Basis Function NetworksRadial Basis Function NetworksRadial Basis Function Networks



Radial Basis Function Networks
 A special types of ANN that have three 

layerslayers
 Input layer
Hidd lHidden layer
Output layer

i f i hidd l i Mapping from input to hidden layer is 
nonlinear

 Mapping from hidden to output layer is 
linear
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Comparison
Multi-layer perceptron
 Multiple hidden layers

RBF Networks
 Single hidden layer Multiple hidden layers

 Nonlinear mapping
 W: inner product

 Single hidden layer
 Nonlinear + linear 
 W: distance W: inner product

 Global mapping
 W l ifi

 W: distance 
 Local mapping
 W d t Warp classifiers

 Stochastic 
approximation

 Warp data
 Curve fitting

approximation
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Another View: Curve Fitting
 We try to estimate a mapping from patterns 

into classes f(patterns)->classes, f(X)->df(p ) , f( )
 Patterns are represented as feature vector X
 Classes are decisions d Classes are decisions d
 Training samples: f(Xi)->di, i=1,..., n
 Interpolation of the f based on samples

d

x2

d
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Yet Another View: Warping Data
 If the problem is not linearly separable, 

MLP will use multiple neurons to defineMLP will use multiple neurons to define 
complicated decision boundaries (warp 
classifiers)

 Another alternative is to warp data into 
higher dimensional space that they are 
much more likely to be linearly separable  
(single perceptron will do)

 This is very similar to the idea of Support 
Vector Machine 
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Example
 XOR  Warpped XOR
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More Example
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A Pure Interpolation Approach
 Given: (Xi, di), i=1, …, n
 Desired: f(Xi)= di( i) i

 Solution: f(X), with f(Xi)= di

 Radial basis function solution   iiwf )()( XXX 
 X,Xi) – general form
 is shift and rotation invariant 
 Shift invariant requires X-Xi


i

iiwf )()( XXX 

q i

 Rotation invariant requires || X-Xi ||

 Example
22)(  Multiquadrics

 Inserve Multiquadrics
 Gaussan
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Graphical Interpretation
 Each neuron responds based on the distance to the center 

of its receptive field
 The bottom level is a nonlinear mappingpp g
 The top level is a linear weighted sum

  iiwf )()( XXX 
i
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Other Alternatives: Global
 Lagrange polynomials
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Other Alternatives: Local
 Bezier Basis  B-spline basis
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B-Spline Interpolation
 A big subject in mathematics

U d i di i li Used in many disciplines
Approximation 
 Pattern recognition
Computer graphics

 As far as pattern recognition is concerned
Determine order of spline (DOFs)

Knot vectors (partition into intervals)
 Fitting in each interval
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Interpolation Solution
XXX ),()(
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 is symmetrical
 is invertable (if all X ’s are distinct)
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Practical Issue: Accuracy (cont.)
 The  function represents the Green’s 

function for a certain differential operatorfunction for a certain differential operator
 When it is shift and rotational invariant, we 

it (X X ) G(||X X ||) ican write (X, Xi) as G(||X-Xi||), again, 
Gaussian Kernel is a popular choice here
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Practical Issues
 Accuracy 

How about data are noisy?How about data are noisy? 
 Speed

How about there are many sample points?
 Training

What is the training procedure? 
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Practical Issue: Accuracy
 When data are noisy, pure interpolation 

represents a form of “overfitting”represents a form of overfitting
 Need a stabilizing (or smoothing, 

l i ti ) tregularization) term 
 The solution should achieve two things

Good fitting
 Smoothness
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Practical Issue: Accuracy (cont.)
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 The solution is rooted in the regularization theory, 
which is way beyond the scope of this course (readwhich is way beyond the scope of this course (read 
the papers on the class Web sites for more details)

 Try to minimize error as a weighted sum of two 
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y g
terms which impose the fitting and the smoothness 
constraints



Sidebar I
 It can be proven that MAP estimator (Baysian rule) 

gives the same results as regularized RBF solution
 Un-regularized (fitting) solution assumes the same 

prior
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Sidebar II
 Regularization is also similar to (or call) 

ridge regression in statisticsridge regression in statistics
 The problem here is to fit a model to data 

ith t fittiwithout overfitting 
 In linear case, we have
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Intuition
 When variables xi are highly correlated, 

their coefficients become poorly determinedtheir coefficients become poorly determined 
with high variance
E g widely large positive coefficient on oneE.g. widely large positive coefficient on one 

can be canceled by a similarly large negative 
coefficient on its correlated cousincoefficient on its correlated cousin 

 Size constraint is helpful
Caveat: constraint is problem dependentCaveat: constraint is problem dependent 
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Solution to Ridge Regression
 Similar to regularization 

w
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Ugly Math
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Physical Interpretation
 Singular values of X represents the spread 

of data along different body-fittingof data along different body fitting 
dimensions

 To estimate Y(=Xwridge) regularization To estimate Y( Xw ) regularization 
minimizes the contribution from less 
spread-out dimensions
Less spread-out dimensions usually have much 

larger variance (high dimension eigen modes)
1Trace X(XTX+I)-1XT is called effective 

degrees of freedom

PR , ANN, & ML 23



More Details
 Trace X(XTX+I)-1XT is called effective 

degrees of freedomdegrees of freedom
Controls how many eigen modes are actually 

used or activeused or active
 Different methods are possible

Sh i ki th t ib ti l d Shrinking smoother: contributions are scaled 
 Projection smoother: contributions are used (1) 

or not sed (0)or not used (0)
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Practical Issue: Speed
 When there are many training samples, G

and  matrices are of size n by nand  matrices are of size n by n
 Inverting such a matrix is of O(n3) 
 Reducing the number of bases used
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Practical Issue: Speed (cont.)
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Practical Issue: Training
 How can the center of radial basis functions 

for the reduced basis set be determined?for the reduced basis set be determined? 
 Chosen randomly
 Training involves finding wi, using SVD
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Training with K-mean
 Using unsupervised clustering

Fi d h d t l t d th t i Find where data are clustered – that is 
where the radial basis functions should be 

l dplaced 
 With k-mean
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K-Means Algorithm
(fixed # of clusters)(fixed # of clusters)

 Arbitrarily pick N cluster centers, assign 
samples to nearest center

 Compute sample mean of each clusterp p
 Reassign samples to clusters with the 

nearest mean (for all samples)nearest mean (for all samples)
 Repeat if there are changes, otherwise stop
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Training with Gradient Decent
 Error Expression
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 Free variables in the error expression are
Weightg
Center location
Basis spreadp
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Effect of Weights
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Effect of Center Positions
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Effect of Basis Spread
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Details
 A lot of theoretical development results are 

omitted hereomitted here
E.g., relation to kernel regression and SVM

A l t f t i id ti t A lot of tuning considerations are not 
covered here
E.g., how to determine ?

 This is an active research area
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Examples
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544,000 data points w. 80,000 centers
Accuracy of 1.4x10-6 for all data points



Problem Definition
i i l d f d Given a point cloud of data
 From laser range scanner, or
CT MR etcCT, MR, etc.

 Find a single analytical surface approximation
 Or an inside outside function Or an inside-outside function

Range data are s(X)=0
Outside is s(X)>0Outside is s(X)>0
 Inside is s(X)<0

 Just sample data s(X)=0 is not enoughp ( ) g
 s can be a trivial zero function
Need off-surface data generation
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Procedures
1. Off surface data generation
2. Choose a subset from the interpolation node xi and p i

fit an RBF only to these
3. Evaluate the resideual ei = fi – s(xi)
4. If max(ei)<accuracy, then stop
5. Else append new centers where ei is largepp i g
6. Re-fit RBF and go back to step 2
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More Results
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