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Abstract

This research aims to improve the accuracy of com-
plex volleyball predictions and provide more mean-
ingful insights to coaches and players. We introduce
a specialized graph encoding technique to add addi-
tional contact-by-contact volleyball context to an al-
ready available volleyball dataset without any additional
data gathering. We demonstrate the potential benefits
of using graph neural networks (GNNs) on this en-
riched dataset for three different volleyball prediction
tasks: rally outcome prediction, set location prediction,
and hit type prediction. We compare the performance
of our graph-based models to baseline models and ana-
lyze the results to better understand the underlying re-
lationships in a volleyball rally. Our results show that
the use of GNNs with our graph encoding yields a
much more advanced analysis of the data, which notice-
ably improves prediction results overall. We also show
that these baseline tasks can be significantly improved
with simple adjustments, such as removing blocked hits.
Lastly, we demonstrate the importance of choosing a
model architecture that will better extract the important
information for a certain task. Overall, our study show-
cases the potential strengths and weaknesses of using
graph encodings in sports data analytics and hopefully
will inspire future improvements in machine learning
strategies across sports and applications by using graph-
based encodings.

Introduction
As the sport of volleyball has gotten more popular and play-
ers have begun joining at younger and younger ages, the
level of play has also increased. This increase in popularity
and the subsequent improvements in player skill have lead
to increasing demands for tactical analysis and better game
strategies. These demands come with a greater necessity for
computational analysis of the sport.

With recent increases in interest for sports data analyt-
ics through all sports, we have seen an increasing num-
ber of studies looking into predicting game events (Simp-
son et al. 2022), analyzing team and individual player
performance(Claudino et al. 2019), overall sport develop-
ment(Nadikattu 2020), and predicting or analyzing overall
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team performance across sports. For example, the sports of
Basketball, Soccer, and Baseball have seen several studies.

Basketball has seen several datasets released and other
analysis(Jain and Kaur 2017; Thabtah, Zhang, and Abdel-
hamid 2019), (Miljković et al. 2010)(Miljković et al. 2010;
Mahmood, Daud, and Abbasi 2021; Tian et al. 2019) for
predicting game outcomes, improving player developement,
predicting rising stars, or identifying opposing team’s offen-
sive and defensive strategies. Soccer (Simpson et al. 2022;
Decroos et al. 2019; Rudrapal et al. 2020; Baboota and Kaur
2019; Prasetio and Harlili 2016; Sawchik 2015; Whiteley
2007; Sun, Lin, and Tsai 2022; Huang and Li 2021; McPher-
son and MacMahon 2008; Chun, Son, and Choo 2021; Aoki
2010) have also seen studies focused toward a variety tasks–
including game event and outcome predictions, posture anal-
ysis, game lineup prediction, and injury risk assessment.

Despite growing interest in sports analytics, studies on
the sport of Volleyball have been limited so far. The few
studies that have been conducted have tended to have small
scopes and use basic naive approaches, yet they have yielded
a promising start and a good baseline to compare with. With
the increasing need for more and more sophisticated data
analytics strategies, we wish to introduce specialized encod-
ings and models for the sport of volleyball to improve upon
these current baseline approaches without the need for gath-
ering additional data.

Related Work
There have been a few recent datasets and studies for indoor
volleyball(Ibrahim et al. 2016; Wenninger, Link, and Lames
2020), but they are primarily focused toward computer vi-
sion and are not the most useful for tactical analysis or
tracking in-depth game statistics since they are missing sev-
eral important game variables. There has also been a recent
beach volleyball dataset(Wenninger, Link, and Lames 2020)
that has been more useful for tactical analysis, but due to
differences between beach volleyball and indoor volleyball–
primarily the additional players and more strict positions in
indoor volleyball–this dataset is limited solely to beach vol-
leyball analysis. Lastly, a recent study(Xia et al. 2022) in-
troducing a specialized indoor volleyball dataset has made a
noticeable leap in the field.

Xia et al.(Xia et al. 2022) has introduced a simple yet
powerful natural language to represent a volleyball rally
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as a sequence of rounds that each consist of a sequence
of 1-4 contacts (pass, set, hit, block) and gathered a large
dataset of NCAA and Professional men’s volleyball games.
This dataset has allowed much deeper and more useful
game statistics to be captured and analyzed, and this paper
also demonstrated some promising results in several never-
before-analyzed tactical analysis tasks. The authors demon-
strated some impressive results with simple naive models
when predicting the winner of a rally, predicting where a
setter will set the ball, and predicting what type of hit a hit-
ter will use. All of these tasks are valuable for a team to
determine more optimal offensive and defensive strategies
under different scenarios. This paper does, however, leave
room for improvement. The data used in this study is raw,
the approaches are naive, and the authors never explore any
forms of encoding their data to improve performance since
they are simply introducing baselines that their language is
capable of. Given the temporal sequence heavy format of the
volleyball language, we decided to explore temporal graph
based encodings for this language and dataset.

Graph based encodings have shown promising results for
analyzing other sports, such as American football, basket-
ball, and soccer. One recent study uses graph encodings
and Graph Neural Networks to predict various sports out-
comes(Xenopoulos and Silva 2021). This paper focuses on
creating a sports-agnostic way of representing game-states
using graph encodings. Through this technique, they are able
to capture inter-player relationships and local player rela-
tionships that can otherwise not be taken into account when
training a model. Further, the paper tests its player-specific
graph approach on American football and a popular esports
game, Counter-Strike. Through their methods, they demon-
strate a reduction in test loss by 20% and 9% for football
and Counter-Strike respectively. A similar work uses GNNs
for predicting future player locations and movements(?).
The work focuses on multi-agent sports such as basketball
and soccer and takes advantage of both GNNs and Vari-
ational RNNs to generate these future locations. Through
these techniques, they show that the statistical player distri-
bution of their generative model predictions outperform pre-
vious works. Further, they also test their model using condi-
tional prediction to answer questions such as: How will the
players move if A passes to B instead of C? Insight into these
conditional relationships is highly tactically useful when de-
termining new strategies or how to optimize individual play.

Since many sports can have data be well represented with
graph structures, graph encodings would likely work well
in the sport of volleyball in several areas. With the current
leading dataset(Xia et al. 2022) especially, using a graph
encoding might better represent the data. For instance, the
original dataset does not give the deep learning models any
information as to which variables belong to which contact
in a given ”ball round”. On top of this, there is no informa-
tion describing the temporal ordering of the contacts given
to the models. To give this additional context information to
the deep learning models and allow for a better representa-
tion of a volleyball rally without needing to gather any addi-
tional data, we propose encoding the volleyball round data
into a graph structure and using Graph Neural Networks to

complete the same tasks.

Graph Encoding
To analyze our graph encoding, we must first look at what
information the baseline dataset has to offer.

Underlying Data Representation
For this study, we will use the leading indoor volleyball
dataset (Xia et al. 2022)(Xia et al. 2022). This dataset splits
volleyball matches into a sequence of rallies and splits each
rally into a sequence of rounds. Each round contains vari-
ables describing round information (team and round num-
ber), various locations of ball contacts, pass and set rat-
ings, hit type used, blocking information, and serve type.
As explained earlier, all of this information—besides the
two round level variables—relates to each individual ball
contact. Pass contact location and pass rating relate to the
pass contact, set rating and location relate to the set contact,
etc. All of this points to a contact-level encoding being an
excellent option to test. Traditional sports GNN based ap-
proaches usually focus on mapping player interactions with
graph structures as the interactions and locations of play-
ers are typically the most important variables to analyze for
free-flowing sports such as basketball or soccer, however
since the sport of volleyball has the teams separated by the
net and a very rigid rule set to follow, the player interactions
and locations become less useful to analyze since there is
less freedom and instead the interactions with and locations
of the ball and ball contacts become much more important
information to focus on. Thus, this VREN Dataset(Xia et al.
2022) primarily focuses on ball interactions, and our analy-
sis with a contact-level graph encoding will attempt to aug-
ment the information from these ball interactions.

Encoding Methods
In order to attach the variables to their correct contacts and
encode the temporal format of the contacts, we must con-
sider each contact as a node of the graph and add each con-
tact’s important information to that node. For example the
set contact node will hold the setter location, set rating, and
set destination variables and the hit contact node will hold
the hitter location and hit type variables. Then to encode the
temporal aspect of the contacts, we will connect each con-
secutive contact with a one way edge from first contact to
second contact. For example, in a round with a pass, a set,
and a hit, we would connect the nodes with one way edges
from the pass node to the set node and from the set node
to the hit node. All edges will have equal weights, and the
dataset does not include any other useful information to in-
clude in edge attributes. Though a simple graph encoding
method, it fundamentally changes how a neural network will
analyze the data.

Rally Outcome Prediction Task
Since the baseline rally outcome prediction task in the
VREN paper(Xia et al. 2022) considers all information in
a round (except the winning team and win/lose reason), we
will use all the nodes for a given round to make a prediction.
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Figure 1: Our framework for taking raw round sequence data, encoding into a Graph structure, then making a rally outcome
prediction

As such, we end up with a graph involving a pass node, then
set node, then hit node, then block node. These graphs will
involve the exact same information as is used in the baseline
task, but will just have a new graph encoding.

Set Location Prediction Task
The baseline set location prediction task in the VREN paper
only uses the information in a round up to when the setter
is about to set the ball. If we were to follow this same strat-
egy, our encoding would involve only 2 nodes (pass and set
nodes) in each graph, and very small graph sizes seem to
yield poor GNN performance. However, we can include in-
formation from the hit and block nodes of the previous round
(if there is a previous round in that rally). From further base-
line testing, this additional information does not noticeably
effect performance in any baseline model, so any perfor-
mance changes with this task will be solely from the graph
encoding. Therefore, for this task each graph involves the
previous round’s hit node (if it exists), the previous round’s
block node (if it exists), the current round’s pass node, and
the current round’s set node only including information from
before the setter contacts the ball—such as where the setter
will set the ball from.

Hit Type Prediction Task
Similar to the set location prediction task, the baseline hit
type prediction task in the VREN paper only uses the in-
formation in a round up to when a hitter is about to hit the
ball. For this task, we decided to add in the previous round’s
block node to reach a consistent graph size of 4 nodes for

better GNN performance. As with the set prediction task,
this additional information yielded no difference in baseline
performance. So for this task, each graph involves the previ-
ous round’s block node (if it exists), the current round’s pass
node, the current round’s set node, and the current round’s
hit node only including information from before the hitter
contacts the ball—such as the location the hitter will be hit-
ting from.

Methods
With the graph encodings set up, next we turn to the models
we will test. To keep comparison consistent with the base-
line, we will test a GCN to compare with CNN, a Graph
GRU to compare with LSTM, and a Graph Transformer to
compare with Transformer. To Implement all of these mod-
els, we will use Spektral, a GNNs package built on Ten-
sorflow and Keras. Since this package does not include a
Graph Transformer Convolution layer, we implemented one
modeled off of the Graph Transformer architecture intro-
duced in Shi et al.(Shi et al. 2021) which has shown excel-
lent results for Graph-based learning tasks. We used Ten-
sorflow and Keras to build this Graph Transformer Convo-
lution Layer off of the base MessagePassing layer available
in Spektral. This Graph Transformer architecture performs
self-attention on graph edges with queries embedded from
the node features for the origin of the edge and keys and val-
ues embedded from the node features for the terminal of the
edge. This architecture also includes gated residual connec-
tions between layers, a key factor making this architecture a
Transformer.
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Models Tested

For the rally outcome prediction task, we will analyze all
three of these GNN structure’s performances just like the
baseline, but for the other two tasks, we will analyze the
Transformer and CNN/GCN architectures only since the
RNNs tend to struggle on these volleyball tasks for a num-
ber of reasons. The GCN architecture we used for all tasks
involved one Graph Convolution Layer, a graph global pool-
ing layer to get a graph level value, then 3 dense layers.
The Graph GRU architecture we used involved a Gated
Graph Convolution Layer with a GRU Gate, a graph global
pooling layer, then 2 dense layers. Lastly the Graph Trans-
former architecture we used for all tasks invloved one cus-
tom Graph Transformer Convolution Layer, a graph global
pooling layer, then 2 dense layers. The rally outcome models
had a single float output with a sigmoid activation function
on the final output layer to yield a probability value between
0 and 1; these models used MSE as their loss function for
training, and MAE, binary accuracy, AUC, and Brier Score
as metrics for validation and testing. The set location models
had an array of 9 values as an output with a softmax activa-
tion function on the final output layer to yield probability
predictions for each set location that sum to 1; these models
used the cross-entropy loss function for training and cate-
gorical accuracy as metrics for validation and testing. The
hit type models had an array of 8 values as an output with a
softmax activation function on the final output layer to yield
probability predictions that sum to 1; these models also used
the cross-entropy loss function for training and categorical
accuracy as metrics for validation and testing.

Hit Type Prediction Task Modification

We decided to modify the original Hit Type Prediction task
to make it even more useful for tactical analysis. To do this,
we decided to ignore blocked hits. First, this will make it
easier to predict hit types as the other hit types are relatively
predictable given the set rating, locations, and other infor-
mation in this dataset, but whether the ball is blocked or not
depends on much more than the information in the dataset.
This means that including the ”blocked” hit type will end up
confusing the models since they are missing the necessary
information to predict if a player will be blocked. Second,
removing blocked hits will focus the task on more important
predictions. Predicting if a hitter will be blocked provides
essentially no use in tactical analysis, as strategy on both the
offensive and defensive sides will not change if you know
that a hitter will or will not be blocked. The offensive team
will see no tactical gain in not covering their hitter when they
know they won’t be blocked and the defensive team will see
no tactical gain in allowing their non-blocking players to re-
lax on the court because they know the ball will be blocked.
The other hitting types are much more tactically useful to be
able to predict, so we will focus the Hit Prediction Task on
those hitting types and seek to improve performance there.
We ran the same baseline models on our modified version of
this task for comparison with our graph-based approach.

Results and Analysis
We found that the graph encodings provided noticeable
improvements in most cases and consistently standardized
models’ performances between the NCAA and Professional
games. In the baseline models, the models would consis-
tently perform much better or worse on either the NCAA
or Pro game for every task. This was due to differences in
the level of play and consistency between the NCAA and
Professional games in the dataset. For example, the base-
line models were better at predicting rally outcomes and hit
types in the professional games because they are less random
and more deterministic given the better, more consistent, and
more mentally strong play by professional players; addition-
ally the baseline models were better at predicting the set
locations because professional setters are more skilled and
make more randomized sets to confuse the opposing team.
With the graph encodings, however, the difference in model
performance between NCAA and Pro games was small or
negligible in almost all cases. This decrease in this perfor-
mance gap is because the graph encoding makes the under-
lying volleyball relationships between the data much more
clear to the models. In some tasks, these relationships are
more or less clear to the baseline models in NCAA or Pro-
fessional play, but by manually explaining these relation-
ships to the models, the relationships become equally clear
and thus the models’ performances becomes more similar.
For most cases, this improved understanding of the under-
lying relationships between contacts in the game can boost
performance, and for others—where contact-by-contact in-
formation may not be as useful or where models had diffi-
culty analyzing the additional information—it struggled to
improve performance.

Next we present an in depth analysis of each task’s results.

Rally Outcome Prediction Results
Overall, the use of our graph encodings and GNNs yielded
significant improvements for the rally outcome prediction
task as shown in Table 1 below. GCN and Graph GRU both
yielded huge improvements for both the NCAA and Pro test-
ing games over baseline in all metrics but brier score. Graph
Transformer yielded a large improvement in NCAA game
performance and a slight but noticeable boost in Pro game
performance in all metrics except for brier score (which per-
formed slightly better in the Pro game and slightly worse
in the NCAA game). These improvements suggest that the
graph encoding gives the model a much more detailed pic-
ture of what is happening in the rally allowing for more
detailed—and thus better performing—predictions. Since a
Transformer does an excellent job at analyzing the relation-
ships between different variables with its attention mecha-
nism, it does not benefit as much from the graph encod-
ing. The Graph Transformer did perform noticeably better
on the NCAA game, however, so this again suggests that the
lower level of play in the NCAA game made it harder to find
these underlying relationships as compared to the Pro game,
but the graph encoding was able to make these relationships
more clear and thus standardized performance between the
two levels of play.
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Table 1: rally outcome prediction task performance of each model on college-level games & professional games. There are
significant improvements among all three models compared to the baseline performance. The Graph Transformer gives the best
result.

Level of game Model Binary Accuracy(%) AUC Brier Score Mean Absolute Error

college

Transformer∗ 74.38 0.82 0.18 0.34
CNN∗ 69.06 0.75 0.20 0.40

LSTM∗ 65.91 0.75 0.21 0.41
Graph Transformer 81.15 0.87 0.15 0.27

Graph GRU 77.81 0.86 0.33 0.31
GCN 78.20 0.86 0.20 0.30

professional

Transformer∗ 80.00 0.85 0.16 0.32
CNN∗ 71.59 0.76 0.20 0.39

LSTM∗ 70.06 0.75 0.20 0.40
Graph Transformer 81.15 0.87 0.16 0.27

Graph GRU 77.83 0.86 0.29 0.31
GCN 78.20 0.86 0.17 0.30

* model prediction results from VREN(Xia et al. 2022).

Set Location Prediction Results

Table 2: Categorical Accuracy for setting location prediction
in both professional and college level games. All three mod-
els are improved compared to the baseline result

Level of game Model Categorical Accuracy(%)

college

Transformer∗ 54.65
GCN 59.10
CNN 57.43

Graph Transformer 56.57

professional

Transformer∗ 51.65
GCN 59.10
CNN 53.30

Graph Transformer 56.57
* model prediction results from VREN(Xia et al. 2022).

The set location prediction task saw noticeable improve-
ments when using our graph encoding as shown in Table 2.
Not only did a base CNN perform better than the base-
line Transformer (the only model tested in VREN(Xia et al.
2022)), but the GCN improved upon the CNN’s performance
even further. Additionally the Graph Transformer saw a sim-
ilar performance boost over the baseline Transformer. With
our addition of the baseline CNN and the improved perfor-
mance with the graph encodings, we found a much better
understanding of what information goes into a setters deci-
sion to set the ball. First, given the fact that setters try to be as
random as they can be when making set location predictions,
a simpler model seems to do better. The simple CNN model
gives a 2-3% performance boost over the baseline Trans-
former, which is pretty noticeable in a hard to predict task,
and GCN yields a similar performance boost over Graph
Transformer. Secondly, it seems that the graph encoding and
additional information from the previous round does help
improve set prediction performance, but the improvement is
not as significant as the previous task. This result, combined
with the better performance of the convolution models over

the transformer models, would suggest that the location a
setter will set to depends less on contact-by-contact infor-
mation than the outcome of the rally. Instead, the location a
setter will set to likely depends more on simpler information
(such as setters location on the court, pass rating, etc), which
would allow a simpler convolution model to extract this in-
formation better. Additionally, this theory would match up
with volleyball expert’s opinions on what influences the set
location during a rally. Lastly, there is likely other useful in-
formation for predicting where a setter will set the ball that
is not included in this dataset, such as how rushed the setter
is and how high the pass is.

Hit Type Prediction Results
For the hit prediction task, the graph encodings and addi-
tional information from the previous round yielded mixed
results but for the most part not much change as shown in
Table 3. The graph encoding noticeably improved the per-
formance of the Graph Transformer over the baseline for
the NCAA games and was relatively the same for the Pro
games, and the GCN performed slightly worse than base-
line CNN for both sets of games. These results would sug-
gest that the encoded contact-by-contact information is not
as important for this task; the additional information may
slightly improve models that can use this information well—
such as a Transformer—but may harm simpler models that
cannot analyze this information as well. Overall this would
point to the location a hitter hits to being heavily influ-
enced by individual variables, but with some small influ-
ence from other contact-by-contact information. When in-
cluding the ”blocked” hit type, the simpler base CNN model
outperformed the baseline Transformer model, but when
this hit type is excluded they performed identically. This
would suggest that a player getting blocked may depend
more heavily on simple information (such as the location
of the hitter or number of blockers), but the hit type a hitter
chooses to use may depend slightly more on the contact-by-
contact information. Additionally, removing the ”blocked”
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Table 3: Categorical Accuracy for hit type prediction task in
both NCAA and Professional games with blocked hits in-
cluded vs excluded from training and testing. Graph Trans-
former improved on or gave consistent results with baseline
in all cases, while GCN performed slightly worse than base-
line in all cases

Level of game Blocked hits Model Categorical accuracy(%)

College

included

Transformer∗ 71.28
GCN 69.64
CNN 72.04

Graph Transformer 73.31

excluded

Transformer∗ 80.68
GCN 80.10
CNN 80.68

Graph Transformer 86.41

Professional

included

Transformer∗ 73.63
GCN 69.64
CNN 74.73

Graph Transformer 73.31

excluded

Transformer∗ 86.36
GCN 80.10
CNN 86.36

Graph Transformer 86.39
* model prediction results from VREN(Xia et al. 2022).

hit type yielded significant improvements in performance in
all cases. Just like the set prediction task, this task would
very likely benefit from having additional information, such
as how tight to the net the set is and where the ball is located
in relation to the hitter’s body.

Analysis
From these results, we can gather that predictions for out-
comes that are largely influenced by contact-level informa-
tion (like the rally outcome) will largely benefit from using
a graph encoding to bolster the contact-level information in-
putted into a model. And similarly, outcomes that depend
on contact-level information less (like the type of hit a hit-
ter uses) will benefit less or see mixed results. Additionally,
the use of our graph encoding allows the models to ana-
lyze the game in a much more advanced and human way.
The baseline models view the variables in the round glob-
ally and then they try to analyze the connections between
them. This is similar to how a beginner of the sport would
view a volleyball game: they view a whole round and un-
derstand general connections between big events that factor
into certain outcome—like which team wins the rally. To
truly understand the flow of a rally, however, it’s more im-
portant to look at how consecutive contacts are influencing
each other. For example, it’s more important to understand
how serving to a certain player may affect the rating and
location of the pass, which may limit the players a setter
can set to, which can significantly decrease a teams chance
of winning that rally. This sort of analysis is already used
by coaches, analysts, and fans who are more knowledge-
able of the sport to evaluate how a game is going and how
to change strategy to improve. GNNs primarily focus their

analysis on graph edges, and in our encoding specifically
this is the relationships between consecutive contacts. Thus
the use of GNNs with our graph encodings yields a much
more advanced analysis of the data which noticeably im-
proved our results overall. Another takeaway is that these
baseline tasks can be significantly improved—both in pre-
diction ability and in tactical usefulness—with simple ad-
justments. Removing blocked hits greatly improved predic-
tion results at the same time as making the predictions more
tactically focused and applicable.

Conclusion and Future Work
In this paper, we introduce a novel graph encoding to add ad-
ditional contact-by-contact volleyball context to an already
available volleyball dataset without any additional data gath-
ering. This graph encoding can yield large improvements in
prediction tasks that depend heavily on this information, but
may not yield much benefit for tasks that do not. Ultimately,
encodings are specialized tools that will not work in all situ-
ations. Overall these results show the potential strengths and
weaknesses of using graph encodings in sports data analytics
and hopefully will inspire future improvements in machine
learning strategies across sports and applications by using
graph based encodings. Additionally, we demonstrate the
importance of choosing a model architecture that will bet-
ter extract the important information for a certain task—in
some sports analysis tasks a much simpler model will per-
form noticeably better on the given data. Lastly, we were
also able to gain a much better understanding of the under-
lying relationships in a volleyball rally from these results;
for a coach or player, this is extremely useful for making
more informed game decisions.

In future studies, we hope to gather more sophisticated
data than included in the dataset we explored in this study
and analyze other encoding formats to see if that can im-
prove prediction results.
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