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Abstract Detecting temporal activities in untrimmed

video streams is an important and challenging task.

To solve this problem, we need to not only recognize

the activity categories, but also localize the temporal

span, i.e., the start and end time of each activity in-

stance. In this paper, we present a novel Single-Shot

Multi-Span Detector for effectively and efficiently de-

tecting temporal activities in long, untrimmed videos

using a simple end-to-end, fully three-dimensional con-

volutional (Conv3D) network. Our approach, named

S3D, encodes the entire video stream and discretizes the

output space of temporal activity spans into a set of de-

fault spans over different temporal locations and scales.

At the prediction time, S3D predicts scores for the pres-

ence of activity categories in each default span as well

as temporal adjustments relative to the span location
to produce the precise activity duration. Additionally,

S3D combines predictions from multiple feature maps

with different temporal resolutions to naturally handle

activities of different lengths, and temporal contextual

information is further exploited by appropriately fusing

multi-scale feature maps. Unlike state-of-the-art sys-

tems that require a separate proposal and classification

stage, S3D encapsulates all computation in a single-

shot, end-to-end detection framework, making it sim-

pler, faster and more robust. We evaluate the proposed

approach on two challenging public benchmarks THU-

MOS’14 and ActivityNet, where S3D achieves state-of-

the-art performance and efficiency in both.
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Fig. 1 We consider the problem of temporal activity de-
tection in long untrimmed video streams. (a) Conventional
two-stage detector where temporal proposal generation and
proposal classification are designed as separate components;
(b) The proposed single-shot end-to-end temporal detection
framework to directly produce prediction results.

1 Introduction

Temporal activity detection has drawn increasing inter-

ests in both academic and industry communities due to

its vast potential applications in security surveillance,

video analytics, videography, etc. Different from activ-

ity recognition, which only aims at classifying the cate-

gories of manually trimmed video clips, activity detec-

tion is for localizing and recognizing activity instances

from long, untrimmed video streams. It is substantially

more challenging, as it is expected to handle activities

with variable lengths, predicting not only the activity

category but also the precise temporal boundary of each

instance. Advances in deep Convolutional Neural Net-

work (CNN) have led to significant progress in video

analysis over the past few years. While the performance

of activity recognition has improved a lot [36,37,30,9,
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40,34], the detection performance still remains unsatis-

factory [38,43,29].

A typical framework used by many state-of-the-art

systems [24,29,38,28] is detection by classification (Fig. 1),

where temporal proposals are generated by sliding win-

dows [24,29] or advanced proposal methods [39,4] and

separate activity classifier is then applied to predict

the final detection results. In order to predict the pre-

cise starting and ending times, a recent work [28] ap-

plies deconvolutional networks to generate per-frame

prediction scores for each temporal proposal and ad-

justs temporal boundaries accordingly. However, there

are certain limitations to these frameworks: (1) Tempo-

ral proposal generation and classification are indepen-

dent processes and optimized separately using different

networks, resulting in sub-optimal performance, (2) the

classification network only takes the proposal frames as

input, thus forbidding it to see a larger temporal con-

text which can be beneficial, and (3) a two-stage ap-

proach is usually slow due to inefficient proposal meth-

ods and duplicate operations repeated in the proposal

and classification stages.

In this paper, We propose a Single-shot multi-Span

Detector (S3D), a simple yet novel fully Conv3D net-

work for effective and efficient temporal activity detec-

tion in continuous untrimmed video streams. As illus-

trated in Fig. 2, S3D produces a fixed-size collection of

temporal spans and scores for the presence of activity

class instances in those spans, followed by a temporal

non-maximum suppression (NMS) step to generate the

final detection results. S3D is a highly-unified network

by eliminating explicit temporal proposal and classifi-

cation stages and solving the detection problem in one

single shot. We set multi-scale default spans at feature

maps with different temporal resolutions to naturally

handle activities of different lengths, and the feature

maps are further augmented with temporal contextual

information by appropriately fusing multi-scale feature

representations. Furthermore, we predict the temporal

offsets to adjust each default span in order to predict

precise temporal boundaries.

Our framework is based on the successful Conv3D

filters [34,5]. While the original Conv3D filter is applied

upon a short video segment for activity recognition, the

convolutional nature allows it to be applied on video

with an arbitrary length. In S3D, the network takes as

input the whole video stream and applies a sequence of

Conv3D filters to extract features and produce predic-

tion results, allowing our scheme to see a larger tempo-

ral context and produce better detection results. The

whole network is end-to-end trainable with a joint loss

to directly maximize the detection performance.

Comparing to existing state-of-the-art systems, our

S3D is much simpler, faster and more robust. In sum-

mary, our work makes the following contributions:

– We introduce S3D, a single-shot end-to-end activity

detection model based completely on Conv3D net-

works that can effectively predict both the precise

temporal boundaries and confidence scores of mul-

tiple activity categories in untrimmed videos.

– We demonstrate experimentally that our S3D achieves

state-of-the-art performance on temporal activity

detection task on both THUMOS’14 and Activi-

tyNet benchmarks.

– To the best of our knowledge, by eliminating ex-

plicit proposal generation step and formulating the

temporal activity detection in a single-shot solution

with fully Conv3D layers, our detector achieves the

fastest run-time speed on a single GTX 1080 Ti

GPU with 1271 frame per seconds (FPS).

This paper significantly extends our recent BMVC

2018 conference paper in [45], and the improvements

are multiple folds with in-depth discussion. First, we

provide a deeper insight into the proposed single shot

multi-span detector in a more general setting. In this

view, our framework is compatible with a wide range

of Conv3D-based networks. Second, we offer detailed

in-depth discussions in all sections in this paper in-

cluding but not limited to related works, network op-

timization strategies, prediction methods, quantitative

and qualitative experiment results. Third, based on the

original architecture proposed in [45], we further ex-

ploit temporal contextual information by explicitly fus-

ing multi-scale temporal features and obtains the new
state-of-the-art for the temporal detection task. Last

but not least, extensive experiments are conducted for

thoroughly and insightfully examining the effectiveness

of single-shot multi-span detector. The results on an

additional large-scale ActivityNet [8] dataset show the

generalization of our method.

The rest of the paper is organized as follows. In Sec-

tion 2, we first present representative works related to

our approach including activity recognition, object de-

tection and temporal activity detection. Then we show

details of our approach in Section 3. In Section 4, we

provide the training details of our network. In Section 5,

we offer the network prediction and post-processing de-

tails. In Section 6, both quantitative and qualitative

experimental results and analysis of the proposed ap-

proach are provided. Experiments on two challenging

public temporal activity detection benchmarks, namely

THUMOS’14 [17] and ActivityNet [8], with compari-

son to the state-of-the-art methods, distinctly demon-

strate the efficiency, robustness, and effectiveness of our
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single-shot multi-span detector. The experimental re-

sults show that our method achieves the new state-of-

the-art performance and efficiency. Finally, the conclud-

ing remarks are summarized in Section 7.

2 Related Work

In this section, we review relevant works in activity

recognition, object detection, and temporal activity de-

tection. Other works on spatial-temporal activity de-

tection and video segmentation are beyond the scope

of this paper.

Activity Recognition. Activity recognition is an im-

portant research topic for video analysis and has been

extensively studied in the past few years. Earlier meth-

ods were often based on hand-crafted visual features

such as improved Dense Trajectory (iDT) [36,37] con-

sisting of HOG, HOF, MBH features extracted along

dense trajectories, feature encoding with Fisher Vector

(FV) [25,23], VLAD [16], etc. In the past few years,

tremendous progress has been made due to the intro-

duction of large datasets [8,17] and the developments of

deep neural networks [34,9,40,35,30,5,26]. Two-stream

network [30] learned both spatial and temporal features

by operating the network on single frames and stacked

optical flows using 2D CNN such as AlexNet [19], VGG [31]

and ResNet [14]. 3D CNN architecture called C3D [34]

used Conv3D filters to capture both spatial and tem-

poral information directly from raw video frames. More

recently, improvements on top of the C3D architec-

ture [35,5,26] as well as advanced temporal building

blocks such as non-local modules [41] were proposed to

further boost the performance. However, the assump-

tion of well-trimmed videos where the activity of in-

terest lasts for the entire video duration limits the ap-

plication of these approaches in real scenarios, where

the videos are usually long and untrimmed. Although

they do not consider the difficult task of localizing ac-

tivity instances, these methods are widely used as the

backbone network for the detection task.

Object Detection. Activity detection in untrimmed

videos is closely related to object detection [13,27,21] in

spatial images, where detection is performed by classify-

ing region proposals into foreground classes or a back-

ground class. Earlier work [13] relied on an external

region proposal method and trained a CNN classifier

to classify each proposed region. Faster-RCNN [27] in-

corporated a region proposal network and RoI pooling

to jointly generate and classify region proposals with a

single network, resulting in a large improvement of the

accuracy and efficiency. SSD [21] completely eliminated

proposal generation and subsequent feature re-sampling

stages and encapsulated all computation in a single net-

work to directly output object locations and confidence

scores. Our network is inspired by SSD [21] and adopt

similar design philosophies for temporal activity detec-

tion. Like SSD [21], our S3D model is also designed for

both accuracy and efficiency in a single-shot operation.

Temporal Activity Detection. Unlike activity recog-

nition, the detection task focuses on learning how to de-

tect activity instances in untrimmed videos with anno-

tated temporal boundaries and instance category. The

problem has recently received significant research at-

tention due to its potential application in video data

analysis.

Early approaches on activity detection mainly used

temporal sliding windows as candidates and classified

them with activity classifiers trained on multiple fea-

tures [23,10,15,22,33]. They typically extract iDT fea-

tures or pre-trained DNN features, and globally pool

these features within each window to obtain the in-

put for the SVM classifiers. However, these approaches

might be computationally inefficient, because one needs

to apply each activity classifier exhaustively on win-

dows of different sizes at different temporal locations

throughout the entire video.

Inspired by the success of region-based detectors in

object detection [13], many recent works adopt a two-

stage, proposal-plus-classification framework [3,28,29,

46,11], i.e. first generating a sparse set of class-agnostic

segment proposals from the input video, followed by

classifying the activity categories for each proposal. A

large number of these works focus on designing better

proposal schemes [3,46,11], while others focus on build-

ing more accurate activity classifiers [28,29,46]. How-

ever, most of these methods do not afford end-to-end

training on either the proposal or classification stage.

And the proposals are typically selected from sliding

windows of predefined scales, where the boundaries are

fixed and may result in imprecise localization results.

Along this line of attack, Faster-RCNN is the latest

region-based object detector which is composed of end-

to-end trainable proposal and classification networks,

and applies region boundary regression in both stages.

A few very recent works have started to apply such ar-

chitecture to temporal activity detection [42,7,6], and

demonstrated competitive detection accuracy. R-C3D [42]

is a classic example that closely follows the original

Faster-RCNN in many design details. Dai et al. [7] ex-

plicitly modeled temporal contextual information into

the proposal stage. Chao et al. [6] proposed to use a

multi-tower network with temporal contexts to further

improve the detection performance. However, all these

methods require a separate temporal proposal and ac-

tivity classification method.
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Fig. 2 S3D network architecture: Our network takes an untrimmed video ν = {Ii}Li=1, Ii ∈ RH×W×3 as input and computes
base features using a standard Conv3D-based network truncated before the first fully-connected layer. We add auxiliary
Conv3D layers on top of Cbase to produce a temporal feature hierarchy with multi-scale default spans at each layer. For each
temporal feature map cell, we predict class confidence scores and location offsets with a set of Conv3D filters. Temporal NMS
is applied to produce the final detection results. Please refer to Fig. 3 and Fig. 4 for a detailed illustration of multi-scale default
spans and temporal contextual modeling.

Most recently, several attempts were made towards

single-shot temporal activity detection: SSAD [20] pro-

posed to directly predict activity instances in untrimmed

videos with a separate feature extraction and detection

network. SS-TAD [2] have investigated the use of gated

recurrent memory module in a single-stream detection

framework. Our approach is one of the first within this

group to propose a highly-integrated detection architec-

ture. With a simple end-to-end Conv3D network which

learns directly from raw video frames to produce final

detection outputs, S3D is able to jointly optimize fea-
ture representation and prediction layers, resulting in

a simple, fast and robust architecture achieving both

state-of-the-art performance and fast run-time speed.

3 Approach

We introduce a Single-shot multi-Span Detector (S3D),

a simple yet novel fully Conv3D network for activity

detection in continuous untrimmed video streams. The

S3D approach, illustrated in Fig. 2, is based on a feed-

forward fully Conv3D network that produces a fixed-

size collection of temporal spans and scores for the pres-

ence of activity class instances in those spans, followed

by a temporal NMS step to generate the final detection

results.

Our model consists of four major components: base

feature layers, auxiliary temporal feature layers, multi-

scale default spans and context-aware convolutional pre-

dictors. The early network layers are based on a stan-

dard architecture used for activity classification (trun-

cated before the first fully-connected layer) to extract

high-level features given an input video stream, which

we call the base feature layers (Section 3.1). We then

add auxiliary temporal feature layers (Section 3.2) to

the end of the based feature layer to generate rich spatial-

temporal feature hierarchies. These layers decrease in

temporal dimension progressively and allow predictions

of temporal spans at different locations and scales. We

associate a set of default temporal spans with each fea-

ture map cell and the default spans tile the tile the fea-

ture map in a convolutional manner, which we denote

as the multi-scale default spans (Section 3.3). At each

feature map cell, we predict the offsets relative to the

default span in the cell, as well as the confidence scores

that indicate the presence of an activity instance in

each of those spans. These are done by adding context-

aware convolutional predictors (Section 3.4) on top of

each cell. We now describe each part of S3D in detail.

3.1 Base Feature Layer

The base feature layer is used to extract compact yet

representative spatial-temporal features from a given

input video stream. Like two-dimensional convolution

(Conv2D) filters have been widely used to extract fea-

tures for images, we use Conv3D filters which convolves

in both spatial and temporal dimensions to generate

rich feature hierarchies for videos.
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(b) Feature map with temporal size 8
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(a) Video with GT spans

(c) Feature map with temporal size 4
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Fig. 3 S3D framework. (a) Input video with temporal ground-truth annotations. We evaluate a small set (e.g. R = 4) of
multi-scale default spans at each location in several feature maps with different temporal resolutions. For each default span,
we predict both the temporal offsets and the confidences for presence of activity and all activity categories. At training time,
we match the default spans to the ground truth spans.

In more detail, the input of our network is a long,

untrimmed video with an arbitrary length. We denote

a video ν as a series of RGB frames ν = {Ii}Li=1, where

Ii ∈ RH×W×3 is the i-th input frame, L is the total

number of frames, H and W are the height and width of

each frame, respectively. We apply the Conv3D-based

architectures [34,5,35] for activity recognition as our

base feature layer as it has been proven as an effec-

tive building block in prior works [42,6]. Specifically,

we adopt the Conv3D layers (truncated before the first

fully-connected layer) of a classification network [34,5,

35] to generate a feature map Cbase ∈ Rlb×hb×wb×db

where db is the output feature dimension, lb, hb and

wb are derived from the equivalent convolution strides

given a specific classification network. we use Cbase as

our base feature since it is a rich yet compact spatial-

temporal representation of the input video stream. More

importantly, as the backbone network of an object de-

tector can be easily altered with different Conv2D net-

works, our base feature layer is also compatible with a

wide range of video encoding architectures.

3.2 Auxiliary Temporal Feature Layers

To allow the model to predict variable scale temporal

spans, we add temporal feature layers to the end of

the base feature layer. Specifically, we first down sam-

ple Cbase both spatially and temporally to reduce the

computational overhead while keep sufficient spatial-

temporal information. We then add auxiliary Conv3D

layers to produce a sequence of feature maps {Ci}Ni=1,

Ci ∈ Rli×h×w×d that progressively decrease in tempo-

ral dimension while keeping the same spatial resolution,

where N is the total number of temporal feature maps

each with a temporal dimension li and spatial dimen-

sion h×w. For a simple and efficient design, we set each

feature map to have the same feature dimension d and

the temporal dimension in between follows li = 2li+1.

The detailed network configurations are illustrated

in Fig. 2, we stack Conv3D layers with temporal kernel

size 3 to extend the temporal receptive field and the

stride is set to 2 for progressively decreasing the tem-

poral dimension. We also add bottleneck Conv3D lay-

ers to help prevent over-fitting and improve run-time

efficiency. Simplicity is central to our design and we

have found that our model is robust to many design

choices. We have experimented with more enhanced

building blocks such as dilated convolution [44] and ob-

served marginally better results. Designing better net-

work blocks is not the focus of this paper, so we opt for

the simple design described above.

The network is intrinsically simple by only apply-

ing Conv3D filters, but builds a rich feature hierarchy

by summarizing a continuous video stream in multiple

temporal resolutions, allowing us to add default tem-

poral spans at certain layers to obtain temporal predic-

tions at multiple scales.

3.3 Multi-scale Default Spans

To handle different activity locations and scales, [29]

suggests processing the video at different segment lev-

els and combining the results afterward, while [2] uses a

gated recurrent network to assign a number of anchors

at different time steps. However, by utilizing feature

maps from several different layers in a single network

for prediction we can mimic the same effect, while also

sharing parameters across all temporal scales. We use
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Fig. 4 Illustration of the context-aware convolutional predictor. Every temporal feature map cell at all layers is enhanced
by the last feature map CN which summarizes the whole video content. For each temporal feature map cell with contextual
information, we predict 1 activity confidence score, K class confidence scores and 2 location offsets with a convolutional
predictor. The convolutional predictor is a single Conv3D layer with filter size 1× h×w to produce a prediction vector of size
R× (K + 1 + 2).

feature maps with different temporal resolutions for de-

tection since earlier feature maps have higher resolution

and capture finer details of the input video, and deeper

feature maps have larger receptive fields and contain

more temporal contexts. So we let the earlier feature

maps detect short activity spans and the deeper fea-

ture maps detect long activity instances.

In our design, we use {Ci}Ni=1 as our temporal fea-

ture maps and associate a set of multi-scale default

spans with each temporal feature map cell. We design

the tiling of default spans so that specific feature maps

learn to be responsive to particular locations and lengths

of the activities. Regrading a temporal feature map Ci

with temporal length li, the scale of the default spans

for this feature map is set as Si = 1
li

(as the input

video length is normalized to 1). We impose different

scale ratios for the default spans, and denote them as

r ∈ {0.25, 0.5, 0.75, 1.0}. We can compute the length
(lri = Si · r) for each default span, and we set the cen-

ter of each default span to j−0.5
li

, where j indicates the

j-th temporal feature cell, j ∈ [1, li]. So for an tem-

poral feature map with length li and R different scale

ratios (R = 4), the number of default spans is li ·R. A

concrete example is illustrated in Fig. 3 where two fea-

ture maps with temporal dimension 8 and 4 are shown

along with the input video. Note that R and N can

be chosen arbitrarily to accommodate for a variety of

practical scenarios.

By combining predictions for all default spans with

different scales from all locations of multi-scale feature

maps, we have a diverse set of predictions, covering

various activity locations and lengths. For example, in

Fig. 3, the longer Discus Throw instance is matched

to a default span in (c), but not to any default spans

in (b). This is because those spans have different center

locations and scales, and do not match the longer activ-

ity instance, and therefore are considered as negatives

during training.

3.4 Context-aware Convolutional Predictors

Temporal contextual information has been shown to

be critical for temporal activity detection [7,6] since

it provides strong semantic cues for identifying the ac-

tivity class. For example, seeing a video during summer

Olympics is a strong indicator for sports activities while

it is more likely to detect daily activities in a household

video. As a result, it is critical to encode the tempo-

ral context features in the activity detection pipeline.

In addition to our conference paper [45] where features

are directly used to produce the final results, we ex-

plicitly exploit context features to model more complex

temporal dynamics. Below, we provide detail of our ap-

proach.

Our multi-scale feature hierarchy can easily incorpo-

rate contextual information since it naturally summa-

rizes temporal information at different scales. In Sec-

tion 3.3, we showed different layers with different tem-

poral resolutions can be responsive to varying temporal

locations and scales. However, this only extracts the

features within each default span, and overlooks the

temporal contexts. To ensure the context features are

used for span classification and boundary regression, we

combine the feature map at each layer Ci with the last

feature map CN which summarizes the whole video con-

tent. Technically, we tile CN to have the same temporal

dimension with Ci and construct Cf
i = Ci + CN . We

exploit temporal contexts at all layers in our network,

thus, each temporal feature cell is enhanced by the

global temporal information. We illustrate this mech-

anism in Fig. 4.

Each temporal feature layer can produce a fixed

set of detection predictions using a set of Conv3D fil-

ters. These are indicated on top of the feature net-

work architecture in Fig. 4. For a temporal feature map

Cf
i ∈ Rli×h×w×d, the basic operation for predicting pa-

rameters of a potential temporal detection is a 1×d×w
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kernel that produces scores for activity presence and

categories, or temporal offsets relative to the default

location and scale. At each of the li temporal locations

where the kernel is applied, it produces an output value.

The temporal offset values are measured relative to a

default span location in each temporal feature map cell.

Specifically, for each default span at a given temporal

location, we compute K positive class confidence scores

plus one activity confidence score and two temporal off-

sets. This results in a total of (K+1+2)×R filters that

are applied around each location in the feature map,

yielding (K + 1 + 2) × R × li outputs for a temporal

feature map Cf
i . Each default span gets a prediction

score vector vpred = (c1, c2, ..., cK , cact, ∆ct,∆lt) with

length K + 1 + 2, where cact is a class-agnostic confi-

dence score to estimate the presence of activity, c1 to cK

are used to predict default span’s category and ∆ct,∆lt

are temporal offsets.

4 Optimization

The key step of training S3D is that the ground truth

information needs to be assigned to specific outputs in

the fixed set of detector outputs. Once this assignment

is determined, the loss function and back propagation

are applied. Training also involves training data con-

struction and augmentation as well as hard negative

mining strategies.

4.1 Training Data Construction and Augmentation

In theory, because S3D is a fully Conv3D network, it can

be applied to an input of arbitrary size. Therefore, our

S3D network can operate on videos of variable lengths.

In practice, due to GPU memory limitations, we slide

a temporal window of size L frames on the video and

feed each windowed segment individually into the S3D

network to obtain temporal detections. Although the

input window size is fixed, we decode the input video

stream with a small FPS, allowing the network to en-

code enough temporal contexts for precisely detecting

activity instances. During training phase, we only keep

windows that have at least one ground truth activity

instance. Therefore, given a set of training videos, we

obtain a training collection of windows with temporal

activity annotations inside each windowed video seg-

ment.

To make the model more robust to various activity

locations and scales, we further improve the training dy-

namics by augmenting the training videos via following

strategies:

– We slide the window on the input video stream with

a small step size. Thus, given a certain video stream,

the same activity instance can appear in different

locations relative to the start and end time of certain

windows.

– Similar to [34], we resize each frame to have a spatial

size of 128 × 171 and randomly crop each window

into L×112×112 for spatial and temporal jittering.

– We pad extra zero frames (black image with all RGB

values set to 0) to the end of certain window if the

video length is less than our window size.

4.2 Matching Strategy

During training, we need to determine which default

spans correspond to a ground truth detection and train

the network accordingly. Specifically, for each default

span, we compute the Intersection-over-Union (IoU) score

with all ground truth instances. If the highest IoU score

is higher than 0.5, we match the default span with the

corresponding ground truth span and regard it as posi-

tive, otherwise negative. So a ground truth instance can

match multiple default spans while a default span can

only match one ground truth instance at most. This

simplifies the learning problem, allowing the network

to predict high scores for multiple overlapping default

spans.

4.3 Hard Negative Mining

After the matching step, most of the default spans are

negatives. This introduces a significant imbalance be-
tween the positive and negative training examples. In-

stead of using all the negative examples, we sort them

using the highest activity confidence loss for each de-

fault span and pick the top ones so that the ratio be-

tween the negatives and positives is nearly 1 : 1. We

found that this leads to faster optimization and a more

stable training.

4.4 Training Objective

The training objective of S3D is to solve a multi-task

optimization problem. Let xkij = {1, 0} be an indicator

for matching the i-th default span to the j-th ground

truth span of category k ∈ [1,K], and si be the high-

est IoU score with any ground truth spans. The overall

objective loss function is a weighted sum of the localiza-

tion loss (loc), class confidence loss (conf) and activity

confidence loss (act):

L = Lloc(x, t, g) + αLconf (x, c) + βLact(s, c) (1)



8 Da Zhang et al.

where α and β are the weight terms used for balancing

each part of the loss function.

The localization loss is a Smooth L1 loss [12] be-

tween the predicted temporal offsets (t) and the ground

truth span parameters (g). In temporal domain, we

regress to offsets for the center (ct) of the default span

(d) and for its length (lt):

Lloc(x, t, g) =
1

Npos

Npos∑
i

∑
m∈{ct,lt}

xkijsmoothL1(tmi − ĝmj )

(2)

where Npos is the number of positive matching default

spans in a batch, and the temporal offset parameters

ĝmj are defined similarly like the bounding box offset in

object detection [12]:

ĝctj = ∆cti = (gctj −dcti )/dlti ĝltj = ∆lti = log(
gltj
dlti

) (3)

where gctj , dcti are the centers and gltj , dlti are the lengths

for the ground truth span and the matching default

temporal span respectively.

The class confidence loss is a softmax loss over mul-

tiple class confidences (c):

Lconf (x, c) = − 1

Npos

Npos∑
i

xkij log(ĉki ) (4)

where ĉki =
exp(cki )∑
k exp(cki )

is the softmax probability for the

ground truth class of this instance. The class confidence

loss is only used to distinguish between multiple posi-

tive classes not including the background. We use an-

other activity confidence score to predict activity class

agnostic scores.

The activity confidence loss is a binary classification

loss using sigmoid cross-entropy. Rather than using a

hard ground truth score for positive (1) and negative

(0), we use the IoU score si as ground truth for each

default span. This helps the training procedure since

positive default spans are assigned different confidence

levels based on its overlap with the ground truth span.

We define the activity confidence loss as:

Lact(s, c) = − 1

N

N∑
i

(si log(cacti ) + (1− si) log(1− cacti ))

(5)

where N is the number of total training default spans in

a batch and N = Npos +Nneg; cacti is the predicted ac-

tivity confidence score. Note that we separate the activ-

ity confidence score and class confidence scores via two

separate losses. Comparing to only having one softmax

classification loss containing all positive classes and one

background class, we find this configuration is more ro-

bust, leads to better validation performance and makes

the network architecture more flexible.

5 Prediction

Activity prediction in S3D is a single shot with one for-

ward pass of the network. Given an input video stream,

we predict activity confidence score, class confidence

scores and temporal location offsets at each default

span. The temporal location offset is in the form of rel-

ative displacement as described in Equation 3, which

is applied on the default span to predict accurate start

time and end time. Then the spans with low activity

confidence scores will be filtered out and the remaining

spans are refined via temporal NMS operation. The fi-

nal predictions are assigned the activity label with the

highest class confidence score.

In more detail, for each default span, we predict K

class confidence scores, 1 activity confidence score and 2

temporal location offsets. We denote the predicted vec-

tor as vipred = {c1i , ..., cKi , cacti , ∆cti, ∆lti}, where i indi-

cates the i-th default span. The post processing steps

are as follows:

1. First, we adjust the temporal boundaries of each

default span by applying ∆cti and ∆lti and generate

the adjusted start time tsi and end time tei .

2. Then, we remove those default spans whose activity

confidence score cacti is less than a threshold, and

keep the remaining ones. We set the threshold to

0.1 from cross-validation.

3. Given {tsi , tei , cacti } of each remaining span, we apply

temporal NMS with threshold value 0.5 to further

filter out low confidence spans.

4. Finally, to generate the predicted results, we choose

the largest entry from c1i to cKi denoted as cclassi and

assign the activity label class as the predicted label

for this default span. The final confidence score is

computed as cfinali = cclassi × cacti . Thus, each final

detection span is denoted as {class, cfinali , tsi , t
e
i}.

6 Experiments

We evaluate the proposed approach on two recent large-

scale datasets for the temporal activity detection task:

THUMOS’14 [17] and ActivityNet [8]. In this section

we first introduce these datasets and our implementa-

tion details and then compare the performance of S3D

with other state-of-the-art approaches. Finally, we in-

vestigate the impact of different components via a set

of ablation studies and provide qualitative examples.
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6.1 Datasets

THUMOS’14 [17]. The temporal activity detection

task of THUMOS’14 dataset is challenging and widely

used. The official training set is the UCF101 [32] dataset

including trimmed videos of 101 categories, the valida-

tion and test set contains 1010 and 1574 untrimmed

videos, respectively. For temporal activity detection,

over 20 hours of video and 20 activity categories are

involved and annotated temporally, resulting in 200 val-

idation and 213 test untrimmed videos. Following the

standard practice, we train our models on the validation

set and evaluate them on the testing set.

Evaluation Metrics. We follow the conventional met-

rics used in THUMOS’14, comparing the Average Pre-

cision (AP) for each activity category and calculating

mean average precision (mAP) for evaluation. A pre-

diction instance is correct if it gets the same category

with the ground truth instance and its temporal IoU

is larger than the IoU threshold. On THUMOS’14, the

IoU thresholds are {0.3, 0.4, 0.5, 0.6, 0.7}. The mAP at

0.5 is used for comparing results from different meth-

ods.

ActivityNet [8]. The large-scale ActivityNet is a re-

cently released dataset which contains 200 different types

of activities and a total of 849 hours of videos collected

from YouTube. ActivityNet is the largest benchmark

for temporal activity detection to date in terms of both

the number of activity categories and number of videos,

making the task particularly challenging. There are two

versions, and we use the latest version 1.3 which con-

tains 19, 994 untrimmed videos in total and is divided

into three disjoint subsets, training, validation and test-

ing by a ratio of 2 : 1 : 1. On average, each activity cat-

egory has 137 untrimmed videos. Each video on average

has 1.41 activities which are annotated with temporal

boundaries. Since the ground truth annotations of test

videos are not public, following traditional evaluation

practices on this dataset, we report performance on the

validation subset.

Evaluation Metrics. ActivityNet dataset has its own

convention of reporting performance metrics. We fol-

low their conventions, reporting mAP at different IoU

thresholds 0.5, 0.75 and 0.95. The average of mAP val-

ues with IoU thresholds [0.5 : 0.05 : 0.95] is used to

compare the performance between different methods.

In our experiment, we compare our approach with

the state-of-the-art methods on both THUMOS’14 and

ActivityNet, and perform ablation studies on THU-

MOS’14.

6.2 Implementation Details

THUMOS’14. S3D takes as input L = 256 raw video

frames, since this allows us to train the network on

a single GPU with efficient mini-batch training. We

decode each video at 8 FPS and follow the training

data construction and augmentation strategy discussed

in Section 4.1 to produce a collection of training win-

dows. Thus, each window contains 32 seconds of a video

stream and this is motivated by the fact that more than

99% of activity instances in THUMOS’14 are less than

32 seconds. We use the last Conv3D feature map in

C3D [34] as the base feature map and apply 3D max

pooling to reduce the size to 32 × 4 × 4 × 512, we ap-

pend N = 6 more temporal feature layers {Ci}6i=1 with

temporal dimension {32, 16, 8, 4, 2, 1} and associate a

set of default spans at each temporal feature cell with

R = 4 ratios {0.25, 0.5, 0.75, 1.0}, resulting in 252 de-

fault spans in total. Besides, each temporal feature map

is also augmented with context features as described

in Section 3.4 to construct {Cf
i }6i=1; the default spans

correspond to spans of duration between 0.25s and 32s

uniformly distributed at different temporal locations.

We also add l2 normalization layers along the feature

dimension on top of each temporal feature map before

the context-aware convolutional predictors, and the de-

fault scale is set to 10.0 and can be jointly learned with

the network. We initialize base feature layers with C3D

weights pre-trained on Sports-1M by the authors in [34],

and other layers from scratch.

ActivityNet. In addition to our conference paper [45],

we also apply our S3D to the recent ActivityNet dataset.

As the length of activity instances in ActivityNet is

much longer than THUMOS’14, instead of decoding the

videos at a fixed FPS, we uniformly sample L = 256 raw

video frames from the input video. Thus, the longest

default span corresponds to the whole video duration.

We apply a Residual Conv3D model [35] as the back-

bone network instead of using the C3D network. Since

this is motivated by the fact that ActivityNet contains

a lot more activity classes compared to THUMOS’14

thus stronger base features are needed. Following simi-

lar designs, we also add residual links in our auxiliary

temporal feature layers. Other implementation details

stay the same with those of THUMOS’14. We initialize

base feature layers with Res3D weights pre-trained on

Kinetics [5] and other layers from scratch.

Our implementation is based on TensorFlow [1] and

we use Adam [18] to learn the network parameters with

the end-to-end loss function as described in Section 4.4.

As a speed-accuracy trade-off on both datasets, we freeze

the early network layers and allow all the other layers of

S3D to be trained with a fixed learning rate of 0.0001.
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Table 1 Temporal activity detection mAP on THUMOS’14.
The top performing methods in existing papers are shown.
S3D achieves state-of-the-art performance at different over-
lap threshold. (- indicates that results are unavailable in the
corresponding papers).

IoU threshold 0.3 0.4 0.5 0.6 0.7
S-CNN [29] 36.3 28.7 19.0 10.3 5.3
CDC [28] 40.1 29.4 23.3 13.1 7.9
SSAD [20] 43.0 35.0 24.6 - -
TCN [7] - 33.3 25.6 15.9 9.0
R-C3D [42] 44.8 35.6 28.9 - -
SS-TAD [2] 40.1 - 29.2 - 9.6
S3D 47.9 41.2 32.6 23.3 14.3
S3D-context 48.4 42.4 34.3 25.1 15.0

On THUMOS’14, we use a mini-batch size of 20 and

the network is trained for 20 epochs. On ActivityNet,

we use a mini-batch size of 10 and the network is trained

for 30 epochs.

6.3 Comparison with State-of-the-art

We compare our S3D with other state-of-the-art meth-

ods on THUMOS’14 [17] and ActivityNet [8], and re-

port the performances using the metrics described above.

Note that the average activity duration in THUMOS’14

and ActivityNet are 4 and 50 seconds. And the average

video duration are 233 and 114 seconds, respectively.

This reflects the distinct natures of these datasets. Hence,

strong adaptivity is required to perform consistently

well on both datasets.

THUMOS’14. The comparison results between our

S3D and other top-performing methods are summa-
rized in Table 1 with multiple IoU thresholds varying

from 0.3 to 0.7, and our original S3D without explicit

temporal contextual modeling already significantly out-

performs all previous state-of-the-art methods. Further-

more, S3D improves the state-of-the-art by a large mar-

gin when the IoU thresholds are set at higher levels (0.5

to 0.7), indicating its superior ability to predict pre-

cise temporal boundaries of different activities. More-

over, adding temporal context features further boosts

the performance at all evaluation thresholds, setting a

new state-of-the-art compared to the original results

reported in our conference paper [45]. Note that, as de-

scribed in Section 3.4, temporal contextual modeling

is efficently implemented by fusing features at multiple

levels without increasing model complexity or inducing

further computational overhead.

We also compare our S3D with two other represen-

tative methods: S-CNN [29] and R-C3D [42], measuring

the AP for each class in THUMOS’14 at IoU threshold

0.5. The results are shown in Table 2, and note that we

Table 2 Per-class AP at IoU threshold 0.5 on THUMOS’14.

Activity S-CNN [29] R-C3D [42] S3D
Volleyball Spiking 4.6 5.6 4.1
Throw Discus 24.4 29.2 29.5
Tennis Swing 19.3 16.6 9.9
Soccer Penalty 19.2 15.8 19.3
Shotput 12.1 19.4 17.1
Pole Vault 32.1 42.7 60.1
Long Jump 34.8 57.4 78.5
Javelin Throw 18.2 47.0 60.7
High Jump 20.0 30.9 47.2
Hammer Throw 19.1 43.2 50.8
Golf Swing 18.2 16.1 30.3
Frisbee Catch 15.3 20.1 12.5
Diving 17.6 26.2 57.9
Cricket Shot 13.8 10.9 4.0
Cricket Bowling 15.7 30.6 10.8
Cliff Diving 27.5 49.2 62.5
Clean and Jerk 24.8 27.9 38.0
Billiards 7.6 8.3 6.1
Basketball Dunk 20.1 54.0 34.5
Baseball Pitch 14.9 26.1 17.6
mAP@0.5 19.0 28.9 32.6

Table 3 Activity detection results on ActivityNet v1.3 vali-
dation subset. The performances are measured by mean aver-
age precision (mAP) for different IoU thresholds and the av-
erage mAP of IoU thresholds from 0.5 : 0.05 : 0.95 (- indicates
that results are unavailable in the corresponding papers).

IoU threshold 0.5 0.75 0.95 Average
R-C3D [42] 26.80 - - 12.70
TCN [7] 36.44 21.15 3.90 -
Chao et al. [6] 38.23 18.30 1.30 20.22
S3D 34.51 21.41 2.55 21.10
S3D-context 35.34 22.09 4.48 22.11

compare with the original S3D model as contextual fea-

tures are not integrated in S-CNN and R-C3D. Our S3D

outperforms the existing methods in 11 out of 20 classes

on THUMOS’14 and improves the AP by a large mar-

gin in most cases (e.g. Pole Vault, Long Jump, Javelin

Throw, High Jump, Golf Swing, Diving, Cliff Diving).

For the other 9 activities, S3D performs reasonably well

and achieves similar AP compared to the existing meth-

ods (e.g. Volleyball Spiking, Shotput, Baseball Pitch).

In comparison with the proposed S3D model: pre-

vious systems on top of C3D networks (S-CNN [29],

CDC [28]) largely relies on good temporal proposals

generated by external proposal methods and only pro-

cesses a small number of frames at a time, restrict-

ing them from directly optimizing the detection per-

formance. R-C3D [42] is able to process a long video

stream and predict multi-scale activity instances, but it

only applies anchors on a single feature map with fixed

temporal dimension. With the proposed S3D frame-

work, we jointly optimize the feature representation and
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Table 4 Effects of using multiple temporal feature layers and span regression.

Span regression conv5 conv6 conv7 conv8 conv9 conv10 mAP@0.5 # Spans
X X X X X X X 32.6 252

X X X X X X 28.6 252
X X X X X X 31.8 248
X X X X X 30.7 240
X X X X 27.6 224

Table 5 Effects of various design choices on S3D perfor-
mance, the span with ratio 1 is included by default. Each
model is evaluated on THUMOS’14 when IoU threshold set
to 0.5.

include 1.0 span X X X X
include 0.25 span X X X
include 0.5 span X X
include 0.75 span X

# Spans 63 126 189 252
mAP@0.5 27.5 29.5 31.1 32.6

detection layers at different temporal levels by process-

ing an untrimmed input video stream with enough tem-

poral context.

ActivityNet. Table 3 shows our activity detection re-

sults on ActivityNet v1.3 validation subset along with

state-of-the-art methods published recently. The pro-

posed framework, using a single model instead of an en-

semble, is able to achieve an average mAP of 22.11 that

tops all other methods and perform well at high IoU

thresholds, i.e., 0.75 and 0.95, demonstrating that our

model is able to predict precise temporal boundaries.

Note that both TCN [7] and Chao et al. [6] are able to

process an untrimmed video with deep networks and

have considered temporal context features explicitly.
However, their implementation is based on a two-stage

approach where temporal proposals and proposal clas-

sification are optimized separately. The superior per-

formance of our S3D demonstrates the effectiveness of

single-shot, end-to-end temporal activity detection, and

our model also benefits from temporal contextual mod-

eling.

6.4 Ablation Study

To understand S3D better, we evaluate our network

with different variants on THUMOS’14 to study their

effects. For all experiments, we only change the certain

part of the network and use the same evaluation set-

tings. We compare the result of different variants using

the mAP at IoU threshold 0.5. For a well-controlled ex-

periments, we don’t add temporal context features in

all ablation experiments.

Table 6 Activity detection speed during inference.

Method FPS
S-CNN [29] 60
R-C3D [42] (on Titan X Maxwell) 569
R-C3D [42] (on Titan X Pascal) 1030

S3D (ours on Titan X Pascal) 1121
S3D (ours on GTX 1080 Ti) 1271

Default Span Ratio. As described in Section 3.3, by

default we use 4 default spans per each temporal loca-

tion. If we remove the spans with ratio 0.75, the mAP

drops by 1.5%. By further removing the spans with ra-

tio 0.25 and 0.5, the mAP drops another 3.6%. By only

keeping the span with ratio 1.0, our model already has a

strong performance (mAP 27.5%) since it already cov-

ers most ground truth instances in the dataset. Using

a variety of default ratios make the task of predicting

spans easier for the network and result in better per-

formance.

Span Regression. The default spans are defined at

fixed temporal locations. In order to generate precise

predictions for starting and ending time of each activ-

ity instance, we adjust each default span by applying

a temporal offset described in Equation 3. This tech-

nique, which we call span regression, allows our model

to predict temporal spans at much smaller granulari-

ties. As shown in Table 4, span regression improves the

mAP from 28.6% to 32.6%.

Multi-scale Default Spans. A major advantage of

S3D is using default spans of different scales on differ-

ent temporal feature layers. To measure the advantage

gained, we progressively remove layers and compare re-

sults. Table 4 shows a decrease in accuracy with fewer

layers, dropping monotonically from 32.6% to 27.6%.

This is because that different layers are responsible for

predicting temporal activities at different lengths, which

reinforces the message that it is critical to spread spans

of different scales over different layers.

Activity Detection Speed. Since our model has a

single-shot, end-to-end design with simple Conv3D build-

ing blocks, it is also very efficient. We compare the de-

tection speed of our model with other state-of-the-art

methods. The results are shown in Table 6. S-CNN [29]

uses a sliding window proposal strategy and predicts
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Pole Vault [227.3 – 238.0s]

Pole Vault [228.1 – 236.6s]

Pole Vault [241.8 – 249.1s]

Pole Vault [242.0 – 247.7s]

Javelin Throw [616.1 – 624.2s]

Javelin Throw [619.4 – 624.6s]

Javelin Throw [635.0 – 637.0s]

Javelin Throw [634.6 – 637.6s]

Shotput [32.6 – 42.0s]

Shotput [35.9 – 41.6s]

Shotput [46.5 – 62.5s]

Shotput [49.7 – 58.6s]

Clean and Jerk [110.7 – 126.2s]

Clean and Jerk [111.6 – 125.2s]

Fig. 5 Qualitative visualization of the top detected activities by S3D (best viewed in color) on four different activity categories
in THUMOS’14 dataset: Pole Vault, Clean and Jerk, Javelin Throw and Shotput. Each sequence consists of the ground-truth
(blue) and predicted (green) activity segments and class labels.

at 60 FPS. R-C3D [42] constructs the proposal and

classification pipeline in an end-to-end fashion using a

Conv3D network and runs at 1030 FPS. Our framework

applies the same idea to accept a wide range of frames

as input and apply efficient Conv3D filters. However,

we further boost the efficiency by eliminating explicit

proposal generation and resampling step. For S3D, the

speed of execution is 1271 FPS on a single GTX 1080

Ti GPU, making it the fastest activity detector to date.

Qualitative Results. We provide qualitative results

on THUMOS’14 and ActivityNet to demonstrate the

effectiveness and robustness of our proposed S3D net-

work. As shown in Fig. 5 and Fig. 6, different video

streams contain very diversified background context and

different activity instances vary a lot in temporal lo-

cation and scale. S3D is able to predict the accurate

temporal span as well as the correct activity category,

and it is also robust to detect multiple instances with

varying lengths in a single video.

In Fig. 5, S3D can distinguish activity with minor

differences such as the normal weightlifting compared to

Clean and Jerk. It is also capable of detecting the same
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Brushing Teeth [43.4 – 59.7s]

Brushing Teeth [43.2 – 58.3s]

Triple Jump [13.1 – 19.4s]

Triple Jump [11.9 – 20.5s]

Triple Jump [44.1 – 62.2s]

Triple Jump[43.8 – 59.0s]

Curling [55.3 – 177.7s]

Curling [49.0 – 177.6s]

Hand Car Wash [15.6 – 34.1s]

Hand Car Wash [13.5 – 34.0s]

Fig. 6 Qualitative visualization of the top detected activities by S3D (best viewed in color) on four different activity categories
in ActivityNet dataset: Brushing Teeth, Hand Car Wash, Triple Jump and Curling. Each sequence consists of the ground-truth
(blue) and predicted (green) activity segments and class labels.

activity sequence with different playing speed as shown

in the Shotput example. In Fig. 6, S3D is able to detect

a variety of daily activities such as Brushing Teeth and

Hand Car Wash whose temporal contexts differ a lot

compared to sports activities. It is also robust to detect

activities ranging from few seconds (e.g. Triple Jump)

to few hundred seconds (e.g. Curling).

7 Conclusion

In this paper, we introduce S3D, a Single-Shot multi-

Span Detector for effective and efficient temporal ac-

tivity detection. We design a simple network architec-

ture by using only a fully Conv3D network on top of

the raw video frames to jointly predict the temporal

boundaries as well as activity categories. A key feature

of S3D is the use of multi-scale temporal span outputs

attached to multiple temporal feature maps. Moreover,

each feature map is augmented by temporal context fea-
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tures by appropriately fusing features at multiple levels.

With this framework, we achieved state-of-the-art per-

formance on THUMOS’14 and ActivityNet benchmark

datasets, while being efficient to run much faster than

real time on a single GPU.
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