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A B S T R A C T

Object detection in remote sensing images is a critical task in computer vision. Often times in remote sensing
images, objects are highly variable in scale and have arbitrary orientation, which renders spatial alignment
between anchor boxes and objects challenging in the object detection task. In this paper, a feature decoupling
and localization refinement network is suggested as a solution to this issue. Specifically, a bidirectional feature
fusion module (BFFM) is devised to construct a multi-scale feature pyramid for detecting objects at different
scales. A feature decoupling module (FDM) is devised which utilizes the fusion of spatial attention and channel
attention, as well as different attention functions to generate features specifically tuned for regression and
classification, that are used to guide more accurate localization and classification. Further, a localization
refinement module (LRM) is designed to automatically optimize the anchor box parameters to achieve spatial
alignment of the anchor box and the object regression feature. In this way, the FDM and LRM are cascaded to
achieve more accurate localization. Experimental results on two open access datasets, DOTA and HRSC2016,
show that the performance of FDLR-Net is state-of-the-art, with mAP reaching 73.08% and 89.4%, respectively.
1. Introduction

Optical remote sensing images are widely used for land and ocean
observation due to their rich information and high spatial resolution,
and play a vital role in land resource management (Jalayer et al., 2022),
urban climate research (Wahla et al., 2022), and other fields. Object
detection is one of the essential technologies of remote sensing image
processing. Accurate location and classification for specified objects
in remote sensing images are important tasks in areas such as sea
surveillance and urban planning. Different from images taken, say, by a
mobile phone, the view of remote sensing images is top-down, thus the
objects in them have arbitrary orientation resulting in many horizontal
object detection algorithms (Bochkovskiy et al., 2020; Carion et al.,
2020; Xiao et al., 2023) that perform well in natural scenes often fail
to obtain ideal detection results in remote sensing images. In addition,
because of the high resolution of remote sensing images, the objects
therein may appear to be small in size or vary in a wide range of scales,
which further increases the difficulty of object detection.

Inspired by works on text detection (Jiang et al., 2017; Ma et al.,
2018), researchers start to use rotation bounding boxes for remote
sensing image object detection. Most of the existing rotation object
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detection methods solve the problem of arbitrary orientation and multi-
scales of the object by presetting a certain number of anchor boxes
with different scales, aspect ratios and angles, such as methods (Azimi
et al., 2018), R2PN (Zhang et al., 2018) and BoxNet (Neves et al.,
2020). However, a large number of anchor box parameters causes an
increase in computation. RoI-Transformer (Ding et al., 2019) avoids
this problem by learning the transformation from horizontal Region
of Interests (RoIs) to rotational RoIs. To better adapt to the multi-
scale variation of targets, methods such as CAD-Net (Zhang et al.,
2019), (Xiao et al., 2022) and Info-FPN (Chen et al., 2023) utilize
contextual information or multiscale representation to construct more
powerful feature representations. To improve the detection of small
objects, SCRDet (Yang et al., 2019) refines sampling by adjusting the
stride of the anchor to reduce the effect of insufficient training samples
and imbalance. In addition, the paper also proposes an improved
smooth L1 loss that can solve the boundary problem of the rotation
bounding box. To align the rotation anchor box with the object region
more accurately, R3Det (Yang et al., 2021) designs a feature refine-
ment module to perform regression from coarse to fine granularity by
obtaining more accurate features.
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Fig. 1. The overall architecture of FDLR-Net.
While many object detection algorithms in remote sensing images
have achieved relatively accurate detection results (Wang et al., 2022),
there are still a number of issues that need to be further explored:

(1) The current approach does not sufficiently take into account the
difficulty in achieving spatial alignment between the anchor box
and the object as well as the computational effort that exists with
the preset anchor boxes. The parameters of the preset anchor box
have specific values, which means that the degree of alignment
between the anchor box to the object region is completely de-
pendent on the setting of the anchor box parameters. Accurate
alignment requires rich prior knowledge or a large number of
preset anchor boxes, which leads to complex computation and
long regression process.

(2) Features extracted by the network with convolutional neural net-
work (CNN) as backbone are rotation-invariant, which can boost
the performance of classification, but are not beneficial for re-
gressing arbitrarily oriented bounding boxes (Liao et al., 2018).
The classification task and regression task sharing features will
often limit detection performance.

In view of the aforementioned issues, we propose a feature de-
coupling and localization refinement network in this paper, aiming
to generate fine regression features and achieve high alignment be-
tween anchor box and object. To enables the network to suit objects
of various scales, a bidirectional feature fusion module (BFFM) is
designed that generates the multi-scale feature pyramid and improve
the capability of features to be represented. To provide more accurate
region proposals for anchor box regression, a feature decoupling mod-
ule (FDM) is designed that generate more detailed regression features
and classification features respectively through fused attention with
different attention functions. To achieve accurate alignment between
anchor boxes and objects, a localization refinement module (LRM) is
designed that adaptively learn and optimize anchor box parameters to
continuously improve the alignment between anchor boxes and objects
without increasing the number of anchor box parameters. Specifically,
this work makes the following contributions:

(1) An innovative object detection framework is proposed that
achieve detection of objects at different scales through a multi-
scale pyramid structure, and accurate localization and classifica-
tion through regression and classification branches.

(2) A Feature Decoupling Module (FDM) is designed to extract task-
specific features, which enhances the feature representation of
regression and classification branches, and can provide more
accurate region information for anchor box regression, as well
as richer semantic information for classification.
2

(3) A Localization Refinement Module (LRM) is designed to learn
and optimize anchor box parameters autonomously without pre-
setting anchor boxes with a priori knowledge, to continuously
improve the ability of anchor boxes to capture object features,
and to adaptively align the anchor boxes and the objects.

2. Related work

The anchor-based object detection algorithms use two kinds of
anchors: horizontal anchors and rotation anchors.

Horizontal object detectors are widely used in natural scenes, and
common object detection algorithms are horizontal object detectors. R-
CNN (Girshick et al., 2014) first applies convolutional neural networks
(CNNs) to object detection. Then Fast R-CNN (Girshick, 2015) advanced
the feature extraction method of R-CNN with faster computational
speed. Faster R-CNN (Ren et al., 2015) is a typical two-stage detec-
tion algorithm that classifies and regresses each proposal region using
the region proposal network (RPN). Although high accuracy detection
results are obtained, the detection process is time-consuming. Different
from two-stage networks, YOLO (Redmon et al., 2016) transforms the
object detection task into a regression task, simply using CNNs to
simultaneously perform category prediction and location prediction on
objects, which greatly decreases the network’s computation complexity
and improves the detection speed. However, YOLO has poor detection
performance for densely arranged objects and small objects. SSD (Liu
et al., 2016) predicts on multiple feature maps at various scales, which
effectively balances the detection performance on small-scale and large-
scale objects, and offers higher detection accuracy and faster detection
speed. In one-stage detectors like the YOLO series, SSD and FCOS (Tian
et al., 2019), positive and negative samples are extremely unbalanced,
which results in their detection accuracy being lower than that of two-
stage detectors. RetinaNet (Lin, Goyal, et al., 2017) uses Focal Loss to
achieve a balance between positive and negative samples, while using
feature pyramids to make predictions on multiple layers of feature
maps, which achieves higher accuracy than Faster R-CNN.

Rotation object detectors are commonly used for text detection
and remote sensing object detection. RRPN (Ma et al., 2018) and
R2CNN (Jiang et al., 2017) are both arbitrarily-oriented text detection
algorithms. Both of them are built on the Faster R-CNN structure
and use RPN to generate proposal regions. RRPN generate sloped
proposals with angle information for text orientation, and subsequently
tuned the angle information for regression of the bounding boxes to
enable the proposals correspond with the text region more consistently
with regard to orientation. Differently, R2CNN generates axis-aligned
bounding boxes surrounding texts in various orientations first, and
then forecasts the classification score, inclined minimum area boxs and
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Fig. 2. The structure of FDM.
axis-aligned boxs simultaneously. SCRDet (Yang et al., 2019) merges
multi-layer features with efficient anchor sampling to increase the
attentiveness of small objects, while also investigates the channel at-
tention and the supervised pixel attention for crowded object detection
by and emphasizing the object feature and inhibiting the noise. RoI-
Transformer (Ding et al., 2019) learns the rotation RoI through spatial
transformation using horizontal anchors, and learns the transformation
parameters with the supervision of angled bounding box ground-truth
to fix the mismatches between the RoIs and objects for densely packed
objects. R3Det (Yang et al., 2021) develops a feature refinement module
that recodes the present revised bounding box’s location information
into the relevant feature points via feature interpolation at the pixel
level to achieve feature reconstruction and alignment.

3. Proposed method

The overall architecture of FDLR-Net is illustrated in Fig. 1. FDLR-
Net uses ResNet (He et al., 2016) as the backbone. Firstly, the bidi-
rectional feature fusion module (BFFM) generates a multi-scale feature
pyramid. Then, the features specific for classification and regression
are extracted separately through the feature decoupling module (FDM).
Finally, the localization refinement module (LRM) adjusts anchors in
multiple levels based on the regression features. The BFFM can enhance
the network’s representation ability for features and the detection
performance of multi-scale objects, the FDM provides the network with
more accurate location information and richer semantic information to
guide the network for more accurate localization and classification, the
LRM can address spatial misalignment between anchor boxes and rota-
tion objects. As a result, the detection performance can be significantly
raised. Below, we give more detailed descriptions of these modules.

3.1. Bidirectional feature fusion module

In order to enables the network to suit objects of various scales and
increase the network’s capability for feature representation, we develop
a Bidirectional Feature Fusion Module (BFFM), inspired by PANet (Liu
et al., 2018). We built a bottom-up fusion path based on FPN (Lin,
Dollár, et al., 2017) to reduce the layers that shallow features transmit
to the top, so as to reduce the feature loss during the transmission.
Considering the presence of numerous large objects in remote sensing
images like large ships and airplanes, we also introduce P6 and P7
layers in the feature pyramid to predict larger scale objects. Details of
BFFM are illustrated in Fig. 1.

3.2. Feature decoupling module

In most object detection networks, classification tasks and regres-
sion tasks share features. However, the feature extracted by CNN are
rotation-invariant, which often boost the performance of classification,
but would hinder the regression of arbitrarily oriented bounding boxes.
Moreover, the spatial sensitivity contributes more to distinguishing
object types, but is not robust to determine the location offset of
the objects (Wu et al., 2020). In contrast, the regression task needs
rotation-sensitive features and focus equally on all positions of an
3

Fig. 3. Channel attention. Compression ratio r = 8.

Fig. 4. Spatial attention. Compression ratio r = 8.

object. Therefore, the detection performance is limited due to sharing
of features between classification and regression. In this paper, we
develop a Feature Decoupling Module (FDM) to extract features specific
to the regression and classification, which corresponds to enhance
the location information and semantic information in the features,
respectively. The structure of FDM is shown in Fig. 2. Firstly, the fusion
of spatial attention (Woo et al., 2018) and channel attention (Hu et al.,
2018), as well as task-specific attention functions are applied to obtain
attention maps for regression and classification. Then, the task-specific
attention maps decouple the input feature into the regression feature
and the classification feature.

For the input feature pyramid 𝐹 ∈ 𝑅𝐶×𝑊 ×𝐻 , the classification
feature and regression feature are computed as follows:

𝑅𝐸𝐺 = 𝑓𝑟𝑒𝑔(𝑊𝑐 ⊗𝑊𝑠)⊙ 𝐹 + 𝐹 (1)

𝐶𝐿𝑆 = 𝑓𝑐𝑙𝑠(𝑊𝑐 ⊗𝑊𝑠)⊙ 𝐹 + 𝐹 (2)

where ⊗ represents matrix cross product, ⊙ represents element-wise
product. 𝑊𝑐 ∈ 𝑅𝐶×1×1 represents the weight of different channels of
𝐹 , 𝑊𝑠 ∈ 𝑅1×𝑊 ×𝐻 represents the weight of different pixels of 𝐹 . 𝑓𝑟𝑒𝑔()
and 𝑓𝑐𝑙𝑠() represent attention functions for regression and classification,
respectively. 𝑅𝐸𝐺 ∈ 𝑅𝐶×𝑊 ×𝐻 represents the feature specific for the
regression task, and 𝐶𝐿𝑆 ∈ 𝑅𝐶×𝑊 ×𝐻 represents the feature specific for
the classification task.

The channel attention aims to simulate the correspondence between
channels. It learns each feature channel’s importance and allocates
different weights on each channel, so as to enhances or suppresses
different channels for different tasks. Specifically, for the input feature
𝐹 ∈ 𝑅𝐶×𝑊 ×𝐻 , the channel attention model is processed as follows:

𝑊𝑐 = 𝑆𝑖𝑔
(

𝐹𝐶2
(

𝐹𝐶1 (𝐺𝐴𝑃 (𝐹 ))
))

(3)

where 𝐺𝐴𝑃 represents the global average pooling, 𝐹𝐶1 and 𝐹𝐶2 rep-
resent fully connected layers. 𝑆𝑖𝑔 represents Sigmoid function, which
translates the feature values to the range (0,1). Fig. 3 displays details
of the channel attention.

The spatial attention aims to strengthen the feature representation
in key regions, so as to enhance specific object regions of interest
and weaken irrelevant background regions. Four dilated convolutions,
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Fig. 5. The curves of activation functions.
each with a different dilation rate, are added to the spatial attention
model to broaden the receptive field and reduce the spatial feature
loss. Specifically, for the input feature map 𝐹 ∈ 𝑅𝐶×𝑊 ×𝐻 , the spatial
attention model is processed as follows:

𝑊𝑠=𝑆𝑖𝑔(𝐶𝑜𝑛𝑣1(𝐶𝑜𝑛𝑣3(𝐶𝑎𝑡(𝐶𝑜𝑛𝑣31,𝐶𝑜𝑛𝑣33,𝐶𝑜𝑛𝑣35,𝐶𝑜𝑛𝑣37)(𝐹 )))) (4)

where 𝐶𝑜𝑛𝑣𝑛 represents a convolution with the 𝑛×𝑛 convolution kernel,
𝐶𝑜𝑛𝑣3𝑖 represent a convolution with a convolution kernel size of 3 × 3
and a dilation rate of 𝑖. 𝐶𝑎𝑡 represents the concatenate in the channel
dimension. Details of the channel attention are illustrated in Fig. 4.

After the hybrid attention model, different activation functions for
classification and regression are used to obtain task-specific features.
In the classification task, the semantic information of the object is
given more attention. Some key features in the image are sufficient to
achieve accurate classification and there is no need for too many other
features. Therefore, the activation function should be able to enhance
the key semantic features in the image that contribute significantly
to the classification task and suppress other irrelevant features. The
activation functions for the classification task is designed as follows:

𝑓𝑐𝑙𝑠(𝑥) =
1

1 + 𝑒−(𝑥−0.5)
(5)

In the regression task, the boundary features of the object are given
more attention. High response in one feature region of the image
is not beneficial for accurate localization. Therefore, the activation
function should be able to suppress the region with high response in the
regression feature and make the response of the object feature region
more evenly distributed. The activation function for the regression task
is designed as follows:

𝑓𝑟𝑒𝑔 (𝑥) = 4𝑥(1 − 𝑥) (6)

The curves of activation functions are shown in Fig. 5. For the
classification branch, feature regions with attention responses larger
than 0.5 are enhanced and those with response smaller than 0.5 are
suppressed. For the regression branch, feature regions with attention
responses larger than 0.75 are suppressed and those with response
smaller than 0.75 are smoothed.

3.3. Localization refinement module

In anchor-based object detection algorithms, anchors of certain
scales, aspect ratios and angles are pre-set in order to detect objects
of different scales and orientations. However, pre-setting anchors will
cause the following problems:

(1) Pre-setting the anchor parameters requires the prior knowledge,
and the detector performance will depend seriously on these
parameter values, which is inefficient as it costs lots of time to
tune the parameters for optimal detector performance.

(2) Pre-setting anchors will result in a massive number of anchors
and a substantial increase in computational complexity.
4

Fig. 6. The structure of LRM.

(3) Objects are highly variable in scale and have arbitrary orien-
tation in remote sensing images, which makes it difficult to
achieve alignment of the anchor and the object with a fixed
anchor, and few object features are extracted by anchors, so that
the detection performance is poor.

In light of the previous analysis, we design a Localization Re-
finement Module (LRM). LRM takes the regression feature 𝑅𝐸𝐺 as
input. First, a certain number of horizontal anchors are preset at each
feature point on the regression feature. Then, the anchor parameters are
optimized by learning the offset between the anchors and the regression
features, so as to alleviate the spatial misalignment between the anchor
and the object. As illustrated in Fig. 6, for each layer 𝑅𝐸𝐺𝑖 of the REG,
the LRM is processed as follows: first, four convolution operations with
convolution kernel of 3 × 3 and step of 1 are conducted on the input
feature map, and the number of feature channels remains constant, then
a further convolution operation with convolution kernel of 3 × 3 and
step of 1 is performed to change the number of feature channels to 5𝐴.
𝐴 represents the anchor number at each feature point.

We use the five-parameter method to represent the arbitrary-
oriented box bounding, denoted as (𝑥, 𝑦,𝑤, ℎ, 𝜃), where 𝜃 = 0 for the
horizontal anchor. The anchor after n levels refinement is represented
as (𝑥𝑛, 𝑦𝑛, 𝑤𝑛, ℎ𝑛, 𝜃𝑛), where 𝑛 = 0 denotes the initial anchor. The offset
learned in the 𝑛 + 1st level refinement is represented as (𝑡𝑛+1𝑥 , 𝑡𝑛+1𝑦 , 𝑡𝑛+1𝑤 ,
𝑡𝑛+1ℎ , 𝑡𝑛+1𝜃 ), defined as follows:

⎧

⎪

⎪

⎨

⎪

⎪

𝑡𝑛+1𝑥 =
𝑥𝑛+1 − 𝑥𝑛

𝑤𝑛
, 𝑡𝑛+1𝑦 =

𝑦𝑛+1 − 𝑦𝑛
ℎ𝑛

𝑡𝑛+1𝑤 = log(
𝑤𝑛+1
𝑤𝑛

), 𝑡𝑛+1ℎ = log(
ℎ𝑛+1
ℎ𝑛

)

𝑛+1

(7)
⎩𝑡𝜃 = tan(𝜃𝑛+1 − 𝜃𝑛)
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where
(

𝑥𝑖, 𝑦𝑖
)

, 𝑤𝑖, ℎ𝑖 and 𝜃𝑖 represent the center point coordinates,
width, height and angle of the refined anchor at level 𝑖, respectively.

3.4. Loss function

Because of the periodicity of the angle, the bounding box described
by the five-parameter will have boundary problems in regression, re-
sulting in inaccurate regression results. Following SCRDet (Yang et al.,
2019), we use 𝐼𝑜𝑈 -Smooth 𝐿1 to solve this problem, which is defined
as follows:

𝐼𝑜𝑈 -Smooth𝐿1 = − log(𝐼𝑜𝑈 )
∑

𝑗∈{𝑥,𝑦,𝑤,ℎ,𝜃}

𝐿𝑟𝑒𝑔(𝑣′𝑛𝑗 , 𝑣𝑛𝑗 )

|𝐿𝑟𝑒𝑔(𝑣′𝑛𝑗 , 𝑣𝑛𝑗 )|
(8)

where 𝐿𝑟𝑒𝑔(⋅) represents the traditional Smooth 𝐿1 loss (Girshick,
2015), 𝑣′𝑛𝑗 represents the offset of the prediction, 𝑣𝑛𝑗 represents the
offset of the object, and 𝐼𝑜𝑈 indicates the intersection ratio between the
predicted bounding box and the true bounding box. The regression loss
can be regarded as two components,

𝐿𝑟𝑒𝑔 (𝑣′𝑗 ,𝑣𝑗 )

|𝐿𝑟𝑒𝑔 (𝑣′𝑗 ,𝑣𝑗 )|
determines the gradient

ropagation’s direction and | − log(𝐼𝑜𝑈 )| determines the gradient’s
agnitude. The rapid increase in loss is eliminated at the boundary
here the loss function is almost 0.

The proposed object detection network contains classification and
egression branches. We apply Focal Loss (Lin, Goyal, et al., 2017) as
he classification loss, as defined below:

𝑐𝑙𝑠 =
1
𝑁

𝑁
∑

𝑖=1
𝐹𝐿(𝑝𝑖, 𝑡𝑖) (9)

where 𝑁 represents the anchor number, 𝐹𝐿(⋅) represents Focal Loss, 𝑡𝑖
epresents the object’s label, and 𝑝𝑖 represents the predicted probability
cores of the different categories.

The regression loss consists of two parts, the localization refinement
egression loss and the detection regression loss, both are given by
𝑜𝑈 -Smooth 𝐿1. The localization refinement regression loss and the
etection regression loss are defined as follows:

𝑟𝑒𝑔𝑟 =
1
𝑁

𝑁
∑

𝑖=1
𝑡′𝑖

∑

𝑗∈{𝑥,𝑦,𝑤,ℎ,𝜃}

𝐿′
𝑟𝑒𝑔(𝑣

𝑟
𝑖𝑗 , 𝑣𝑖𝑗 )

|𝐿′
𝑟𝑒𝑔(𝑣

𝑟
𝑖𝑗 , 𝑣𝑖𝑗 )|

| − log(𝐼𝑜𝑈 𝑟
𝑔 )| (10)

𝐿𝑟𝑒𝑔𝑝 = 1
𝑁

𝑁
∑

𝑖=1
𝑡′𝑖

∑

𝑗∈{𝑥,𝑦,𝑤,ℎ,𝜃}

𝐿′
𝑟𝑒𝑔(𝑣

𝑝
𝑖𝑗 , 𝑣𝑖𝑗 )

|𝐿′
𝑟𝑒𝑔(𝑣

𝑝
𝑖𝑗 , 𝑣𝑖𝑗 )|

| − log(𝐼𝑜𝑈𝑝
𝑔 )| (11)

where 𝑁 represents the number of anchors, 𝑡′𝑛 = 0 represents the
background and 𝑡′𝑛 = 1 represents the foreground. 𝑣𝑟𝑖𝑗 , 𝑣𝑖𝑗 and 𝑣𝑝𝑖𝑗
represent the offsets of the refined anchor, the true bounding box
and the predicted bounding box with respect to the preset anchor,
respectively. 𝐼𝑜𝑈 𝑟

𝑔 and 𝐼𝑜𝑈𝑝
𝑔 represent the intersection ratios of the

refined anchor and the predicted bounding box to the true bounding
box, respectively.

The total loss function of FDLR-Net is defined as follows:

𝐿𝑎𝑙𝑙 = 𝐿𝑐𝑙𝑠 + 𝜆1𝐿𝑟𝑒𝑔𝑟 + 𝜆2𝐿𝑟𝑒𝑔𝑝 (12)

4. Experiments

4.1. Datasets

We have carried out experiments on DOTA dataset (Xia et al., 2018)
and HRSC2016 dataset (Liu et al., 2017).

DOTA is one of the most commonly used remote sensing images
dataset for object detection. DOTA contains 2806 remote sensing im-
ages, ranging in size from 800 × 800 to 4000 × 4000, with a total
of 188282 instances, including 15 categories of objects. The sizes of
images range from 800 × 800 to 4000 × 4000. The training set contains
1/2 of the images, the test set contains 1/3 of the images, and the
5

validation set contains 1/6 of the images.
HRSC2016 is a high-resolution remote sensing image dataset for
ship detection. HRSC2016 contains 1061 remote sensing images, rang-
ing in size from 300 × 300 to 1500 × 900, with a total of 2976 objects,
including 3 major categories and 27 minor categories. The training
set contains 436 images, the test set contains 181 images, and the
validation set contains 444 images.

4.2. Implementation details

The initial anchor scale is set to 2, the aspect ratio o 1, and the steps
to 8, 16, 32, 64, and 128. Weight factors 𝜆1 and 𝜆2 in loss function are
set to 1. The Adam optimizer is utilized to train the network, with the
initial learning rate is set as 2.5 × 10−5 and decreased by 10 at each
decay step. The batch size is set to 2. We pre-training the network
with the warm up strategy by 3 epochs, and the learning rate is set
as 1 × 10−5. On DOTA, the training epoch is set to 30, training images
are cropped to 600 × 600 with a 450-pixel overlap and random flipping
is used for data augmentation. On HRSC2016, the training epoch is set
to 20, training images are simply scaled to 800 × 800 without any data
augmentation, and only the first category is taken, that is, all objects
are treated as ships. As evaluation metrics, Average Precision (AP) and
mean Average Precision (mAP) are utilized.

4.3. Ablation study

We carry out a series of ablation experiments on DOTA dataset to
confirm the effect of the proposed FDM and LMR. We use ResNet50 (He
et al., 2016) as the backbone and FPN (Lin, Dollár, et al., 2017) as the
multi-scale feature extractor for the baseline. For fairness, experiments
are performed without any data augmentation.

4.3.1. Evaluation of FDM
This subsection discusses the effect of FDM on the performance

of the detector. Table 1 displays the experimental results. Compared
to the baseline, the APs of all 15 categories of objects are improved
after using FDM, and the mAP is improved by 1.65%. It indicates
that the regression features and classification features generated by
FDM through the hybrid attention mechanism and different activation
functions can guide the network to perform more accurate classification
and regression, thus optimizing the object detection performance. The
visualization results of features before and after using FDM is shown
in Fig. 7. It can be seen that in the classification feature map, the
key feature regions that can characterize the object category have high
responses, while other regions have low responses; in the regression
feature map, the responses are relatively evenly distributed across the
whole object region.

4.3.2. Evaluation of LRM
This subsection discusses the effect of LRM and different anchor

generation strategies on the performance of the detector. The different
experimental setups are as follows:

A: Baseline, fifteen anchors with scales of [20, 21∕3, 22∕3] and aspect
ratios of [1, 1/3, 3, 5, 1/5] are set.

B: Baseline + LRM, multi-scale features extracted by FPN are used
as input of LRM.

C: Baseline + FDM + LRM, classification features generated by FDM
are used as input of LRM.

D: Baseline + FDM + LRM, regression features generated by FDM
are used as input of LRM.

Table 2 displays the experimental results. By applying LRM to the
baseline, the mAP of the detector is improved by 1.64%, and when
FDM and LRM are used in conjunction, the mAP is further improved by
0.69%. It proves that LRM can improve detection performance. From
the results of B, C and D, it can be seen that poorer performance
is achieved by using classification features than shared features for
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Table 1
Ablation Study of FDM (%).

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Baseline 82.93 72.29 40.25 61.78 66.32 69.92 73.58 83.40 80.46 81.81 59.04 56.49 62.04 63.08 53.21 67.10
+ FDM 83.56 74.18 43.30 61.89 70.32 70.27 75.58 84.49 82.32 83.10 61.90 57.28 64.18 64.24 54.53 68.74
improvement 0.63 1.89 3.05 0.11 4.00 0.35 2.00 1.09 1.86 1.29 2.86 0.79 2.14 1.16 1.32 1.64
Fig. 7. The visualization of features before and after using FDM. From top to bottom are input images, shared features, classification features and regression features.
Fig. 8. The detection result visualization before and after using LRM.
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Fig. 9. Detection results visualization details of FDLR-Net in densely arranged scenes.
Table 2
Ablation Study of LRM and different anchor generation strategies.

Methods + FDM + LRM mAP (%)
CLS REG

Baseline 67.10
Baseline + LRM ✓ 68.74
Baseline + FDM + LRM ✓ ✓ 68.33
Baseline + FDM + LRM ✓ ✓ 69.43

regression, the mAP is decreased by 0.41%, and better performance
is achieved by using regression features instead of shared features for
regression, the mAP is improved by 0.69%. It further demonstrates that
the regression features generated by FDM can improve the localization
accuracy of detector, and the classification features are detrimental
to localization accuracy because of their high response to semantic
features. Fig. 8 illustrates the detection result visualization before and
after the use of LRM. With the use of LRM, the offset between predicted
bounding box and object is minimized, making the localization more
accurate.

4.4. Comparison with the state-of-the-art

4.4.1. Results on DOTA
We compare FDLR-Net with R2CNN (Jiang et al., 2017), RRPN (Ma

et al., 2018), RetinaNet (Lin, Goyal, et al., 2017), CAD-Net (Zhang
et al., 2019), SCRDet (Yang et al., 2019), RoI-Transformer (Ding et al.,
2019), R3Det (Yang et al., 2021) and method (Xiao et al., 2022) on
DOTA dataset (Xia et al., 2018). The proposed method uses ResNet152
7

as the backbone. Table 3 displays the experimental results. The pro-
posed method achieves the mAP of 73.08%, which is the best among
the nine algorithms, and achieves the top AP on five categories of
objects, including small vehicle, large vehicle, bridge, harbor and swim-
ming pool. Among all objects, bridges, small vehicles, large vehicles
and ships have large aspect ratios, which makes it more difficult to
achieve spatial alignment between the anchor and the object. Our
FDLR-Net achieves excellent detection performance on these four cat-
egories of objects, which is attributed to that the proposed FDM can
accurately extract features representing the object region, and then
LRM guides the anchor to align with the true bounding box based
on these features. At the same time, we also compare the number of
parameters and training time of each method in Table 4. It can be seen
that the proposed method has the least number of parameters. Com-
pared with the method of preset anchor frame, FDLR-Net only learns
five parameters(𝑡𝑥, 𝑡𝑦, 𝑡𝑤, 𝑡ℎ, 𝑡𝜃), which is designed lightest. In terms of
training time, the proposed method is at an average level. On the
whole, FDLR-Net has both good accuracy and speed. The experimental
results validate the remarkable performance of FDLR-Net.

Fig. 9 illustrates the detection results visualization details of FDLR-
Net for 15 categories objects on DOTA dataset. Our method obtains
good detection results for different scenes, scales and directions. Fig. 10
illustrates the detection result details of RetinaNet and the proposed
method for dense and small objects. From the red boxes, it can be
seen that RetinaNet has both missed and false detections when detect-
ing small vehicles and dense ships, while the proposed method has
excellent detection results.

4.4.2. Results on HRSC2016
We compare FDLR-Net with RRPN (Ma et al., 2018), R2CNN (Jiang

et al., 2017), RoI-Transformer (Ding et al., 2019), R3Det (Yang et al.,
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Table 3
Detection performance on DOTA (%). The optimal detection performance of each category are bolded.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

R2CNN 80.94 65.75 35.34 67.44 59.92 50.91 55.81 90.67 66.92 72.39 55.06 52.23 55.14 53.35 48.22 60.67
RRPN 88.52 71.20 31.66 59.30 51.85 56.19 57.25 90.81 72.84 67.38 56.69 52.87 53.08 51.94 53.58 61.01
RetinaNet 87.93 81.64 43.69 66.69 69.29 54.77 73.26 90.74 80.22 75.54 53.89 62.91 63.90 65.93 52.29 68.72
RoI-Trans. 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.38 53.54 62.83 58.93 47.67 69.56
CAD-Net 87.80 82.40 49.40 73.50 71.10 63.50 76.70 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
Method (Xiao et al., 2022) 88.70 82.63 49.12 64.84 70.63 59.92 77.10 91.48 83.66 78.47 56.95 63.44 64.53 67.82 55.63 70.33
SCRDet 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.05 66.68 66.25 68.24 65.21 72.61
R3Det 89.54 81.99 48.46 62.52 70.48 74.29 77.54 90.80 81.39 83.54 61.97 59.82 65.44 67.46 60.05 71.69
FDLR-Net 89.04 79.16 52.10 68.60 72.12 75.08 77.91 89.42 86.73 86.34 64.84 61.40 66.91 68.65 57.93 73.08
Fig. 10. Detection results visualization of FDLR-Net for 15 categories objects on DOTA dataset.
Table 4
Number of parameters and training time for the compared models.’-’ indicates that
there is no corresponding data.

Methods Param Train Time

R2CNN 89.8M –
RRPN 92.3M –
RetinaNet 94.6 –
RoI-Trans. 273M 0.475s
CAD-Net – –
Method (Xiao et al., 2022) 101.8M –
SCRDet 106.8M 1.18s
R3Det 217.5M –
FDLR-Net 74.5M 0.79s

2021) and method (Xiao et al., 2022) on HRSC2016 dataset (Xia et al.,
2018). Table 5 displays the experimental results. FDLR-Net achieves
the best performance on all backbones, and when ResNet152 is used
as the backbone, the mAP of FDLR-Net reaches 89.4%, which is the
best among all frameworks. Fig. 11 illustrates the detection results
visualization of FDLR-Net with ships of different scales in different
scenes, including ships covered by light clouds, ships sailing at sea and
ships parking in port. The proposed method performs well in all cases.

5. Conclusion

We have proposed an end-to-end rotation detector called FDLR-Net
for objects that have large scale-variation and arbitrary orientation in
8

Table 5
Detection results on HRSC2016. The optimal detection results of each category are
bolded.

Methods Backbone Image size mAP (%)

R2CNN ResNet101 800 × 800 73.7
RRPN ResNet101 800 × 800 79.1
RoI-Trans. ResNet101 512 × 800 86.2
Method (Xiao et al., 2022) ResNet50 800 × 800 87.1
Method (Xiao et al., 2022) ResNet101 800 × 800 87.7
R3Det ResNet101 800 × 800 88.3
FDLR-Net ResNet50 800 × 800 88.2
FDLR-Net ResNet101 800 × 800 88.5
FDLR-Net ResNet152 800 × 800 89.4

remote sensing images. Considering the difficulty in achieving spatial
alignment between the anchor box and the object as well as the
computational that exists with the preset anchor boxes, we design a
localization refinement module, which realize automatic optimization
of anchor box parameters and can continuously improve the alignment
between anchor boxes and objects without extra anchor box param-
eters. For more accurate detection, a feature decoupling module is
designed to generate refined regression features for LMR with more
accurate region information and refined classification features with
richer semantic information. Experiment results on DOTA dataset and
HRSC2016 dataset have shown the excellent detection performance of
our method.
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Fig. 11. Detection results visualization in different scenes with ships of different scales on HRSC2016 dataset. From top to down are ships covered by light clouds, ships sailing
at sea and ships parking in port.
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