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ABSTRACT

In this paper, a detail-enhancement and super-resolution algorithm based on detail synthesis is proposed. The
novelty of this algorithm is in combining local self-similarity search and singular value decomposition of patches
together to obtain details with more natural high-frequency. The proposed algorithm improves the facet or line
phenomenon on edges and areas that have rich texture. The algorithm firstly searches for an image patch and
extracts the high-frequency components based on a local self-similarity of the original, low-resolution image.
The matrix of the high-frequency block is then decomposed into two sub-spaces by the singular value
decomposition and the pseudo high-frequency is removed by a soft threshold. Then, the high-frequency block is
reconstructed using effective singular values. The final super-resolution image is restored by the detail synthesis
with the initial super-resolution image. The experimental results show that the proposed method can
significantly remove the artificial effect of facet or line phenomenon caused by pseudo high-frequency.

Moreover, the method is also applicable to other super-resolution algorithm in detail enhancement.

1. Introduction

Loosely speaking, image super resolution (SR) refers to a class of
algorithms that synthesize high-resolution (HR) images by estimating
the values of unknown pixels from the original low-resolution (LR)
images. It is a challenging branch of image science with important
theoretical and practical advances made in the past. SR has been widely
used in varieties of fields such as HDTV, printing, automatic target
tracking, video surveillance, media players, remote sensing and med-
ical image processing [1-3].

Existing SR algorithms can be classified into four categories:
interpolation-based, reconstruction-based, edge-directed, and learn-
ing-based methods. Interpolation-based approaches [4,5], such as
bilinear and bicubic interpolation, are the most commonly used
methods in practice to upscale images. However, they tend to produce
ringing and jagged artifacts as well as over-smoothing the critical
structures such as edges [6]. In order to solve the above drawbacks, Li
| 7] proposes NEDI model which utilizes the similarity of the covariance
matrix between the LR image and corresponding HR one to interpolate
the pixels along the edges. But the NEDI algorithm has a high
computational cost and not suitable for real-time application.
Getreuer |[8] introduces contour stencils for estimating the image
contours and designing an edge directed color interpolation method.
This interpolation-based algorithm preserves the outline and details of

image well compared to other interpolation-based algorithms.

By building an imaging model of the LR image, reconstruction-
based algorithms [9] consider the image transformation in imaging,
and look for the optimal estimation of the true HR image. They assume
a simplified continuous imaging process and usually formulate the
imaging process as a linear system. Among them, the frequency-
domain method is a pioneering approach [10]. The reconstruction-
based approaches do not exploit prior knowledge for potential effect
improvement. What's more, the high-frequency information often can't
be reconstructed well with a large SR scaling factor. Hence, the
reconstruction-based algorithms are limited in improving image re-
solution [11].

Edge-directed methods estimate the target HR image by enforcing
some edge knowledge [12-15]. For example, Xie [15] proposes the
construction of HR edge map from the edges of the LR depth image
through a Markov random field and explores the self-similarity of
patches during the edge construction stage. Wang [ 16] proposes an
edge-directed SR approach based on a novel adaptive gradient magni-
tude self-interpolation. This algorithm estimates a sharp HR gradient
field directly from the input LR image, and constructs HR images while
preserving the sharp edges. However, the enforced edge knowledge can
produce noticeable jaggy or ringing phenomenon, and makes image
appearing unnaturally.

Finally, the learning-based approaches [17-24] have become
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(a) Original image

(b) LSS algorithm

(c)bi-cubic

Fig. 1. Visual comparison with scale factor=4 for ‘child’.

popular recently. Such an approach assumes that an inheritance
relationship exists between LR and HR image patches. A learning
procedure is then used to supply prior knowledge to guide the SR
reconstruction [25,26]. This method can solve many defects of the
reconstruction-based approaches. But it pays the price of large memory
consumption. If an external training database is used, noticeable
artifacts often exist in the results when the specific image content does
not match well with the training database. An alternative [21,27-32] is
to acquire the training set from the image itself based on local self-
similarities (LSS), which can reduce memory consumption and achieve
good results. LSS is based on research on image statistics that suggests
image patches can be well-represented as a sparse linear combination
of elements from an appropriately chosen over-complete dictionary
[33].

In order to solve many existing problems with SR, a detail-
enhancement, super-resolution algorithm based on singular value
threshold and LSS is proposed in this paper. The algorithm combines
the local, patched-based self-similarity search and the SVD of patch
together to obtain details with more natural high-frequency. The
proposed algorithm can avoid the pseudo facet or line on edges and
areas with rich texture. Furthermore, the detail enhancement step can
be applied to many SR algorithms regardless of the original SR process.
The remainder of this paper is organized as follows. Section 2 gives a
brief introduction about learning-based approaches, LSS algorithm,
and theory of image enhancement with SVD. Section 3 describes the
proposed algorithm in detail. Section 4 presents the experimental
results and analysis. Finally, the conclusion is drawn in Section 5.

2. Related work

Learning-based approaches are becoming popular nowadays. The
proposed learning-based algorithm removes the unwanted facet or line
phenomenon in the SR algorithm based on LSS. Compared to some
state-of-art learning-based approaches, our algorithm can acquire
better subjective and objective effects. Some related work is reviewed
here.

2.1. The brief summary of learning-based approaches

Yang [34] uses the theory of LSS to seek a sparse representation for
each patch of the LR image, and then use the coefficients of this
representation to generate the HR output. In particular, [28,29]
combine image self-similarities with the theory of sparse representa-
tion to build a redundant dictionary. This dictionary is used to guide
the HR image reconstruction. For example, Freedman | 27] recovers the
HR image according to the self-similarities and finds the most similar
image patch in the original image using a block-matching search
method. It then extracts the precious high-frequency component which

is added to the corresponding HR image block. Comparing with other
algorithms, the algorithm has a visually better subjective quality.
However, the algorithm does have its drawbacks. When the high-
frequency component is inappropriately added to the HR image, it
might cause visually disturbing facet or line phenomena [35]. What is
more, the detail of texture information is lost and the HR image can
appear unnaturally. Dong [22] proposes a deep learning method based
on convolutional neural network for single image SR. The network
learns an end-to-end mapping between low- and high-resolution
images with little pre-processing. Compared to other algorithms, the
algorithm can achieve better HR results.

2.2. Local self-similarity

The theory of LSS is for texture synthesis based on image feature
redundancy. And often times, image patches have similar structures in
certain local image regions. The similarity may exist in different image
scales [27]. The SR image is thus reconstructed using the high-
frequency information extracted from similar image blocks of the LR
image. Freedman proposes such an algorithm [27] which reconstructs
the SR image based on iterative amplification and the LSS theory. It
also shows that local minimum image patches are very similar to
themselves upon small scaling factors [27].

The LSS algorithm does not rely on any additional external
databases, which is the main difference with the dictionary-based
learning algorithms. The missing high-frequency details are estimated
from the LR images directly. The HR images are reconstructed
efficiently with some simple calculation. The LSS algorithm has better
subjective effects. However, the reconstructed images may have
significant facet or line phenomenon in edges or regions that have rich
details, as shown in the following figures.

Fig. 1 presents different results of the LSS and bi-cubic algorithms.
There is a significant facet or line phenomenon on the child's hat in
Fig. 1(b) using the LSS algorithm compared with Fig. 1(c) using bi-
cubic interpolation. Fig. 2 shows the comparative results of the high-
frequency components between the LSS and bi-cubic methods. From
the Fig. 2, we can see that the LSS algorithm can produce unnatural
line and facet phenomenon because of inaccurate high-frequency
information. Our observation is that as the LSS algorithm adds high-
frequency details to the initial SR image, it significantly improves the
image sharpness, but the facet or line artifacts may appear. This
comparison indicates that the facet or line artifacts are introduced as
pseudo high-frequency components, which make the SR images appear
unnatural. At the same time, the facet or line artifacts are not common
high-frequency noise, and cannot be removed by general denoising
mechanisms. In our approach, the SVD is used to remove the pseudo
high-frequency components. The final SR image is constructed by a
detail synthesis.
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(¢) bicubic

Fig. 2. Comparison of the high-frequency.

2.3. The theory of image enhancement with SVD

SVD is a kind of nonlinear filter, and has a clear physical meaning.
A matrix containing image information is decomposed into a series of
sub-spaces represented by singular values and singular vectors.
Generally speaking, large singular values of the corresponding singular
vectors indicate useful signals of the image, while the small singular
values of the corresponding singular vectors represent noises. Image
denoising is achieved by removing components along singular vectors
of small singular values [ 36].

For imageA € R™", with the SVD of the matrix we can obtain:

0 for
e
0,05 ¢)
Where Ue€R™™, VeR™ are orthogonal matrices and

0, € R™™0 0, € R™9* 0, € R™*® 0 are zero matrices. ¥ € R
is a diagonal matrix, where I is the rank of matrix A. The diagonal
elements of 3, are the nonzero singular values of A which are sorted in
descending order. Generally speaking, A is made up of the signals
contaminated by noise. It can be expressed as the sum of the signal
subspace A € R™" and the noise subspace N € R™".

A=A +N (2

The recovery and enhancement of images can be formulated as a
denoising problem, namely, how to find the best approximation of A
given A [37]. With an appropriate threshold T, we can obtain 3 € R™
by thresholding the singular value matrix. 3 is the approximation
singular value matrix of the denoised matrix of A. The reconstructed
denoising image can be expressed as the following formula

(a) Obtained by LSS

2101 T
A =
U[Ozoz 3)

In SR algorithms based on LSS, the high-frequency information
superimposed on the HR image can be inaccurate. The pseudo high-
frequency noise can produce significant facet or line phenomenon on
edges and areas that have rich texture. Using the algorithm of image
enhancement with SVD thresholding, firstly high-frequency image
block matrix is decomposed into a series of singular values and
corresponding singular vectors. Then the pseudo high-frequency
components can be removed or reduced by SVD thresholding.
Finally, we can acquire more accurate high-frequency information by
reconstructing the image matrix with the effective singular values, as
shown in the figure below.

Fig. 3 presents the enhancement of the LSS using the SVD. The LSS
result on the left appears to contain inaccurate high-frequency
information with unwanted and unnatural lines and facets. As shown
in Fig. 3(b), most of the high-frequency artifacts are removed after
post-processed by SVD. Furthermore, SVD does not blindly remove
high-frequency components, as can be seen in Fig. 3(b) that major
contours (outlines of faces, eyes, nose, etc.) are preserved. It can be
observed that SVD processing reduces the blocking phenomenon, and
obtains more accurate high-frequency information.

3. Detail enhancement for image super-resolution
In order to remove the unwanted facet or line phenomenon in the

SR algorithm based on LSS, a detail-enhancement SR algorithm based
on singular-value threshold and LSS is proposed here. The unwanted

(b) Processed by SVD

Fig. 3. Comparison of the high-frequency.
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Fig. 4. Flowchart of proposed algorithm.

facet or line phenomenon is caused by inaccurate high-frequency
information, and it is the pseudo high-frequency components. The
pseudo high-frequency can be considered as noise, but not as conven-
tional Gaussian noise or salt-and-pepper noise [ 13]. The SR algorithm
based on singular-value threshold does not require the prior knowledge
of noise, and can successfully remove all kinds of noise. What is more,
it has low computational complexity.

In more detalil, first, the initial SR image is obtained by the contour
stencils interpolation [8]. The prior knowledge is captured based on the
LSS of the original LR image. Then for each block in the SR image, the
most similar image patch is found in the original image with a block-
matching method. The high-frequency detail information of the best-
matched block is extracted and the information matrix of the high-
frequency block is decomposed into two sub-spaces using the SVD. The
pseudo high-frequency is removed by a soft threshold. Finally, the
high-frequency block matrix is reconstructed by using the high-
frequency components corresponding to the effective singular values
only. The finally SR image is restored by a detail synthesis with the
initial SR image. The details of the proposed algorithm are shown in
Fig. 4.

To expand even further, the proposed detail-enhancement image
SR algorithm comprises four major steps: initial interpolation, block
matching, SVD and thresholding, detail synthesis (Fig. 4).

(a) Initial interpolation: The selection of the interpolation algorithm
will have a major impact on the final result. A good interpolation
algorithm is bound to get better results. We have selected the contour
stencils interpolation algorithm [8] proposed by Getreuer to obtain the
initial SR image. Because of the similarity between HR and LR image
on the contour, the contour stencils interpolation algorithm estimates
the shape of natural images contour in advance using a set of 57
contour stencils. It calculates neighborhood contour stencil values
using each pixel of the original low resolution image as the center of
the stencil. Then it chooses the appropriate stencils for interpolation, to
obtain the final HR image. It is a new method for estimating the image
contours based on total variation along curves. And it is able to
distinguish lines of different orientations, curves, corners, and other
geometric features with a computationally efficient formula. What's
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more, this method has linear complexity in the number of pixels. It has
a strong advantage in maintaining the whole contour and details of the
HR image.

(b) Block matching: This paper adopts the minimum SAD (Sum of
absolute difference) between the corresponding pixel values for two
image blocks as the matching criterion.

The initial SR image is divided into blocks point by point. Namely,
denote Y, the initial HR image. For each pixel b € Y, with coordinates
(, b)), we construct a reference block B(h, h) with size of i Xi by
making b the top left corner “anchor” vertex. The schematic of a local
block for i =4 is shown as Fig. 5.

Here each small square represents a pixel. The bold box represents
a 4 x4 block with the small black square as the anchor. The
corresponding position pixel [ of the anchor point b is found in the
original LR image. The initial search location of pixel [ is (, R) which
is defined as follows:

R =h/SF, R =h/F @

B4(bx=b}')

Fig. 5. Schematic of local block.
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Table 1
Comparison of objective indicators.
images Objective indexes [8] Getreuer [16] Wang [34] Yang [27] Freedman [22] Dong proposed
Lena PSNR 28.7313 28.8379 28.9647 25.1916 29.3817 29.0970
SSIM 0.8968 0.8932 0.9013 0.8486 0.9309 09191
Parrot PSNR 28.8170 28.3181 28.4976 26.6355 28.7333 29.0625
SSIM 0.9306 0.9156 0.9196 0.8801 0.9472 0.9331
Koala PSNR 39.0635 38.6047 41.6668 26.0218 41.0425 41.3921
SSIM 0.9850 0.9841 0.9927 0.7841 0.9910 0.9929
Child PSNR 38.1641 38.6223 41.0802 25.9091 39.9646 40.4418
SSIM 0.9863 0.9867 0.9938 0.8673 0.9921 0.9943
Girl PSNR 40.2762 399788 415014 25.5399 41.7116 41.5465
SSIM 0.9879 0.9873 0.9935 0.7589 0.9928 0.9936
Chip PSNR 41.0968 39.8155 41.9456 34.0812 41.3595 43.3545
SSIM 0.9964 0.9937 0.9945 0.9839 0.9977 0.9983
Peppers PSNR 27.1736 27.2387 27.2423 24.8153 27.5922 27.4748
SSIM 0.9142 0.9121 0.9129 0.8742 0.9530 0.9381
Painted face PSNR 27.1080 275142 27.3912 23.7416 27.7756 27.7595
SSIM 0.8691 0.8683 0.8720 0.8396 0.9153 08747
42 0995 4
e 0.994
415 JPam— * = ; — S
e 3
k 0993 +
41 r ° @
o 0992 - {
405 ra 9 .
o 0.991 +
40
099 - . 3 ~
395 T T T 0.989 - ' . . . . ' ; . ' y
05 1 15 2 25 3 35 4 AS 5 g3 & 15 2 25 8 55 4 45 5
¢—koala —®—Child —»—gil 4-koala —8—Child & girl

(a)PSNR of different thresholds

Where SF denotes scale factor, with b being the anchor point. The
program uses a 5x5 search window around [ to perform the full search
for each pixel b. For each potential matching piece, the SAD value is
calculated between the matching block and the reference block. The
block with the minimum SAD value is selected as the best matching
block E(similar block).

Note that the matching is done on a single scale in the proposed
algorithm. The initial SR image and the original LR image respectively
provide the reference and learning blocks. Freedman [27] and Daniel
[30] have used a series of LR images at different scales by down-
sampling the original LR image. The initial SR image and the series of
scaled LR images provide the learning blocks. While the algorithm in
this paper directly uses the information of original LR image and initial
SR image which has lower computational complexity.

(¢) SVD and thresholding: after the step (b), we find the best
matching block F to the reference block B(R, hy) in the original LR
image. The high-frequency information R, of R is computed using the
following formula:

_ix-bp
Where “*” is the convolution symbol, G,x) = ﬁlue 2? is the

(b)SSIM of different thresholds

Fig. 6. PSNR and SSIM of different thresholds.

Gaussian kernel function [38]. The high-frequency image block R, is
processed with the singular value threshold as follows:

1) Perform a SVD of R, = UZV', and the singular value matrix can be
written as :

I=diagy o A), hzh=A=0 (6)

2) With a selected appropriate threshold value, the pseudo high-
frequency components are removed from the singular value matrix.
The effective singular value matrix of the high-frequency image

block R, is X, = diag(X,, ---X,), where
K={h
oy st (7)

3) The effective high-frequency image block is obtained by a recon-
struction using only the effective singular values:

R,=UzV' @)

(d) Detail synthesis: the effective high-frequency image block R,
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(a) Getreuer 81 (b) Wang [16] (¢) Yang [341

(d) Freedman [27] (e)Dong [22] ’ (f) proposed

Fig. 7. Visual effect comparison of the image Lena. (a) Getreuer [8], (b) Wang [16], (¢) Yang [34], (d) Freedman [27], (e) Dong [22], (f) proposed.

(d) Freedman [27] (e)Dong [22] (f) proposed

Fig. 8. Visual effect comparison of the image parrot. (a) Getreuer [8], (b) Wang [16], (c) Yang [34], (d) Freedman [27], (e)Dong [22], (f) proposed.

without pseudo high-frequency noise should not be simply added to the B, =B + R, (10)
initial SR image reference block B. Instead, a window is added on the X
image block by the center symmetric Gaussian function in order to 112 sum;‘lh::ryI:Rthe prop;)(sed algorithm proceeds as follows:
suppress the effects of block overlap. We got R after adding window. O:t:)tut The Sl;mi;‘;ege ¥
Ry =RG,(Ix — %) ©)

" 1. The initial SR image Y, is generated from X by the contour stencils

x|

_lxxlf

Where G(|x—xJ|) = ﬁe 22 is the function of Gaussian win-
dow. The SR image blocks with texture features and details of the LR
image are synthesized as:

interpolation algorithm.
2. Y, is divided into blocks E;
3. X is decomposed into X;, and X; by a high-pass filter;

26
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(a) Getreuer [8]

(d) Freedman [27]

4. The anchor point of B(B € B) is found in X. The most similar
matching patch RR € X) of B is found by the local searching and
matching.

5. The high-frequency image block R, of R is found in the high-
frequency component X;. Then R, is processed with singular value
soft threshold. R, is computed after the pseudo high-frequency
components being removed.

6. R, is windowed to obtain R according to the formula (9). Then R is
added to the original high resolution image block B, according to the
formula (10) to obtain the SR image blocksB;;

7. Steps 4—6 are repeated until all image blocks are processed and Y is
generated.

4. Experimental results and analysis

To demonstrate the performance of the proposed algorithm, it was
compared with many popular methods published recently
[16,22,27,34]. Furthermore, we applied the proposed algorithm to
other SR algorithms. That is, we firstly obtained the initial SR image
using other SR algorithms. Next, we performed steps of detail

(b) Wang [16]

(e)Dong [22]

Fig. 9. Visual effect comparison of the image koala. (a) Getreuer [8] (b) Wang [16], (c) Yang [34], (d) Freedman [27] (e)Dong [22] (f) proposed.

Signal Processing: Image Communication 50 (2017) 21-33

(c) Yang [34]

(f) proposed

enhancement, namely block matching, SVD, thresholding, and detail
synthesis. The final SR images were compared with the SR images
before enhancement.

The algorithm in the experiment was implemented in MATLAB
2012a and run on a PC with a 3.3 GHz dual-core CPU and 4GB RAM.

The SR images were evaluated with the objective evaluation index
and subjective visual examination. Here, we tested a large number of
images which were selected from the Berkeley Segmentation Database
[39]. The standard test images Lena (128x128), Child (128x128),
Parrot (192x128), and koala (161x241) were also used here. In order
to make the algorithm contrast effect more apparently, we enlarged the
original image by 16 (4x4). And they are compared with the HR
version of the original image. So the SR images have the same size with
the original HR image. We chose some fragments of the high resolution
image (in the blue box) for detail comparison. The objective evaluation
index is shown in Table 1 and the subjective visual comparison is
shown in Figs. 7-11.
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(a) Getreuer [8]

(c) Yang [34]

(d) Freedman [27]

(e)Dong [22] |

(f) proposed

Fig. 10. Visual effect comparison of the image Child. (a) Getreuer [8] (b) Wang [16] (c¢) Yang [34], (d) Freedman [27] (e)Dong [22] (f) proposed.

4.1. Objective comparison

Peak signal-to-noise (PSNR) and structural similarity (SSIM) were
employed to measure the SR performance of these methods. The PSNR
quantitatively calculated the discrepancy between the reconstructed
image and the original image. The SSIM was used to measure the
similarity of two images. Specifically, the PSNR is defined as follows:

N . . 2
(X(1) —Y(@))
Epggr = — 10log; (—) /NJ
{a 255

19

where X and Y denote two images of the same size respectively. In this
paper, the images are down-sampled to 1/16 of the original size to
serve as experimental inputs. The down-sampled images are then
reconstructed to the same size of the original images using these
different SR methods.

The SSIM is used to measure the similarity of two images, which is
defined in the following formula:

B (B 00y +Cy
M W+ +C)EE +of +Cy) (20)

where i, are separately mean values of two images respectively, 0
,0; are standard deviation of two images, respectively, oy is the
covariance of the two images, and C;, C, are constants, x and y are
of the same sizes [40].

Different parameter settings can lead to different results. It is
difficult to set values patch-by-patch and set proper values in an
automatic way at present. So by learning the parameter weights based
on the tradeoff between the speed and effect of algorithm on sample
training images |41 ], we set the parameters in the proposed algorithm
as follows: The radius and variance of Gaussian function were selected
as 3 and 0.5, respectively. The size of the reference block in block
matching was 4. The threshold value in singular value thresholding was
3.5. These parameters were used consistently in all experiments. Some
justification of the parameter settings is given below.

It is critical to set appropriate threshold in the part of singular
values. To choose the optimal threshold, we varied the threshold in the
experiment from 0.5 to 5 to compute the objective Indicators of super-
resolution in case of different thresholds. We tested three sample
images and the results were summarized in Fig. 6.

From Fig. 6, when threshold equaled to 3.5, the PSNR and SSIM
achieved the maximum at the same time, so we set soft threshold as 3.5
in the paper.

We used these two indicators to evaluate the results of these
algorithms objectively. Part of the test results are shown in Table 1.

From the results listed in Table 1, the proposed method surpassed
all the compared methods in terms of SSIM. The PSNR of the proposed
method was also higher than other comparison algorithms except for
two images of the Yang's algorithm [34]. Even so, the result of Yang's
algorithm had obvious staircase effect, and the visual effect was worse
than that of the proposed method. At the same time, PSNR and SSIM
of Dong's algorithm were higher than proposed algorithm in three test
images. As Dong's algorithm is based on a novel method named Deep
Convolutional Networks which is time-consuming. The proposed
algorithm based on singular-value threshold does not require the prior
knowledge of noise. Thus it can successfully remove all kinds and has
low computational complexity. Above all, our algorithm is competitive.

From what has been discussed above, we can conclude that the
detail-enhancement super-resolution algorithm based on singular
value threshold and local self-similarity in this paper is superior to
other algorithms, for both the objective indexes used.

4.2. Comparison of subjective visual results

We chose some fragments of the HR image (in the blue box) for
detail comparison. The objective evaluation index is shown in Table 1
and the subjective visual comparisons are shown in Figs. 7-11.

As what can be seen from Figs. 7—11, the detail of Getreuer method
[8] could still be poor, as shown in the unclear texture in the fur of
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(a) Getreuer [8]

‘ (d) Freedman [27]

Fig. 11. Visual effect comparison of the image Girl. (a) Getreuer [8] (b) Wang [16] (¢) Yang [34], (d) Freedman [27] (e)Dong [22] (f) proposed.

koala. Wang's algorithm [16] also had the problem of low clarity.
What's more, noticeable jaggy phenomenon existed in the results of
Wang's algorithm, such as the fur of the koala, the hat of the Child and
the hat edge in the lower right corner of Lena's local contrast part. The
reconstruction images by Yang's algorithm [34] had rich texture and
details. However it still had obvious noise and staircase effect, such as
the staircase effect in the hat edge of Lena, and the noise in the hair of
the Girl. Freedman's algorithm [ 27] had high clarity and sharpness. But
it appeared somewhat faceted in the edge and regions with fine detail.
The detail information loses can be serious, such as the facet in the hair
of Lena, the fur of the koala and the feather in the face of Parrot. There
are obvious lines on the eyeball of Child, which make the eyeball
polygonal and unnatural. Because of the facet or line phenomenon, the
detail and texture information of image lost seriously. Dong algorithm
(SRCNN) could maintain the detail and edge information of image
compared to above algorithms, but it still lose some high-frequency
component. The proposed algorithm improved the facet or line
phenomenon which caused by the pseudo frequency component to
make the HR image more natural and closer to the true image. What's
more, the result of our method had fewer jaggy effects. And the
proposed algorithm had good clarity, clear texture structure and edge

(b) Wang [16]

(e)Dong [22]

Signal Processing: Image Communication 50 (2017) 21-33

(f) proposed

character, and particularly outstanding texture details. Compared to
the truth image, proposed algorithm has higher PSNR and SSIM. The
truth image looks a bit blurry, zoomed region from the proposed
methods looks a bit blurry too. Overall, the proposed algorithm has
better visual effect than other competing methods from the visual
contrast.

4.3. Detail enhancement analysis

In the previous part of this paper, the contour stencils interpolation
algorithm was used to obtain the initial SR image. The prior knowledge
can be gained based on the local self-similarity of the original image.
The finally SR images were generated with the subsequent steps of
detail enhancement, namely, block matching, SVD thresholding, and
detail synthesis. From the comparison of subjective and objective
results, the proposed detail-enhancement algorithm can achieve good
results.

To demonstrate the effectiveness and applicability of our method,
other SR algorithms were used to obtain the initial SR images. The
subsequent steps of detail enhancement with our algorithm were used
to give a final ‘polish’ of the SR results. Due to the space limitations,
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Table 2
The comparison of objective indicators.
Images Objective indicators Bicubic Bicubic With ours Wang [16] Wang with ours Yang [34] Yang with ours Dong [22] Dong with ours
Lena PSNR 28.1443 28.5921 28.8379 29.1267 28.9647 29.2707 29.3817 29.5359
SSIM 0.8816 0.9042 0.8932 0.9170 0.9013 0.9249 0.9309 0.9338
Parrot PSNR 279253 28.2714 28.3181 28.5146 28.4976 28.6838 28.7333 28.8529
SSIM 0.9076 0.9127 09156 0.9296 0.9196 0.9336 0.9472 0.9504
Koala PSNR 37.1294 39.4604 38.6047 41.1176 41.6668 45.1562 40.9614 42.7392
SSIM 0.9850 0.9872 0.9841 0.9922 0.9927 0.9975 0.9908 0.9941
Child PSNR 36.4381 38.7846 38.6223 40.6617 41.0802 43.4779 39.8986 41.7968
SSIM 0.9801 0.9888 0.9867 0.9931 0.9938 0.9975 0.9920 0.9953
Girl PSNR 38.3842 39.9716 39.9788 41.2256 41.5014 43.6527 41.6193 42,9873
SSIM 0.9826 0.9886 0.9873 0.9924 0.9935 0.9965 0.9926 0.9945
Chip PSNR 38.6593 42,0313 39.8155 41.4509 41.9456 44.6442 41.2746 43.8973
SSIM 0.9943 0.9978 0.9937 0.9977 0.9945 0.9985 0.9975 0.9985
Peppers PSNR 26.7824 27.1892 27.2387 27.3628 27.2423 27.3996 27.5922 27.6859
SSIM 0.9129 0.9428 09121 0.9518 0.9129 0.9532 0.9530 0.9562
Painted face PSNR 26.1839 27.0291 27.5142 27.8318 27.3912 27.8837 27.7756 28.0095
SSIM 0.8400 0.8959 0.8683 0.9142 0.8720 0.9193 09153 0.919
5
42 - " p—l S
40
40 4 . =
B 38 —
38 4 g
36 | - 36
34 4 y/ 34 1
32 1 Y 32 f
i 30 +
- - f i /
b apen 5 i) -
28 — ——y, 28 =
26 +—e=r— 26 .
; > D . & A
&~ S s & QI N & 5 & ée\ SEC TN RN
e Q(‘QQ:' & T E & q‘QQc v & ¢ ¥ ¢
& & "
& + Bicubic 4 —+—Wang
—=—Bicubic with ours —=—Wang with ours
(a) PSNR for Bicubic (b) PSNR for Wang[27]
46
e @ 4 - -
44 v - . - —
42 ““" ——t——— . 42 [ —— - B
40 # 40 7 e
38 38 +
36 ] 36
34 it 34
32 ' 32 1
» — 30 -
28 = - A J
26 - ' ‘ 28 —
26 T
' o > > D Q & O =
& o N N N
& & g > > ) .
ob\ &QQL‘ N Qé‘ v & & .\,§5‘ Qb@ & ¢°\ Q}l‘\ SS‘\Q O{y \.\\\b
\Q\ —— Yang S R v Q$ N C
P Nl Q°
A S —+—Dong
—=— Yang with ours s —=—Dong with ours
(c) PSNR for Yang[25] (d) PSNR for Dong[15]

Fig. 12. Comparison of PSNR between enh d and

h d images. (a) PSNR for Bicubic (b) PSNR for Wang [27], (c) PSNR for Yang [25] (d) PSNR for Dong [15].



J. Xiao et al.

Fig. 13. Comparison of PSNR and SSIM between enh
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only parts of the visual contrast figures are shown here.

To show the change of the objective indexes before and after
enhancing more intuitively, Table 2 shows the objective test results
of other existing algorithms before and after detail enhancement.

From the Table 2, the objective indicators of other SR algorithms
had increased to some extent after detail enhancement. In order to
make a clear contrast, Figs. 12 and 13 show the change contrast curve
of PSNR and SSIM for each test image.

From the Fig. 12 and Fig. 13, it is found that the PSNR and SSIM
index of Bicubic, Wang's algorithm [16], Yang's algorithm [34] and
SRCNN algorithm of Dong [22] were all improved after using the
detail-enhancement algorithm in this paper. Some increase of PSNR is
close to 4 dB and SSIM increase to 0.05.

In Fig. 14, the top row from left to right were the results of Bi-cubic,
Wang [16], Yang [34], Dong [22] and Huang | 32]. The bottom row was the
final SR images where the images in top row were used as the initial SR
images with subsequent steps of detail enhancement of the proposed
algorithm. Comparing figures in a column, it can be seen that image clarity
was improved and the detail information became more abundant. For
example, the sharpness of the enhanced image is improved obviously in the
edge of hat and hair at the lower right corner of Lena. Because of abnormal
operation of the code of Huang [32], so we do not test all images. We take
the result of ‘lena’ processed by Huang [32] as the initial super-resolution
images, and the final HR result is indeed improved.

From the subjective visual inspection and objective index compar-
ison above, we can see that the detail-enhancement algorithm in this
paper can achieve good results when it is combined as a post-
processing step to “polish” the results from the other SR algorithms.
Moreover, the clarity and edge sharpness of the enhanced images are
improved visually. The details and texture are richer, and the objective
indexes are improved significantly. All the above prove that the
proposed method has strong applicability as either a stand-alone
algorithm or a post-processing step to many other SR algorithms.

5. Conclusion

In this paper, we propose a detail-enhancement SR algorithm based
on singular value threshold and LSS. The key point is to combine the
local self-similarity search in patch level and the SVD of patches
together to obtain details and improve the facet or line phenomenon on
edges and areas that have rich texture. First, the LSS of the original low
resolution image is used as a priori knowledge source. The best
matching block is used to extract useful high-frequency components
for enhancements. Then the information matrix of the best matching
block is decomposed with SVD, and pseudo high-frequencies that can
cause undesirable facet or line phenomenon are removed by a the soft
threshold. Finally, the high-frequency detail information without
pseudo high-frequency noise is added to the initial SR image. The
experimental results show that the proposed method significantly
reduces the facet or line phenomenon caused by pseudo high-frequen-
cies, and can well restore the edges and texture structures. At the same
time, the algorithm proposed in this paper has good detail enhance-
ment effect and strong applicability to enhance many existing SR
algorithms.
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