Artificial Intelligence

CS 165A

Nov 10, 2020

Instructor: Prof. Yu-Xiang Wang

→ Markov Decision Processes

Announcement

- The TAs are still grading the midterm.
- We are hoping to release your midterm grades on Thursday.
- No discussion class this week.

Announcement

- HW3 released last Thursday.
- Topics covered includes
 - Game playing
 - Markov Decision processes
- Programming question:
 - Solve PACMAN with ghosts moving around.

Recap: Expectimax

- Your opponent behave randomly with a given probability distribution,
- If you move left, your opponent will select actions with probability [0.5,0.5]
- If you move right, your opponent will select actions with [0.6,0.4]

Recap: Expectimax

- Your opponent behave randomly with a given probability distribution,
- If you move left, your opponent will select actions with probability [0.5,0.5]
- If you move right, your opponent will select actions with [0.6,0.4]

From MAX point of view, she is playing against a stochastic environment.

Games: Modelling, Inference, Learning

Modelling:

- Formulating games as a search problem
- Modeling your opponent

• Inference:

- How to search for a strategy
- Minimax, Expectimax (and Expectiminimax)
- Pruning
- Heuristic function and cut-off search

• Learning:

- Learning heurtistic functions
- Modeling your opponent from data

Games: Modelling, Inference, Learning

Modelling:

- Formulating games as a search problem
- Modeling your opponent

• Inference:

- How to search for a strategy
- Minimax, Expectimax (and Expectiminimax)
- Pruning
- Heuristic function and cut-off search

• Learning:

- Learning heurtistic functions
- Modeling your opponent from data

(Where are the data coming from?)

Reinforcement Learning Lecture Series

- Overview (Today)
- Markov Decision Processes (Today)
- Bandits problems and exploration
- Reinforcement Learning Algorithms

Reinforcement learning in the animal world

Ivan Pavlov (1849 - 1936) Nobel Laureate

- Learn from rewards
- Reinforce on the states that yield positive rewards

Reinforcement learning: Applications

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents might not even observe the state

• State, Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

• State, Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
 - When the state is observable: $\pi:\mathcal{S} o\mathcal{A}$
 - Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

• State, Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
 - When the state is observable: $\pi:\mathcal{S} o\mathcal{A}$
 - Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

- Learn the best policy that maximizes the expected reward
 - Finite horizon (episodic) RL: $\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{T} R_t]$
 - Infinite horizon RL: $\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} R_t]$

State, Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
 - When the state is observable:
- $\pi:\mathcal{S} o\mathcal{A}$ $\pi:\mathcal{S}\to\mathcal{A}$ At π

Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

- Learn the best policy that maximizes the expected reward
 - Finite horizon (episodic) RL: $\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum R_t]$ T: horizon
 - $\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} R_t] \qquad 0 \in \gamma$ $\gamma: \text{ discount factor}$ Infinite horizon RL:

RL for robot control

- States: The physical world, e.g., location/speed/acceleration and so on.
- Observations: camera images, joint angles
- Actions: joint torques
- Rewards: stay balanced, navigate to target locations, serve and protect humans, etc.

RL for Inventory Management

- State: Inventory level, customer demand, competitor's inventory
- Observations: current inventory levels and sales history
- Actions: amount of each item to purchase
- Rewards: profit

Demonstrating the learning process

Mountain car:

https://www.youtube.com/watch?v=U5w9PoKCOeM

Reading materials for RL

- Introduction:
 - Sutton and Barto: Chapter 1
- Markov Decision Processes
 - AIMA Section 17.1, Sutton and Barto: Ch 3
- Policy iterations / value iterations
 - AIMA Chapter 17.2-17.3, Sutton and Barto Ch 4.
- Bandits

Gely Rd.

- Sutton and Barto Ch 2, AIMA Ch. 21.4 (A IMA Ch. 22.4)
- RL Algorithms: Sutton and Barto Ch 4, Ch 5, Ch 6, Ch 13
- Next Tuesday:
 - Markov Decision Processes

Reinforcement learning is, arguably, the most general AI framework.

- RL: State, Action, Reward, Nothing is known.
- Simplified RL models:
 - iid state \rightarrow Contextual bandits
 - No state, tabular action → Multi-arm bandits
 - iid state, no reward → Supervised Learning
 - Known dynamics / reward → Markov Decision Processes (Control/Cybernetics)
 - No reward / Unknown dynamics → System Identification

Reinforcement learning is very challenging

- The agent needs to:
 - Learn the state-transitions ----- How the world works
 - Learning the costs / rewards ---- Cost of actions
 - Learning how to search ---- Come up with a good strategy

Reinforcement learning is very challenging

- The agent needs to:
 - Learn the state-transitions ----- How the world works
 - Learning the costs / rewards ---- Cost of actions
 - Learning how to search ---- Come up with a good strategy
- All at the same time

Let us tackle different aspects of the RL problem one at a time

- Markov Decision Processes:
 - Dynamics are given no need to learn
- Bandits: Explore-Exploit in simple settings
 - RL without dynamics
- Full Reinforcement Learning
 - Learning MDPs

Robot in a room. (3 min discussion)

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?
- what if the transitions were deterministic?

actions: UP, DOWN, LEFT, RIGHT

e.g.,

State-transitions with action **UP**:

80% move up10% move left10% move right

*If you bump into a wall, you stay where you are.

Is this a solution?

- only if transitions are deterministic
 - not in this case (transitions are stochastic)
- solution/policy
 - mapping from each state to an action

Optimal policy

Reward for each step: -2

Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S_0
- transition model P(s'|s,a)- P([1,2]|[1,1], up) = 0.8• reward function r(s') reward reward- r([4,3]) = +1 (Sometimes also depend on s, a)
- goal: maximize cumulative reward in the long run
- policy: mapping from S to A
 - Overloading notation: $\pi(s)$ outputs an actions (for deterministic policy), or a probability distribution of actions (for stochastic policy).
 - We also use $\pi(a|s)$ as a short hand for $P_{\pi}(a|s)$ --- the conditional probability table under policy π

Tabular MDP

• Discrete State, Discrete Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
 - When the state is observable: $\pi:\mathcal{S} o\mathcal{A}$
 - Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

- Learn the best policy that maximizes the expected reward
 - Finite horizon (episodic) RL: $\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} R_t]$ T: horizon

T.

- Infinite horizon RL: $\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} R_t]$ $\gamma: \text{ discount factor}$

What is Markovian about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

• This is just like search, where the future (available actions, states to transition to) could only depend on the current state (not the history)

Andrey Markov (1856-1922)

This is a **conditional independence** assumption!

 Example of a finite horizon MDP with H = 3, as a BayesNet

This is a **conditional independence** assumption!

Example of an infinite horizon MDP (as a BayesNet)

State-space diagram representation of an MDP: An example with 3 states and 2 actions.

- * The reward can be associated with only the state s' you transition into.
- * Or the state that you transition from s and the action a you take.
- * Or all three at the same time.

Reward function and Value functions

Reward function and Value functions

- Immediate reward function r(s,a,s')
 - expected immediate reward

- Immediate reward function r(s,a,s')
 - expected immediate reward
- state value function: V(s)
 - expected long-term return when starting in s and following π

- Immediate reward function r(s,a,s')
 - expected immediate reward
- state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π
- state-action value function: $Q^{\pi}(s,a)$
 - expected long-term return when starting in s, performing a, and following π

- Immediate reward function r(s,a,s')
 - expected immediate reward
- state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π
- state-action value function: $Q^{\pi}(s,a)$
 - expected long-term return when starting in s, performing a, and following π
- useful for finding the optimal policy
 - can estimate from experience
 - pick the best action using $Q^{\pi}(s,a)$

- Immediate reward function r(s,a,s')
 - expected immediate reward

$$r(s, a, s') = \mathbb{E}[R_1 | S_1 = s, A_1 = a, S_2 = s']$$

 $r^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1 | S_1 = s]$

- Immediate reward function r(s,a,s')
 - expected immediate reward

$$r(s, a, s') = \mathbb{E}[R_1 | S_1 = s, A_1 = a, S_2 = s']$$

 $r^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1 | S_1 = s]$

- state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s]$$

- Immediate reward function r(s,a,s')
 - expected immediate reward

$$r(s, a, s') = \mathbb{E}[R_1 | S_1 = s, A_1 = a, S_2 = s']$$

 $r^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1 | S_1 = s]$

- state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s]$$

- state-action value function: $Q^{\pi}(s,a)$
 - expected **long-term** return when starting in s, performing a, and following π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | \underline{S_1 = s}, \underline{A_1 = a}]$$

Bellman equations – the fundamental equations of MDP and RL

• An alternative, recursive and more useful way of defining the V-function and Q function

$$\underline{V^{\pi}(s)} = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

Bellman equations – the fundamental equations of MDP and RL

 An alternative, recursive and more useful way of defining the V-function and Q function

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

• Quiz:

- Prove Bellman equation from the definition in the previous slide.
- Write down the Bellman equation using Q function alone.

$$Q^{\pi}(s,a) = ?$$

Bellman equations – the fundamental equations of MDP and RL

• An alternative, recursive and more useful way of defining the V-function and Q function

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

More quiz:

- On AIMA textbook, reward is only a function of the state your transition into (Think about we collect a reward when we transition into s'). What is the Bellman equation in this special case?
- Sometimes, the reward is conditionally independent to s' given s, a. What is the Bellman equation in this special case?

e.g., **UP**state-transitions with action **UP**:

80% move UP10% move LEFT10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

+

+

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

*If you bump into a wall, you stay where you are.

move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

10%

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

+

+

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$
1.0 +

+

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$
1.0 + 0.8 *

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$
 1.0 + 0.8 * (+1-0.04

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$1.0 \quad + \quad 0.8 \quad * \quad (+1-0.04 \quad + \quad 0)$$

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$1.0 \quad + \quad 0.8 \quad * \quad (+1-0.04 \quad + \quad 0)$$

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$
 1.0 +
$$0.8 * (+1-0.04 + 0)$$
 0.1 *

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

- *If you bump into a wall, you stay where you are.
 - reward +1 at [4,3], -1 at [4,2]
 - reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$1.0 + \frac{0.8 * (+1-0.04 + 0)}{0.1 * (-0.04 + V^{\pi}([3,2]))}$$

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

- *If you bump into a wall, you stay where you are.
 - reward +1 at [4,3], -1 at [4,2]
 - reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$

$$1.0 + \frac{0.8 * (+1-0.04 + 0)}{0.1 * (-0.04 + V^{\pi}([3,2]))}$$

$$+ 0.1 *$$
32

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

10% move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$

$$1.0 + \frac{0.8 * (+1-0.04 + 0)}{0.1 * (-0.04 + V^{\pi}([3,2]))}$$

$$+ 0.1 * (-0.04 + V^{\pi}([3,3]))$$

$$32$$

Optimal value functions

- there's a set of *optimal* policies
 - V^{π} defines partial ordering on policies
 - they share the same optimal value function

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

Bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

- system of n non-linear equations
- solve for $V^*(s)$
- easy to extract the optimal policy
- having Q*(s,a) makes it even simpler

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

Inference problem: given an MDP, how to compute its optimal policy?

• It suffices to compute its Q* function, because:

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

• It suffices to compute its V* function, because:

$$Q^*(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^*(s')]$$

Algorithms for calculating the V* function

• Policy evaluation, policy-improvement

• Policy iterations

• Value iterations

Dynamic programming

- main idea
 - use value functions to structure the search for good policies
 - need a known model of the environment
- two main components

– policy evaluation: compute V^{π} from π

- policy improvement: improve π based on V^{π}
- start with an arbitrary policy
- repeat evaluation/improvement until convergence

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

• policy improvement: $V^{\pi} \rightarrow \pi'$

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

• policy improvement: $V^{\pi} \rightarrow \pi'$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k^{\pi}(s')]$$

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

policy improvement: $V^{\pi} \rightarrow \pi'$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k^{\pi}(s')]$$

 π ' either strictly better than π , or π ' is optimal (if $\pi = \pi$ ')

Policy/Value iteration

Policy iteration

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

- two nested iterations; too slow
- don't need to converge to V^{π_k}
 - just move towards it

Policy/Value iteration

Policy iteration

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

- two nested iterations; too slow
- don't need to converge to V^{π_k}
 - just move towards it

Value iteration

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k(s')]$$

- use Bellman optimality equation as an update
- converges to V*

So far no learning at all. On Thursday:

• More on MDPs

• MDP inferences

• Start bandits and exploration