Artificial Intelligence

CS 165A
Nov 10, 2020

Instructor: Prof. Yu-Xiang Wang

— Intro to RL
— Markov Decision Processes




Announcement

* The TAs are still grading the midterm.

* We are hoping to release your midterm grades on
Thursday.

 No discussion class this week.



Announcement

« HW3 released last Thursday.

* Topics covered includes
— Game playing

— Markov Decision processes

* Programming question:
— Solve PACMAN with ghosts moving around.
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Recap: Expectimax

* Your opponent behave
randomly with a given
probability distribution,

e )
Your move mm /\ * If you move left, your

opponent will select

AVERAGE | 3

Opponent’s 24 actions with probability
onents - //\ ............ /I\ [0.5.0.5]

move 8 If you move right, your

opponent will select
actions with [0.6,0.4]

From MAX point of view, she is playing against a stochastic environment.
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Games: Modelling, Inference, Learning

e Modelling:
— Formulating games as a search problem
— Modeling your opponent
e Inference:
— How to search for a strategy
— Minimax, Expectimax (and Expectiminimax)
— Pruning
— Heuristic function and cut-off search
e Learning:
— Learning heurtistic functions

— Modeling your opponent from data
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e Modelling:
— Formulating games as a search problem
— Modeling your opponent
e Inference:
— How to search for a strategy
— Minimax, Expectimax (and Expectiminimax)
— Pruning
— Heuristic function and cut-off search
e Learning:
— Learning heurtistic functions

— Modeling your opponent from data

(Where are the data coming from?)



Reinforcement Learning Lecture Series

e Overview (Today)
« Markov Decision Processes (Today)
« Bandits problems and exploration

e Reinforcement Learning Algorithms



Reinforcement learning in the animal world
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 Learn from rewards

» Reinforce on the states that yield positive rewards

Ivan Pavlov
(1849 - 1936)
Nobel Laureate



Reinforcement learning: Applications

& DEEPMIND Al
LEARNED HOW TO WALK

buy or not buy



Reinforcement learning problem setup

« State, Action, Reward

 Unknown reward function, unknown state-transitions.
* Agents might not even observe the state

state reward
\Y

Environment




Reinforcement learning problem setup
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Reinforcement learning problem setup

o State, Action, Reward and Observation

S; €S AtEA R, € R O, €0

« Policy:
— When the state is observable: T . S —> .A

— Or when the state 1s not observable

T (Ox AxR)I™ = A

» Learn the best policy that maximizes the expected reward

T
— Finite horizon (episodic) RL: 7* = arg max E R
(ep ) g nax [75—21 ]

N —
— Infinite horizon RL: 7 = arg max E[Z W’t_lRt]
mell
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Reinforcement learning problem setup

o State, Action, Reward and Observation

Ste§ AteA R; e R Ote(?

 Policy: 15> PAL
— When the state 1s observable: T:S—+ A AJ&\AI/\CQ&)
— Or when the state 1s not observable T—

T (Ox AxR)I™ = A

« Learn the best policy that maximizes the expected reward

T
4
.. : L k-
— Finite horizon (episodic) RL: 7" = @Lg_?ﬁ_cﬁ Z R;] T horizon
00 L_\_,_,,J
— Infinite horizon RL: .+ _ = argmax Z VLR, 0 <y
mell 10

y: discount factor



RL for robot control

===

® States: The physical world, e.g., location/speed/acceleration and so on.
® Observations: camera images, joint angles

® Actions: joint torques

® Rewards: stay balanced, navigate to target locations, serve and protect
humans, etc.
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RL for Inventory Management

® State: Inventory level, customer demand, competitor’s inventory
® Observations: current inventory levels and sales history
® Actions: amount of each item to purchase

® Rewards: profit

12



Demonstrating the learning process

 Mountain car:
https://www.yvoutube.com/watch?v=U5w9PoKCOeM
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https://www.youtube.com/watch?v=U5w9PoKCOeM

Reading materials for RL

* Introduction:
— Sutton and Barto: Chapter 1

N

e Markov Decision Processes
— AIMA Section 17.1, Sutton and Barto: Ch 3

» Policy iterations / value iterations
— AIMA Chapter 17.2-17.3, Sutton and Barto Ch 4.

e Bandits o &
_ Sutton and Barto Ch 2, AIMA Ch.21.4 (AN <lr 7”)

 RL Algorithms: Sutton and Barto Ch 4, Ch 5, Ch 6, Ch 13

* Next Tuesday:

— Markov Decision Processes
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Reinforcement learning 1s, arguably, the most

general Al framework.

« RL: State, Action, Reward, Nothing 1s known.

« Simplified RL models:
— 1id state = Contextual bandits
— No state, tabular action = Multi-arm bandits
— 1id state, no reward = Supervised Learning

— Known dynamics / reward 2 Markov Decision Processes
(Control/Cybernetics)

— No reward / Unknown dynamics = System Identification

15



Reinforcement learning 1s very challenging

* The agent needs to:
— Learn the state-transitions ----- How the world works
— Learning the costs / rewards ----- Cost of actions

— Learning how to search ----- Come up with a good strategy

16



Reinforcement learning 1s very challenging

* The agent needs to:

— Learn the state-transitions ----- How the world works
— Learning the costs / rewards ----- Cost of actions
— Learning how to search ----- Come up with a good strategy

e All at the same time
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Let us tackle different aspects of the RL
problem one at a time

* Markov Decision Processes:

— Dynamics are given no need to learn

« Bandits: Explore-Exploit in simple settings
— RL without dynamics

* Full Reinforcement Learning
— Learning MDPs

17



Robot i a room. (3 min dlscussmn)
K14 ((OKYS ‘)‘b\({ oo PZQ L g >/%
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1

/:©>‘\‘—§\ actions: UP, DOWN, LEFT, RIGHT
e.g., t
(ﬂ .
“ UP
Nol State-transitions with action UP:
ol \
ST. —— . 80% move up
3\ 0% . 0
= 10% move left

10% move right
 reward +1 at [4,3], -1 at [4,2]

e reward -0.04 for each step

*If you bump into a wall,

5 . you stay where you are.
e what’s the strategy to achieve max reward?

 what if the transitions were deterministic?
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Is this a solution?

-> |

*

) -1

- | -

*

 only 1f transitions are deterministic

— not in this case (transitions are stochastic)

 solution/policy

— mapping from each state to an action
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Optimal policy




Reward for each step: -2

= = =
3 E3E
- | = - 4




Markov Decision Process (MDP)

« set of states S, set of actions A, initial state S,

transition model P(s’| s,a)

environment
- P([L2]|[1,1],up)=10.8 reward Q ) action
» reward function r(s’) ((S' 25) new state agent

— 1([4,3] )=+1 (Sometimes also depend on s, a)

» goal: maximize cumulative reward in the long run

* policy: mapping from S to A
— Overloading notation: 7t(s) outputs an actions (for deterministic
policy), or a probability distribution of actions (for stochastic
policy).
— We also use n(als) as a short hand for P_(als) --- the conditional
probability table under policy ©t
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Tabular MDP

* Discrete State, Discrete Action, Reward and Observation

S;eS Are A R, e R 6H67+<6—

« Policy:
— When the state is observable: T . S —> .A
——Crreir eSS tateisTetehservanie —
O AR L A

» Learn the best policy that maximizes the expected reward

T -
— Finite horizon (episodic) RL: 7" = arg f?é’ﬁ( E[Z R;] T horizon
t=1

N —
— Infinite horizon RL: 7 = arg max E[Z W’t_lRt]
mell i—1 - 23

y: discount factor



What 1s Markovian about MDPs?

« “Markov” generally means that given the present state, the
future and the past are independent

« For Markov decision processes, “Markov’” means action
outcomes depend only on the current state

P(SH—I = Sl‘St =54, Ay = a4, Sp—1 = s¢—1, A—1,...50 = 50)

/ Andrey Markov
P(Si11 = 8|St = st, Ar = ay) (1856-1922)
'\——_\

« This is just like search, where the future (available actions,
states to transition to) could only depend on the current state
(not the history)

(slide credit: Virtue and Rosenthal) 24



This 1s a conditional independence
assumption! -

« Example of a finite horizon MDP with H= 3, as a
BayesNet

L RIsA) ERIGAS
ol Pﬂ ) Y (%,0¢) 1 Se S
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This 1s a conditional independence
assumption!

« Example of an infinite horizon MDP (as a BayesNet)

26



State-space diagram representation of an
MDP: An example with 3 states and 2 actions.

r(sy,aq,81) = —_2

0.3
_ ) 0(\}01\ r(s2,a4,82) =50
P —_—
a,
ai, a;
r(s,,a,,s3) = —1

* The reward can be associated with only the state s’ you transition into.
* Or the state that you transition from s and the action a you take.
* Or all three at the same time.

27



Reward function and Value functions

28



Reward function and Value functions

« Immediate reward function r(s,a,s’)

— expected immediate reward
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Reward function and Value functions

» Immediate reward function r(s,a,s’)

— expected immediate reward

e state value function: VE{s)

— expected long-term return when starting in s and following ©t
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Reward function and Value functions

« Immediate reward function r(s,a,s’)

— expected immediate reward

 state value function: V*(s)

— expected long-term return when starting in s and following ©t

 state-action value function: Q%(s,a)

— expected long-term return when starting in s, performing a, and following ©
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Reward function and Value functions

Immediate reward function r(s,a,s’)

— expected immediate reward

state value function: V7(s)

— expected long-term return when starting in s and following ©t

state-action value function: Q%(s,a)

— expected long-term return when starting in s, performing a, and following ©

useful for finding the optimal policy a
— can estimate from experience r

— pick the best action using Q7(s,a)
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Reward function and Value functions
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Reward function and Value functions

« Immediate reward function r(s,a,s’)

— expected immediate reward
r(s,a,s") =E[R1|S1 =s,A1 =a, S = §]
1" (5) = Egon(als) F21]51 = 8]
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Reward function and Value functions

« Immediate reward function r(s,a,s’)
— expected immediate reward
r(s,a,s') = E[R1|S1 = s, A1 = a, Sy = §']

;;:(S) — anw(a|s) [R1|Sl — 5]
 state value function: V*(s)

— expected long-term return when starting in s and following ©t

VT(s) =Ex[Ri + YRy + ... + 7' 'R+ ...|S1 = 5]

29



Reward function and Value functions

« Immediate reward function r(s,a,s’)

— expected immediate reward
r(s,a,s") =E[R1|S1 =s,A1 =a, S = §]
1" (5) = Egon(als) F21]51 = 8]

 state value function: V*(s)

— expected long-term return when starting in s and following ©t

VT(s) =Er[Ri +YRa+ ... + ¥ 'Ry + ...|S1 = 4]

 state-action value function: Q%(s,a)

— expected long-term return when starting in s, performing a, and following ©

Q" (s,a) =E;[Ri +yRa + ... + ’Yt_lRt + ...|S1 = s, {11 = al
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Bellman equations — the fundamental

equations of MDP and RL
e An alternative, recursive and more useful way of defining
the V-function and Q function W e R ]g)

Zwa\ ZP "Is,a)[r(s,a, s 4—’yV7T Zwa\ Q™ (s,a)
s M

tﬁq’tﬂ Nocen
E Q\Iﬂ[ Q
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Bellman equations — the fundamental
equations of MDP and RL

* An alternative, recursive and more useful way of defining
the V-function and Q function

:Zw(a"‘g)ZP(S/‘S,CL)[T(S,&,S + V™ (s ZW als)Q™ (s, a)

Quiz:

— Prove Bellman equation from the definition in the previous slide.

— Write down the Bellman equation using Q function alone.

Q™ (s,a) ="

30



Bellman equations — the fundamental
equations of MDP and RL

* An alternative, recursive and more useful way of defining
the V-function and Q function

— Zw(a\s)ZP(s’\s,a)[r(s,a,s ) +4V (s ZW als)Q7 (s, a)

 More quiz:

— On AIMA textbook, reward is only a function of the state your transition

into (Think about we collect a reward when we transition into s’). What is
the Bellman equation in this special case?

— Sometimes, the reward 1s conditionally independent to s’ given s, a. What
1s the Bellman equation in this special case?

31



Let’s work out the Value function for a
specific policy

actions: UP, DOWN, LEFT, RIGHT

# + . . .
state-transitions with action UP:

80% move UP
f =) | -1 10%  move LEFT
10% move RIGHT

I *If you bump into a wall, you stay where you are.

« reward +1 at [4,3], -1 at [4,2]

e reward -0.04 for each step

- Zw(a\s)ZP(S’\S,&)[T(S,&,S ) +yV (s Zﬂ' als)Q™ (s, a)
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Let’s work out the Value function for a
specific policy

actions: UP, DOWN, LEFT, RIGHT

e.g., UpP
+1 . . .
state-transitions with action UP:

80% move UP
f @ - 1 10% move LEFT
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Optimal value functions

» there’s a set of optimal policies
— V7™ defines partial ordering on policies

— they share the same optimal value function
V*(s) = max V7T(s) s’

« Bellman optimality equation
V*(s) = max » _ P(s|s,a)[r(s,a,s") + 7V *(s)

— system of n non-linear equations
— solve for V*(s)

— easy to extract the optimal policy

* having Q*(s,a) makes 1t even simpler
7*(s) = arg max Q*(s,a)

33



Inference problem: given an MDP, how to
compute its optimal policy?

[t suffices to compute i1ts Q* function, because:
7*(s) = arg max Q*(s,a)

[t suffices to compute i1ts V* function, because:

Q*(s,a) =) P(s'ls,a)[r(s,a,s") +7V*(s")]

34



Algorithms for calculating the V* function

* Policy evaluation, policy-improvement

* Policy iterations

 Value iterations

35



Dynamic programming

G

main 1dea
— use value functions to structure the search for good policies

— need a known model of the environment

two main components
— policy evaluation: compute V* from D

— policy improvement: improve 1 based on V*

— start with an arbitrary policy

— repeat evaluation/improvement until convergence

36



Policy evaluation/improvement

e policy evaluation: w -> V7
— Bellman eqn’s define a system of n eqn’s

— could solve, but will use 1terative version
Vit (s) < > wlals) > P(s|s,a)[r(s,a,s") + Vi (s)
a s’

— start with an arbitrary value function V, iterate until V, converges

37
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Policy evaluation/improvement

e policy evaluation: w -> V7
— Bellman eqn’s define a system of n eqn’s

— could solve, but will use 1terative version
Vit (s) < > wlals) > P(s|s,a)[r(s,a,s") + Vi (s)
a s’

— start with an arbitrary value function V, iterate until V, converges

* policy improvement: V™ -> 7’
7'(s) = arg max Q" (s, a)

= arg maxz P(s'|s,a)[r(s,a,s") + V" (s")]

— 1 either strictly better than nt, or ©’ 1s optimal (if m = 10°) 37



Policy/Value iteration

* Policy iteration

0 —Eyro I S Eym

— two nested iterations; too slow
— don’t need to converge to V7™

* just move towards it

38



Policy/Value iteration

« Policy iteration
0 _E V70 _>I7_‘_1 _ B V71 _>I..._>I7T>k _E V*

— two nested iterations; too slow
— don’t need to converge to V7™

* just move towards it

 Value iteration

Vip1(s) maXZP |5, a)[r(s,a,s) +YVi(s")]

— use Bellman optlmahty equation as an update

— converges to V*
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So far no learning at all. On Thursday:

e More on MDPs
e MDP inferences

« Start bandits and exploration
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