Artificial Intelligence

CS 165A
Nov 12, 2020

Instructor: Prof. Yu-Xiang Wang

— Markov Decision Processes




Midterm Results

Midterm results (without bonus)

More
90-100
80-90
70-80
60-70
<60

(Histogram is sanitized using Differential Privacy)

12

14



Midterm Results (with bonus)

Midterm results (with bonus)

More
120-130
110-120
100-110

90-100

80-90

70-80

60-70

<60

(Histogram is sanitized using Differential Privacy)

10



Recap: Reinforcement learning problem setup

« State, Action, Reward

 Unknown reward function, unknown state-transitions.
* Agents might not even observe the state

state reward
\Y

Environment




Recap: Robot in a room.

~ 7 C—OA
70\(((\/} : \
| - C— A
[[\ —> | | +1- actions: UP, DOWN, LEFT, RIGHT
A\ e.g.,
___7 E
] 1 up
S State-transitions with action UP:
STALRE — | ) | L 80%  move up
- 10% move left

10% move right
« reward +1 at [4,3], -1 at [4,2]

e reward -0.04 for each step If'you bump into a wall,

you stay where you are.

« what’s the strategy to achieve max reward?

 what if the transitions were deterministic?



Recap: Tabular MDP

* Discrete State, Discrete Action, Reward and Observation

StEcS AtEA RIER—@—?@—

« Policy:
— When the state 1s observable: . S — A
—Or-whetrthe-state-tsrotobservable—
O AR L A

* Learn the best policy that maximizes the expected reward

— Finite horizon (episodic) RL: 7™ = ar maXE Rt
& T: horizon

7761:[
te hor L2
— Infinite horizon RL: .« _ = arg max E| Z 775 1 R] ‘\ML/[ =2,
(—/’f—/— well - MGl 6

f\—/’dﬁ’ ount factor



Recap: Parameters of an MDP are the CPTs

g

|
 Initial state distribution P@]) ::O(( S Slx [sUA [
e Transition dynamics P( Sea| RS 4) =+ )P &R
* Reward distribution ETR: (S A = vl o )
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Recap: Reward function and Value functions

» Immediate reward function r(s,a,s’)

Ja expected immediate reward
g

5 7r(s,a Sms Al =a,Sy; = 5]
N 277(8) = Eovn(als [Ra]S1 = 5]

——

—_—

 state value function: V*(s)

— expected long-term return when starting in s and following 7

VT(s) =Er[Ri +YRa+ ... + ¥ 'Ry + ...|S1 = 4]

—

 state-action value function: Q%(s,a)

— expected long-term return when starting in s, performing a, and following ©

Qf(s,a):E [R1+WR2+ +7t 1Rt‘|‘ 151—8 Al_a}
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Recap: Bellman equations — the fundamental
equations of MDP and RL

* An alternative, recursive and more useful way of defining
the V-function and Q function ;
VCZ L & [ ¢ @ >

B {h)

ﬁiﬁ) = w(als) > P(s'ls,a)[r(s,a,s") + V()]
Sl Eg PET) U’LR &ALO ! M&

- £ R v VE Wé 3
= LR 1y 5 Rerboe R
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Zwa\ Q™ (s, a



Recap: Bellman equations — the fundamental
equations of MDP and RL

* An alternative, recursive and more useful way of defining
the V-function and Q function

=S w(als) S P(|s, a)lr(s,a,8') + V()] = 3 w(als)Q7 (s, a)

a
_/

Quiz:
— Prove Bellman equation from the definition in the previous slide.
A

— Write down the Bellman equation using Q function alone. N
Q (87 a’) — - (/ . (
)EI“YA]

Q({g&)_ = [RAVR At ¥ Ret [Sesa)

= Gl R.[Ses fiz0] 0= [ Rot Rt~ 5 -



This lecture

« Bellman equations

* Algorithms for solving MDPs

— Value iterations / Policy Iterations

* Exploration and Bandit problem

10



Let’s work out the Value function for a
specific policy

actions: UP, DOWN, LEFT, RIGHT

# + . . .
state-transitions with action UP:

80% move UP
f =) | -1 10%  move LEFT
10% move RIGHT

I *If you bump into a wall, you stay where you are.

« reward +1 at [4,3], -1 at [4,2]

e reward -0.04 for each step

- Zw(a\s)ZP(S’\S,&)[T(S,&,S ) +yV (s Zﬂ' als)Q™ (s, a)
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Let’s work out the Value function for a
specific policy

actions: UP, DOWN, LEFT, RIGHT

e.g., UP
' ' +1 state-transitions with action UP:
80% move UP
-1 10% move LEFT
P
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Let’s work out the Value function for a
specific policy

actions: UP, DOWN, LEFT, RIGHT

r’/
1 e.g., UpP
* state-transitions with action E_f:

80% move UP
oYn ~ move U
f @ - 1 10% move LEFT\
10% move RIGHT

O‘Qi *If you bump into a wall, you stay where you are.
02 « reward +1 at [4,3], -1 at [4,2]
Chose “UP” s @P{“o 0.v b/ » reward -0.04 for each step

- Zw(a\s)ZP(S’\S,&)[T(S,&,S ) +yV (s Zﬂ' als)Q™ (s, a)

1.0 +
0.1 * (-0.04 + V7([3,2]))

* 0.1 (-0.04 + V([3,3])) 1
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Optimal value functions

» there’s a set of optimal policies

— V7™ defines partial ordering on policies

: : r
— they share the same optimal value function

V*(s) = max V7T (s) YIRS s’

[ .
: : . { G
« Bellman optimality equation o

V*(s) = mgxz P(s'|s,a)[r(s,a,s") + ’yKZLJi(S’)]

L ls’
— System of n HOW
& Vf“QV‘c,{

— solve for V*(s)

— easy to extract the optimal policy / \/W
\’—\

* having Q*(s,a) makes 1t even simpler
m*(s) = arg max Q*(s,a) 12




Inference problem: given an MDP, how to
compute its optimal policy?

[t suffices to compute i1ts Q* function, because:
7*(s) = arg max Q*(s,a)

[t suffices to compute i1ts V* function, because:

Q*(s,a) =) P(s'ls,a)[r(s,a,s") +7V*(s")]

13



Summary of Bellman equations — the
fundamental equations of MDP and RL

28%%\
e V- functlon and Q %unctlon

— V7 function Bellman equation

— Z m(als) Z P(s’|8, a)lr(s,a, 5/) T ”YVW(SI)]
— Q" function Bellman equation
— Z P(s'|s,a)[r(s,a,s") +~ Z m(a'ls")Q" (s, a’)]

— V* function Bellman (optimality) equation

— max Z P(s'|s,a)[r(s,a,s") +~yV*(s)]
a p S
— Q* function Bellman (optimality) equation

=Y P(s'|s,a)lr(s,a,8") + ymax Q" (s', a')]

14



Algorithms for calculating the V* function

* Policy evaluation, policy-improvement

* Policy iterations

 Value iterations

15



Dynamic programming

G

main 1dea
— use value functions to structure the search for good policies

— need a known model of the environment

two main components
— policy evaluation: compute V* from D

— policy improvement: improve 1 based on V*

— start with an arbitrary policy

— repeat evaluation/improvement until convergence

16



Policy evaluation/improvement

e policy evaluation: w -> V7
— Bellman eqn’s define a system of n eqn’s

— could solve, but will use 1terative version
Vk—H %Zﬂ' als) ZP "Is,a)[r(s,a,s") + V.7 (s)]

— start W1th an arbltrary value functlon V,, iterate until V, converges

==

17



Policy evaluation/improvement

e policy evaluation: w -> V7
— Bellman eqn’s define a system of n eqn’s
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Policy evaluation/improvement

e policy evaluation: w -> V7
— Bellman eqn’s define a system of n eqn’s

— could solve, but will use 1terative version
Vit (s) < > wlals) > P(s|s,a)[r(s,a,s") + Vi (s)
a s’

— start with an arbitrary value function V, iterate until V, converges

* policy improvement: V™ -> 7’
7'(s) = arg max Q" (s, a)

= arg maxz P(s'|s,a)[r(s,a,s") + V" (s")]

— 1 either strictly better than nt, or ©’ 1s optimal (if 1 = 10°) 17



Policy/Value iteration

* Policy iteration

0 —Eyro I S Eym

— two nested iterations; too slow
— don’t need to converge to V7™

* just move towards it

18



Policy/Value iteration

« Policy iteration
0 _E V70 _>I7_‘_1 _ B V71 _>I.”_>I7_(_>k _E V*

— two nested iterations; too slow
— don’t need to converge to V7™

* just move towards it

* Value iteration gl\/\/\u(c’[j \/ . €on,
-

_—

Vip1(s )emaxZP |5, a)[r (s,a,s')—l—ﬂ/ﬂ

Cs
— use Bellman optlmahty equation as an update

— converges to V*

18



0

VALUES AFTER O ITERATIONS

Noise = 0.2

Discount = 0.9

—"

Living re\ll\éa rd=0



1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9

Living reward =0
20



2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9

Living re\zl\ia rd=0



3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9

Living reward = 0
22



4

0.37 »| 0.66 )»

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9

Living reward =0
23



5

Cridworld Display

.H
A

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9

Living reward =0
24



6

Gridworld Display

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9

Living reward = 0
25



7

Gridworld Display

VALUES AFTER 7 ITERATIONS

Noise = 0.2
Discount = 0.9

Living reward = 0
26



3

Gridworld Display

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9

Living reward = 0
27



9

Cridworld Display

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9

Living reward = 0
28



k=10

Gridworld Display

VALUES AFTER 10 ITERATIONS Noise = 0.2

Discount = 0.9

Living reward = 0
29



k=11
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k=12

Gridworld Display
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k=100

Gridworld Display

AFTER 100 ITERATIONS Noise = 0.2

Discount = 0.9

Living reward = 0
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Q-1teration

« Updating Q functions instead of V functions

Y[%CS )

Qr+1(s,a) « 3 P(s']s,a)lr(s, a,8) + T Qk(s’, a')]

Quiz: What 1s the difference from the following extended
version of value iteration? CZ Y

7 Vs me

— Qpt1(s,a) ZP s,a)[r(s,a,s") + YVit1(s)]

33



Q-1teration

« Updating Q functions instead of V functions

Qr+1(s,a) « 3 P(s']s,a)lr(s, a,8) + ymax Q (s’ a’)]

* Quiz: What 1s the difference from the following extended
version of value iteration?

Via1(s) < mgxz P(s'|s,a)[r(s,a,s") +vVi(s')]

Qri1(s,a) + Z jD(s’]s, a)lr(s,a,s’) +yVii1(s)]

Ans: They are identical! 33



Demo: grid worlds

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ing g g g g g g g g 9
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 + + + + + + + + 4
0.00 0.00 0.00
> + 4
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> + + + + + + + 4
R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> + + + + + + + 4
R-1.0 R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
> + + + + + + + 4
R1.0 R-10 R-1.
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
b + + 4
R-1.0
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 + + + + + + + 4
R-1.0 R-1.0 R-1.0

0.00 0.00 0.00 0.00 0.00 ﬁo (0.00 0.00 0.00 0.00
+ + + + + + + + 4

0.0& 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.2?

p e & & p e & & & &

https://cs.stanford.edu/people/karpathy/rein

forcejs/gridworld dp.html
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MDP summary

e Tabular MDP

» Episodic vs. infinite horizon (discounted)

* Immediate reward vs long-term reward

e Value functions: V functions, Q functions

« Bellman equations, Bellman optimality equations

 How to solve MDP? Policy iterations, value iterations

35



MDP Summary

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: V(s) = maXZ P(s'ls,a)[r(s,a,s") + yV(s")]
a Pa—— e .
Value iteration: g Vi1 () = mgxz P(s'ls,a)[r(s,a,s") +yVi(s)], Vs

Qr+1(s,a) = ZP(S |s,a)[r(s,a,s") +ymaka(s a)], Vs,a

Vi (s) = Z P(s'ls, t(s)[r(s,m(s),s") + YVEGSD], Vs &

Tpew(S) = argmaxz P(s'|s,a)[r(s,a,s") + yVTold(s")], Vs
. a

36



MDP Summary

Standard expectimax: V(s) = mc?xz P(s'|s,a)V(s")

Bellman equations: ~ V(s) = max » P(s'ls,)[r(s,a,5) + YV (s")]
Value iteration:  Vir1(s) = m;lxz P(s'ls, (5,05 + VD], Vs
Q-iteration: Qs1(s, @) = ZP(S I5,0)[r(s,0,5") +y max Qu(s',a)], Vs,
Policy evaluation: V& (s) = Z P(s'ls, (N[r(s,m(s),s) +YVEGD], Vs

Policy improvement:  Tnew(s) = argmaxz P(s'ls,a)[r(s,a,s") + yVTld(s")], Vs
a

36



Matrix- form of Bellman Equations and VI

S L R
QU“"Q VT(s) = Z m(als) Z P(s'|s,a) [T_(ia’a s") + ’YE(SI)]
- S i
pe = 7 3o 3P e
\\{\%\\}LT/ E{) _ Ei ( S0¢ 7 k/_;\\/ﬁ’//
Lei Q‘A RETE Uy ' pld % F g \/ f)
51" =2 663 F(s fsq) (s 6(2”(” I
-\ L )=
=t xﬁmffaﬁﬁw'””w LVt
7AW

Vi1 (s %Zﬂ' als ZP "Is,a)[r(s,a,s") +~yV,7(s")]
Folie B o
Vg = (T 1
=017 ;




Solving MDP with VI or PI is offline planning

* The agent 1s given how the environment works
e The agent works out the optimal policy 1n 1ts mind.
« The agent never really starts to play at all.

* No learning 1s happening.

38



State-space diagram representation of an
MDP: An example with 3 states and 2 actions.

r(s,,a4,81) = —2

0.3
r(s,,a4,5,) =50

39



What happens if you do not know the
rewards / transition probabilities?

r(s,, aq,51) =7

r(s,,a,,s3) =?

40



What happens if you do not know the
rewards / transition probabilities?

r(s,, aq,51) =7

S1
a;
az a]_) a2
S3

r(s,,a,,s3) =?

Then you have to learn by interacting with the unknown environment.
You cannot use only offline planning!
Exploration: Try unknown actions to see what happens.

Exploitation: Maximize utility using what we know. 0



Let us tackle different aspects of the RL
problem one at a time

e Markov Decision Processes:

— Dynamics are given no need to learn

 Bandits: Explore-Exploit in simple settings
— RL without dynamics

* Full Reinforcement Learning
— Learning MDPs

41



Slot machines and Multi-arm bandits




Multi-arm bandits: Problem setup

. No state. k-actions a € A = {1, 2, cens k‘}

* You decide which arm to pull in every iteration

A17 A27 "t AT

* You collect a cumulative payoff of Z Ry
t=1

* The goal of the agent 1s to maximize the expected payoff.
— For future payoffs?

— For the expected cumulative payoff?

43



Key differences from MDPs

« Simplified:

— No state-transitions

 But:

— We are not given the expected reward r(s, a, s”)

— We need to learn the optimal policy by trials-and-errors.

44



A 10-armed bandits example

3
2
«(3)
1 ! q*(5)
‘I*(g)
Reward g.(1) e
. . . - - - - - - - - - = - = - — —*(—7) —_ = —_ — .
distribution q W0
Q*(2)
-1 .(8)
qx (6)
-2
-3

Action

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value g.(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g.(a) unit variance
normal distribution, as suggested by these gray distributions.

45



How do we measure the performance of an
online learning agent?
e The notion of “Regret™:

— I wish I have done things differently.

— Comparing to the best actions in the hindsight, how much worse
did I do.

 For MAB, the regret is defined as follow

T
TmaXER I ZEQNW |R:|al]
t=1

a€lk]

46



Greedy strategy

* Expected reward
g« (a) = E|R; | Ay =al].

« Estimate the expected reward

Qi(a) =

sum of rewards when a taken prior to ¢

number of times a taken prior to t
t—1
Z R 1 4,=a
t—l
Zz—l ]]-A@—CL

» Choose A, = argmax Qt(a),

a

47
What is the issue with this strategy?



Exploration vs. Exploitation

b7

AND
Srenne!

L £T0

\J

(lllustration from Dan Klein and Pieter Abbeel’s course in UC Berkeley)



Next Tuesday

« Bandits algorithms
— Explore-first
— epsilon-greedy

— Upper confidence bound

49



