Artificial Intelligence

CS 165A

Nov 12, 2020

Instructor: Prof. Yu-Xiang Wang

Midterm Results

(Histogram is sanitized using Differential Privacy)

Midterm Results (with bonus)

(Histogram is sanitized using Differential Privacy)

Recap: Reinforcement learning problem setup

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents might not even observe the state

Recap: Robot in a room.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?
- what if the transitions were deterministic?

actions: UP, DOWN, LEFT, RIGHT

e.g.,

State-transitions with action **UP**:

80% move up10% move left10% move right

*If you bump into a wall, you stay where you are.

Recap: Tabular MDP

• Discrete State, Discrete Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
 - When the state is observable: $\pi:\mathcal{S}
 ightarrow\mathcal{A}$
 - Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

• Learn the best policy that maximizes the expected reward

- Finite horizon (episodic) RL:
$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{T} R_t]$$
 T: horizon

- Infinite horizon RL:
$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} R_t]$$

γ: discount factor

Recap: Parameters of an MDP are the CPTs

- Transition dynamics
- Reward distribution

Initial state distribution
$$P(S_1) = :d_1 \in \mathbb{R}^{|S|}$$

Transition dynamics $P(S_{t+1} | \mathbb{Q} S_{t}, A_1) = : P \in \mathbb{R}^{|S|} \times |S| \times |S|$

Recap: Reward function and Value functions

- Immediate reward function r(s,a,s')
- expected immediate reward $r(s, a, s') = \mathbb{E}[R_1 | S_1 = s, A_1 = a, S_2 = s']$ $r^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1 | S_1 = s]$
 - state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s]$$

- state-action value function: $Q^{\pi}(s,a)$
 - expected long-term return when starting in s, performing a, and following π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s, A_1 = a]$$

Recap: Bellman equations – the fundamental equations of MDP and RL

• An alternative, recursive and more useful way of defining the V-function and Q function

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$= \sum_{a} \pi(a|s) P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) P(s'|s,a)$$

$$= \sum_{a} \pi(a|s) P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) P(s'|s,a)$$

$$= \sum_{a} \pi(a|s) P(s'|s,a) [E[R[s \land A=0, + b] V^{T}(s')] = \sum_{a} \pi(a|s) P(s'|s,a)$$

$$= \sum_{a} \pi(a|s)$$

Recap: Bellman equations – the fundamental equations of MDP and RL

 An alternative, recursive and more useful way of defining the V-function and Q function

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

Quiz:

- Prove Bellman equation from the definition in the previous slide.

Write down the Bellman equation using Q function alone.

$$\begin{split} Q^{\pi}(s,a) &= ? \\ Q^{\eta}(s,a) &= E_{\eta}[R_{1} + \partial R_{2} + \cdots - | \mathcal{F}^{t} + R_{t} + \cdots | S_{r} \cdot S_{r} \cdot A_{r} = a) \\ &= E_{\eta}[R_{1} | S_{r} \cdot S_{r} \cdot A_{r} = a] + 2E_{\eta}[R_{2} + \partial R_{3} + \cdots + \partial A_{r} \cdot A_{r} - A_{r} \cdot A_{r}] \end{split}$$

This lecture

- Bellman equations
- Algorithms for solving MDPs
 - Value iterations / Policy Iterations
- Exploration and Bandit problem

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

*If you bump into a wall, you stay where you are.

move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

10%

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

+

+

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

*If you bump into a wall, you stay where you are.

move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

10%

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s, a)$$

+

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$
1.0 +

+

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

*If you bump into a wall, you stay where you are.

move RIGHT

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

10%

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$
1.0 + 0.8 *

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT

10% move RIGHT

11

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$
 1.0 + 0.8 * (+1-0.04

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$1.0 \quad + \quad 0.8 \quad \star \quad (+1-0.04 \quad + \quad 0)$$

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT

10% move RIGHT

- *If you bump into a wall, you stay where you are.
 - reward +1 at [4,3], -1 at [4,2]
 - reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$1.0 \quad + \quad 0.8 \quad * \quad (+1-0.04 \quad + \quad 0)$$

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT
10% move RIGHT

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$1.0 + \frac{0.8 * (+1-0.04 + 0)}{0.1 *}$$

actions: UP, DOWN, LEFT, RIGHT
e.g., UP
state-transitions with action UP:
80% move UP
10% move LEFT
10% move RIGHT

- *If you bump into a wall, you stay where you are.
 - reward +1 at [4,3], -1 at [4,2]
 - reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s) Q^{\pi}(s,a)$$

$$1.0 + \frac{0.8 * (+1-0.04 + 0)}{0.1 * (-0.04 + V^{\pi}(3,2])}$$

actions: UP, DOWN, LEFT, RIGHT

e.g., UP

state-transitions with action UP:

80% move UP

10% move LEFT

10% move RIGHT

- *If you bump into a wall, you stay where you are.
 - reward +1 at [4,3], -1 at [4,2]
 - reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$

$$1.0 + \frac{0.8 * (+1-0.04 + 0)}{0.1 * (-0.04 + V^{\pi}([3,2]))}$$

$$+ 0.1 *$$

actions: UP, DOWN, LEFT, RIGHT e.g., state-transitions with action **UP**:

*If you bump into a wall, you stay where you are.

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

• reward -0.04 for each step
$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$

$$1.0 + \frac{0.8 * (+1-0.04 + 0)}{0.1 * (-0.04 + V^{\pi}([3,2]))}$$

$$+ 0.1 * (-0.04 + V^{\pi}([3,3]))$$
11

Optimal value functions

- there's a set of optimal policies
 - V^{π} defines partial ordering on policies
 - they share the same optimal value function

$$V^*(s) = \max_{\pi} V^{\pi}(s)$$

Bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

- system of n non-linear equations
- solve for $V^*(s)$
- easy to extract the optimal policy

• having Q*(s,a) makes it even simpler

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$

Inference problem: given an MDP, how to compute its optimal policy?

• It suffices to compute its Q* function, because:

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

• It suffices to compute its V* function, because:

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \underbrace{\gamma V^*(s')}]$$

Summary of Bellman equations – the fundamental equations of MDP and RL • V-function and Q function

- - V^{π} function Bellman equation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')]$$

- Q^{π} function Bellman equation

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s', a')]$$

V* function Bellman (optimality) equation

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

Q* function Bellman (optimality) equation

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \max_{a'} Q^*(s', a')]$$

Algorithms for calculating the V* function

Policy evaluation, policy-improvement

• Policy iterations

• Value iterations

Dynamic programming

- main idea
 - use value functions to structure the search for good policies
 - need a known model of the environment
- two main components

– policy evaluation: compute V^{π} from π

- policy improvement: improve π based on V^{π}
- start with an arbitrary policy
- repeat evaluation/improvement until convergence

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

• policy improvement: $V^{\pi} \rightarrow \pi'$

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

policy improvement: $V^{\pi} \rightarrow \pi'$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k^{\pi}(s')]$$

- policy evaluation: $\pi \rightarrow V^{\pi}$
 - Bellman eqn's define a system of n eqn's
 - could solve, but will use iterative version

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

- start with an arbitrary value function V_0 , iterate until V_k converges

• policy improvement: $V^{\pi} \rightarrow \pi$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k^{\pi}(s')]$$

 $-\pi$ ' either strictly better than π , or π ' is optimal (if $\pi = \pi$ ')

The is a fixed point of PI

Policy/Value iteration

Policy iteration

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

- two nested iterations; too slow
- don't need to converge to V^{π_k}
 - just move towards it

Policy/Value iteration

Policy iteration

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

- two nested iterations; too slow
- don't need to converge to V^{π_k}
 - just move towards it

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k(s')]$$

- use Bellman optimality equation as an update
- converges to V*

k=0

Noise = 0.2Discount = 0.9Living reward = 0

k=1

Noise = 0.2

Discount = 0.9

Living reward = 0

k=2

Noise = 0.2

Discount = 0.9

Living reward = 0

Noise = 0.2

Discount = 0.9

Noise = 0.2

Discount = 0.9

Q-iteration

Updating Q functions instead of V functions

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma \max_{a'} Q_k(s',a')]$$

- Quiz: What is the difference from the following extended version of value iteration?

version of value iteration?
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k(s')]$$

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_{k+1}(s')]$$

Q-iteration

• Updating Q functions instead of V functions

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \max_{a'} Q_k(s', a')]$$

• Quiz: What is the difference from the following extended version of value iteration?

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k(s')]$$
$$Q_{k+1}(s, a) \leftarrow \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_{k+1}(s')]$$

Ans: They are identical!

Demo: grid worlds

0.00	0.00	0.00	0.00 *	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 R -1.0		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 R -1.0	0.00 ♦ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 ♦	0.00	0.00 ♦	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 + R-1.0	0.00
0.00	0.00	0.00	0.00 ♦ R-1.0		0.00 R -1.0	0.00 ♣ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

https://cs.stanford.edu/people/karpathy/rein forcejs/gridworld_dp.html

MDP summary

- Tabular MDP
- Episodic vs. infinite horizon (discounted)
- Immediate reward vs long-term reward
- Value functions: V functions, Q functions
- Bellman equations, Bellman optimality equations
- How to solve MDP? Policy iterations, value iterations

MDP Summary

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$
Bellman equations:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V(s')]$$
Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k(s')], \quad \forall s$$

$$Q_{k+1}(s,a) = \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma \max_{a'} Q_k(s',a')], \quad \forall s,a$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s)) [r(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s \in \mathbb{R}$$

$$\pi_{new}(s) = \arg\max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_{nold}(s')], \quad \forall s \in \mathbb{R}$$

MDP Summary

Standard expectimax:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)V(s')$$

Bellman equations:
$$V(s) = \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V(s')]$$

Value iteration:
$$V_{k+1}(s) = \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k(s')], \quad \forall s$$

Q-iteration:
$$Q_{k+1}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \max_{a'} Q_k(s', a')], \quad \forall s, a$$

Policy evaluation:
$$V_{k+1}^{\pi}(s) = \sum_{s'} P(s'|s,\pi(s))[r(s,\pi(s),s') + \gamma V_k^{\pi}(s')], \quad \forall s$$

Policy improvement:
$$\pi_{new}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi_{old}}(s')], \quad \forall s$$

Matrix-form of Bellman Equations and VI

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

Solving MDP with VI or PI is offline planning

- The agent is given how the environment works
- The agent works out the optimal policy in its mind.
- The agent never really starts to play at all.
- No learning is happening.

State-space diagram representation of an MDP: An example with 3 states and 2 actions.

What happens if you do not know the rewards / transition probabilities?

What happens if you do not know the rewards / transition probabilities?

Then you have to learn by interacting with the unknown environment.

You cannot use only offline planning!

Exploration: Try unknown actions to see what happens.

Exploitation: Maximize utility using what we know.

Let us tackle different aspects of the RL problem one at a time

- Markov Decision Processes:
 - Dynamics are given no need to learn
- Bandits: Explore-Exploit in simple settings
 - RL without dynamics
- Full Reinforcement Learning
 - Learning MDPs

Slot machines and Multi-arm bandits

Multi-arm bandits: Problem setup

- No state. k-actions $a \in \mathcal{A} = \{1, 2, ..., k\}$
- You decide which arm to pull in every iteration

$$A_1, A_2, ..., A_T$$

- You collect a cumulative payoff of $\sum_{t=1}^{T} R_t$
- The goal of the agent is to maximize the expected payoff.
 - For future payoffs?
 - For the expected cumulative payoff?

Key differences from MDPs

• Simplified:

No state-transitions

• But:

- We are not given the expected reward r(s, a, s')
- We need to learn the optimal policy by trials-and-errors.

A 10-armed bandits example

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$ unit variance normal distribution, as suggested by these gray distributions.

How do we measure the performance of an **online learning agent**?

- The notion of "Regret":
 - I wish I have done things differently.
 - Comparing to the best actions in the hindsight, how much worse did I do.

• For MAB, the regret is defined as follow

$$T \max_{a \in [k]} \mathbb{E}[R_t|a] - \sum_{t=1}^{T} \mathbb{E}_{a \sim \pi} \left[\mathbb{E}[R_t|a] \right]$$

Greedy strategy

Expected reward

$$q_*(a) \doteq \mathbb{E}[R_t \mid A_t = a]$$
.

• Estimate the expected reward

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t}$$
$$= \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i = a}}$$

• Choose $A_t \doteq \operatorname*{arg\,max}_a Q_t(a),$

Exploration vs. Exploitation

Next Tuesday

- Bandits algorithms
 - Explore-first
 - epsilon-greedy
 - Upper confidence bound