Artificial Intelligence

CS 165A
Oct &, 2020

Instructor: Prof. Yu-Xiang Wang

— Supervised learning

— Continuous optimization
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Anonymous student feedback

* “Ireally like the interactivity in the chat. I would like
more, personally.”

* “more explanation of notation during lecture”

« “Atthe end of Lecture 2 when defining generalization
error 1t said "Gen(H) := sup(...)" I'm not sure what sup

means.” oy .
Gém( /\]) — 2 fYDI(mE?Q— t_/@fi{h}]

T b

J/
Link to submit feedback: https://forms.gle/Eenu1aw3SzBxGcTaA



https://forms.gle/Eenu1aw3SzBxGcTaA

Recap: Last lecture

e Machine learning overview

* Supervised learning: Spam filtering as an example
— Features, feature extraction
— Models, hypothesis class

— Choosing an appropriate hypothesis class

 Performance measure



Recap: Building a classifier agent
f p

Modeling

- J

- Feature engineering
- Specify a family of classifiers

4 )

Inference Learning

- J

Learning the best performing classifier




Recap: Mathematically defining the
supervised learning problem

. Feature space: X = R

i)
 Label space: Y = {0,1} = {non-spam, spam}

A classifier (hypothesis): h: X —)

* A hypothesis class:
[ (

 Data: (i?_l,yfl), cees (Qi'ﬂ,y;) cX x)

« Learning task: Find h € H that “works well”.



Recap: The “free parameters™ of the two
hypothesis classes we learned

 Decision trees

 Linear classifiers
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 Linear classifiers



Recap: The “free parameters™ of the two
hypothesis classes we learned

Decision trees
— “Which feature to use when branching?”
— “The threshold parameter”
— “Which label to assign at the leaf node”

Linear classifiers

— “Coefficient vector of the score function”

— a(d+1) dimensional vector.



Recap: What do we mean by “working well”?

* Recall: the PEAS specification of a task environment

— Performance measure, Environment, Actuators, Sensors.

* What’s the “Performance measure” for a classifier agent?



Recap: What do we mean by “working well”?

* Recall: the PEAS specification of a task environment

— Performance measure, Environment, Actuators, Sensors.

* What’s the “Performance measure” for a classifier agent?

— Really the average error rate on new data points.
— But all we have is a training dataset.

— Training error: (empirical) error rate on the training data.

— When does the learned classifier generalize? S| T
— How to know it if it does not?




Plan for today

* Preventing overfitting in practice
 More caveats about ML agents

e Continuous optimization

— How to learn a linear classifier?



Empirically measuring the test error by splitting the data

into: Traimning, Test, and Validation Sets |
r(j a Datagt D — ] DO'@\ QID(’#““&
— e \E{ G%W(’_ 6(9*0‘ /
& \
7 SN
X ~ ~— A — 7\’\
l Training Validation Test

Read more in Section 18.4 in the AIMA textbook.



Empirically measuring the test error by splitting the data
into: Training, Test, and Validation Sets

Dataset D

— — — Validation set is used for model-selection:

- choosing decision tree vs. linear
classifier

- Select features, tune hyperparameters

- A J /

™~ Y Y ]
Training Vabdation Ts Test set is used only once to report the

final results.

Read more in Section 18.4 in the AIMA textbook.



Empirically measuring the test error by splitting the data
into: Training, Test, and Validation Sets CWQ\MJC/M

Dataset D

.

— — Validation set is used for model-s jon:
- choosing decision tree vs. linear

[ | 2 4 @ classifier

- Select features, tune hyperparameters

o — H_/ H_)
Training Vabdation Ts Test set is used only once to report the
W final results
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S manly
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Read more in Section 18.4 in the AIMA te



A practical note: Always shuffling the data before
splitting them into Training-Validation-test set

data shall be randomly shuffled before splitting

~

Dataset D
N

N A J \ /
e Y Y

Training Validation Test
Set Set Set

Sy [oreS P
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Case study: Biotech startup (3 min discussion)

e Problem (true story, according to Alex Smola)
— Biotech startup wants to detect prostate cancer

— Easy to get blood samples from sick patients
< —

— Hard to get blood samples from healthy ones.

T

e Solution?

— Get blood samples from male university students

— Use them as healthy reference.

— Classifier gets 100% accuracy.
[ K *ffaw Y@J( j/b{ m/wﬁ
* What 1s wrong? Reprege €
7. a 36
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The problem of distribution shift

Training data

12



The problem of distribution shift

Test data received during:

Training data

Prediction / inference /Deployment
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The problem of distribution shift

Test data received during:

Training data

Prediction / inference /Deployment

** Machine learning is only “guaranteed to work” when the training
data are drawn i.i.d. from the same distribution as the new data
that we will receive in the “inference” phase. 12



“Adversarial Examples” are consequences of
distribution-shift

+.007 x

"

“oanda noise “gibbon”

577% confidence 99.3% confidence

(Goodfellow et al., 2015)
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Quick checkpoint

 Feature extraction

» Specifying a “hypothesis class™

— 1indexed by “free parameters”

Learning == search for the best hypothesis

Ideally, we want to minimize “test error”
— but all we have access to is the training data.

— minimize “training error”’ (Statistical learning theory says that this
1s OK)

— We have a practical way --- data-splitting --- to evaluate a classifier

14



Remainder of this lecture
. N

Modeling

g J

- Feature engineering
- Specify a family of classifiers

4 )

Inference Learning

- J

Deployment to email client Learning the best performing classifier
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Remainder of this lecture
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g J

- Feature engineering
- Specify a family of classifiers

4 )

Inference Learning

- J

Deployment to email client Learning the best performing classifier
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Example: Linear classifiers

* Score(x) = wy+w,; * l(hyperlinks) + w, * I(contact list)
+ w; * misspelling + w, * length

-~

* A linear classifier: h(x) =1 if Score(x) > 0 and 0
otherwise. Spanny noripiy

 Reparameterization %O | 3
— If we redefine y — {_1 1}
)

— A compact representation:

h(x) = sign(w’ [1; z])

16



Example: Linear classifiers

e Score(x) = wy+ w;* 1(hyperlinks) + w, * 1(contact list)
+ w; * misspelling + w, * length

\

* A linear classifier: h(x) =1 if Score(x) > 0 and 0
otherwise.

.. (from here onwards, we will
* Reparameterization redefine the feature vector x

— If we redefine L to be [1;x] w.l.o.g., for the
y — {_ 17 1} interest of simplifying the

notation)

— A compact representation:

h(z) = sign(w” [1;2]) . /)
SEE e ol

~ /\I/_\



How do we learn a linear classifier?

* Linear classifier: -
h(x) = sign(w” x)
e Training data:

(ajlayl)a ooy (CIZ‘n,yn) € X X y

e Solving the following optimization problem'

5 W B e
Urjré% Error(w Z 1 w(Ti) # Yi)
_

 Learning: Find the linear cla551ﬁer that makes the
smallest number of mistakes on the training data.

17



Geometric view: Linear classifier are “half-
SpaCGS”! ‘H/\e 9‘2}( o&\ (\'“\W"( )Q [/l/]/\(lv\ df* OCQSC,‘{M,[/L/ WINH ’th’(,,f( (f/jL//

{Xx|wg+wqs*x1+w,*x2+w;*x3 + wy *x4 >0}
The set of all "emails” that will be classifie

Non-spam

Proportion

\
1
\
] [] \ O
of |‘ ‘
misspelled \‘ O
words [ ] \

Length of the message

18



In the case when the training data 1s linearly
separable, there 1s a polynomial time
algorithm.

 Why?

(Also, you'll see the perceptron algorithm in CS165B.)

19



In the case when the training data 1s linearly
separable, there 1s a polynomial time
algorithm.

 Why?

— Easiest way to see it is that it is a linear program.
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In the case when the training data 1s linearly
separable, there 1s a polynomial time
algorithm.

 Why?
— Easiest way to see it is that it is a linear program.
(o]
/o . | findweR?
0 subject to: [Z

N wlz; >0Vie {1,2,...,n} sty =1
wlz, <0OVie {1,2,...,n}sty; = —1

(Also, you'll see the perceptron algorithm in CS165B.)



In the case when the training data 1s linearly

separable, there 1s a polynomial time CPlex
\ XN\ >
algorithm. C %&j\l% M LER) (CVK]
fﬁ& %l; T ﬂ{b Q 7<<>@%
B i ks

— Easiest way to see it is that it is a linear program.

— Polynomial time algorithm exists for all LPs. (taught in CS 130a/b)

find w € R¢

subject to:
whz; >0Vie {1,2,...,n}sty; =1
wlz, <0OVie {1,2,...,n}sty; = —1

(Also, you'll see the perceptron algorithm in CS165B.)
19



Best linear separator in general (linearly non-
separable cases) 1s NP-hard.

N\
Non-spam \
1
1
Proportion [ ] [] ‘|‘ ¢
of ' B O
misspelled P \ O
words \
\
g
\ O
- '\
O ‘\‘ spam

v

Length of the message

20



What do we do? General 1idea of bounded

rationality.
y — Crvor Yoo
* Design rational agent = maximize some utility function
- =

Sometimes the utility function 1s too difficult to maximize

Maybe we can maximize an approximation to the utility
function is computationally easier

So we can focus on modelling (e.g., better features, better
hypothesis class)

21



Just “relax”

easlier one

min Error(w) =

wERA

: relaxing a hard problem into an

1 mn
— 1(sign(waZ-) #+ ;)
o 2t 2o

1=1

min — E ( w Ti,Yi).
weR N  —
1=

22



Loss functions and surrogate losses

23



Loss functions and surrogate losses

| of han$Y
* 0-1loss: 1(h,(v) # :)
A PRI

23



Loss functions and surrogate losses

¢ 0-1loss: 1(hy(z) # y) = 1(sign(S

w(®)) 7# Y)

23



Loss functions and surrogate losses

¢ 0-1loss: 1(hy(z) # y) = 1(sign(S

e Square loss: (y — Sw(x))z

w(®)) 7# Y)
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Loss functions and surrogate losses

« 0-1 loss: 1(hy(x) # y) = 1(sign(S

e Square loss: (y — Sw(x))z

 Logistic loss:  log,(1 + exp(—y - Sw(x)))

w(®)) 7# Y)

23



Loss functions and surrogate losses

LR L(hy () # y) = 1(sign(Sw(z)) # y)

* Square loss: (y — Sw(x))2
 Logistic loss:  log,(1 + exp(—y - Sw(x)))

 Hinge loss: max(0,1 —y - Sy, (x))



Visualizing the relaxed “surrogate loss™
functions

g _ Misclassification
Exponential .
o Binomial Deviance (o\ﬂltﬁ\\ (_n(\
ol 7 —— Squared Error —
— Support Vector x> .

. Binomial

N deviance” is the
§ o “logistic loss” from
I the previous slide.

e

o

o

o _|

S QA

e
VD ol el 1)

FIGURE 10.4. Loss functions for two-class classification. The response 1is
y = =1; the prediction is f, with class prediction sign(f). The losses are
misclassification: I(sign(f) # vy); exponential: exp(—yf); binomial deviance:
log(1 + exp(—2yf)); squared error: (y — f)?; and support vector: (1 —yf); (see
Section 12.3). Fach function has been scaled so that it passes through the point
(0,1).

(Section 10.4 of the ESL book) 24



Intuition of the logistic loss (3 min discussion)
(2 Z(H al ) 8

9557 |
fl>.

log, (1 4 exp(—y - Sy (x )))C = (o i%

Qoﬂ U’ﬁ 5KP[°\>
Try plotting the function value against<y - Sw (x) ) =(q, (v)= (

1. What happens when the classifier make a mistake? w ’—\Zk

4
2. What happens when the classifier are correct? (% (Ite >

3. What role does ”‘/eﬂgﬂiillde /Sf the score function play? (Offm O)

25



Why are “surrogate losses™ r to
minimize? /QT:? :
0 !&f@ gl (Y
N/ \;ﬁ/ \%/ g\_ Ceate (;xf‘%
\\Q&?UN* \7} ) n(:ﬁg% A S~

U‘ <
g — MlscIaSS|f|cat|on w
—— Exponential
© —— Binomial Deviance /e - = R
ol | —— Squared Error
—— Support Vector d
o
- | KoY. P
y l
(%]
o 1 |
— -
r
o | 4z
v
o
o |
o

26



Why are “surrogate losses™ easier to
minimize?

* They are continuous.

(?). — Misclassification
Exponential
o Binomial Deviance
N —— Squared Error
—— Support Vector
o |
Al
(]
(%]
(@] v _|
— -
e |
L‘) —
o
O -
o




Why are “surrogate losses™ easier to
minimize?

* They are continuous.

« Differentiable (except hinge loss).

(?). - Misclassification
Exponential
o Binomial Deviance
N —— Squared Error
—— Support Vector
o |
Al
)]
2]
o v _|
-1
o
LD —
o
o
o ] v




Why are “surrogate losses™ easier to
minimize?

* They are continuous.

« Differentiable (except hinge loss).

« (Convex.
(?). - Misclassification
Exponential
o Binomial Deviance
N —— Squared Error
—— Support Vector
o
N
)]
2]
o v |
— -
o |
Te]
o | /
O -
o




Convex vs Nonconvex optimization

“‘ m.

SRR ‘.’

il N
ﬁ\\\\\ \\‘8\‘ “,:.0“3‘0"3"""3':'{;', # “:“‘%‘*““\\

\ §*‘\§\§“““ ““ “” ,l 1,,%,,;;;;/ N i

7
77
2z
/;’,/,//

O, 7 y
o,:, 7
LT 11

z'bzz,, llll;; 7
R

@ Unique optimum: global/local. @ Multiple local optima

@ In high dimensions possibly
exponential local optima
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Convex vs Nonconvex optimization

£ 0
RS
56 X0

(SG0KNNAN
SRS
¢ 7)

CXOK) Yy Lttt/
$6%%04 7

@ Unique optimum: global/local.

SRS “ \%\\\
<A
NN A
::::‘“\\\t\\\u‘ J/ll ‘l A‘\\‘\“ 0
- N

W/l,'O S

Multiple local optima

In high dimensions possibly
exponential local optima

* Be careful: The surrogate loss being convex does not imply all ML problems
using surrogate losses are convex. Linear classifiers are, but non-linear 27
classifiers are usually not. Take “convex optimization” to know more.



How do we optimize a continuously
differentiable function in general?
o The problem: ImMin f(@) il%@oohé H)

’ﬁ/d_ < 7 . [K/Q)

e Let’s just optimize it anyway!
— With gradient descent.

« Assumption: The objective function 1s differentiable
almost everywhere.

01 = Oy mwfeﬂ

{%@\ (e

\eew) Y@/(Q




Gradient Descent Demo
V“’VEPAW L[ Q]))VV\

X

ge 4-, IX S

G = Z UKD AR/
w P = \\

@ = 9\\@\/1 ( Q,,(x)) "/
@

7
®

20 _/

~ 2 %

200 _

 Play with this excellent tool yourself to build intuition:

https://github.com/lilipads/gradient descent viz

29


https://github.com/lilipads/gradient_descent_viz

Gradient of logistic loss for learning a linear
classifier

 The function to minimize 1s

- log(1 L
ﬁﬁ@znz 0g(1 + exp(—y; - ] w))

1=1
 How to calculate the gradient?
— Take out a piece of paper and work on it! (you have 3 min)
— Hint:
* Apply the linearity of the differential operator.
« Apply the chain rule.

30



Gradient of logistic loss for learning a linear
classifier

n T

1 exp(—y; - x w) N
Vf(w) - ; 1+ exp(—yi . LIJ;FIU)( yzxz)

31



Gradient of logistic loss for learning a linear
classifier

1 exp(—1; - T; w
\% = — g : — Y T;

* Question: What 1s the time complexity of computing this
gradient?
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Gradient of logistic loss for learning a linear
classifier

1 exp(—1; - T; w
\% = — g : — Y T;

* Question: What 1s the time complexity of computing this
gradient?
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Gradient of logistic loss for learning a linear
classifier

1 exp(—y; - T; w
\% - E : —Y; Xy

* Question: What 1s the time complexity of computing this
gradient?

Can we do better?

31



Stochastic Gradient Descent
(Robbins-Monro 1951)

 (Gradient descent

Ory1 =0 — 1V f(0:) . '™

' . Herbert Robbins
 Stochastic gradient descent 1915 - 2001

Or+1 = 0 — Ut@f(et)

« Using a stochastic approximation of the gradient:

L[V f(6:)|6:] = V f(6:)
Var[V f(0,)]0;] < o?

Question: What's the time complexity of each iteration in SGD? 32




One natural stochastic gradient to consider in
machine learning

 Recall that n

33



One natural stochastic gradient to consider in
machine learning

 Recall that n

* Pick a single data point 1 uniformly at random

_ Use VQK(H, (ilfi, yl))
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One natural stochastic gradient to consider in
machine learning

 Recall that n

* Pick a single data point 1 uniformly at random

_ Use VQK(H, (xia yl))

— Show that this i1s an unbiased estimator!

33



[Mlustration of GD vs SGD

05 0.5 .
0.4 0.4
0.3 0.3-\
0.2 0.2
0.1 0.1 |
a2~ 0 s~ 0
0.1 0.1
0.2 0.2 .
0.3 0.3 \\
0.4 04 \\
000 500 0 500 1000 1500 2000 “foo0 500 \o 500 1000 1530 2000

0, 0,

Batch Gradient Descent Stochastic Gradient Descent

Observation: With the time gradient descent taking one step.
SGD would have already moved many steps.

34



Intuition of the SGD algorithm on the “Spam
Filter” example

Contains hyperlinks Proportion of misspelled words

v '

1 0 0.0375 80
* 1

Whether the contact list Length of the message

e Score(x) = wy+ wy;* 1(hyperlinks) + w, * 1(contact list)
+ w; * misspelling + w, * length

35



Intuition of the SGD algorithm on the “Spam
Filter” example

Contains hyperlinks Proportion of misspelled words

v '

1 0 0.0375 80
* 1

Whether the contact list Length of the message

e Score(x) = wy+ wy;* 1(hyperlinks) + w, * 1(contact list)
+ w; * misspelling + w, * length

e Meaning of these weight?
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Intuition of the SGD algorithm on the “Spam
Filter” example

Contains hyperlinks Proportion of misspelled words

v '

1 0 0.0375 80
* 1

Whether the contact list Length of the message

e Score(x) = wy+ wy;* 1(hyperlinks) + w, * 1(contact list)
+ w; * misspelling + w, * length

e Meaning of these weight?

— The more positive, the more we think the feature is associated with
Spam email.

35



Intuition of the SGD algorithm on the “Spam
Filter” example

Contains hyperlinks Proportion of misspelled words

I '
1 0 0.0375 80
: i
Whether the contact list Length of the message

e Score(x) = wy+ wy;* 1(hyperlinks) + w, * 1(contact list)
+ w; * misspelling + w, * length

e Meaning of these weight?
— The more positive, the more we think the feature is associated with
Spam email.
— The more negative, the less that we think the feature 1s associated
with Spam email 15



Intuition of the SGD algorithm on the “Spam

Filter” example
exp(—y; - a:-Tw)
\W4 iy Ui)) = : —Y;i T

36



Intuition of the SGD algorithm on the “Spam

Filter” example
T
exp(—y; - x; w)
vg(wa (xia yz)) — : T (_yzajz)
1 + exp(—y; - z; w)
\ J
|
Scalar > 0:
= 0 if the prediction
is correct
~ 1 otherwise

36



Intuition of the SGD algorithm on the “Spam

Filter” example
exp(—y; - 1 w)
\V44 iy Yi)) — - — Yl

\ ) j
|

Scalar>0: Vector of dimension d:
= ( if the prediction provides the direction

is correct of the gradient
= 1 otherwise

36



Intuition of the SGD algorithm on the “Spam
Filter” example

exp(—y; - a:;rw)
VEl(w, (xi,yi)) = 1+ exp(—y; - 27 w) (—yizi)

\ | l
Y

Scalar>0: Vector of dimension d:
= 0 if the prediction provides the direction
is correct of the gradient

= 1 otherwise

If we receive an example [1, 0, 0.0375, 80] like the one before.
And a label y = 1 saying that this is a spam.

How will the SGD update change the weight vector?

36



Intuition of the SGD algorithm on the “Spam
Filter” example

exp(—y; - a:;rw)

\ | l
Y

Scalar>0: Vector of dimension d:
= 0 if the prediction provides the direction
is correct of the gradient

= 1 otherwise

If we receive an example [1, 0, 0.0375, 80] like the one before.
And a label y = 1 saying that this is a spam.

How will the SGD update change the weight vector?

Then by moving w towards the negative gradient direction, we are
changing the weight vector by increasing the weights. i.e., increasing the
amount they contribute to the score function (if currently the classifier is
making a mistake on this example) 36



How to choose the step sizes / learning rates?

e In theory:

— Gradient decent: 1/L where L is the Gradient Lipschitz constant
of the function we minimize.

— SGD: d ne=00,> nf <oo
t t

ceg € [1/t,1/VH)

e In practice:
— Use cross-validation on a subsample of the data.
— Fixed learning rate for SGD is usually fine.
— Ifit diverges, decrease the learning rate.

— If for extremely small learning rate, it still diverges, check if your
gradient implementation 1s correct.

37



The power of SGD

Extremely general:

— Specify an end-to-end differentiable score function, e.g., a complex
neural network.

— Beyond the context of machine learning

« Extremely simple: a few lines of code.

« Extremely scalable

— Just a few pass of the data, no need to store the data

« People are continuing to discover that many methods are
special cases of SGD.

38



Summary of the lecture

« Data splitting for detecting overfitting
* Distribution shift

e Learning a linear classifier:

— Surrogate losses and linear logistic regression

» Gradient descent
— Calculating gradient / making sense of gradient

— Improving GD with Stochastic Gradient Descent

* Next week: wrap up ML, start probabilistic graphical
models

39



