Artificial Intelligence

CS 165A
Oct 13, 2020

Instructor: Prof. Yu-Xiang Wang

— Continuous optimization
— Wrapping up ML
— Starting PGM




Recap: Last lecture

Data splitting

— Holdout and Cross validation for tuning hyperparameters

e The problem of distribution shift

* Learning a classifier:
— From 0-1 loss to surrogate losses

— Logistic loss as an example

e Continuous Optimization with Gradient Descent



Recap: How do we optimize a continuously
differentiable function in general?

e The problem: m@in f (6’ )

e Let’s just optimize it anyway!
— With gradient descent.

« Assumption: The objective function is differentiable
almost everywhere.

Or+1 = 0 — ntvf(et)




Plan for today

Deriving the gradient for the logistic loss

Stochastic Gradient Descent

* Making sense of the SGD updates

* Hints on multiclass classification (HW1)



Gradient of logistic loss for learning a linear
classifier (3 min discussion / work)

 The function to minimize 1s

- log(1 L
ﬁﬁ@znz 0g(1 + exp(—y; - ] w))

1=1
 How to calculate the gradient?
— Take out a piece of paper and work on it! (you have 3 min)
— Hint:
* Apply the linearity of the differential operator.
« Apply the chain rule.



Gradient of logistic loss for learning a linear
classifier (3 min discussion / work)



Gradient of logistic loss for learning a linear
classifier

1 exp(—y; - T; w
\% - E : —Y; Xy

* Question: What 1s the time complexity of computing this
gradient?

Can we do better?



Stochastic Gradient Descent
(Robbins-Monro 1951)

 (Gradient descent

Ory1 =0 — 1V f(0:) . '™

' . Herbert Robbins
 Stochastic gradient descent 1915 - 2001

Or+1 = 0 — Ut@f(et)

« Using a stochastic approximation of the gradient:

L[V f(6:)|6:] = V f(6:)
Var[V f(0,)]0;] < o?

Question: What's the time complexity of each iteration in SGD? 8




One natural stochastic gradient to consider in
machine learning

 Recall that n

» Pick a single data point 1 uniformly at random

_ Use VQK(H, (xia yl))

— Show that this i1s an unbiased estimator!



[Mlustration of GD vs SGD
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Observation: With the time gradient descent taking one step.
SGD would have already moved many steps.
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Intuition of the SGD algorithm on the “Spam
Filter” example

Contains hyperlinks Proportion of misspelled words

I '
1 0 0.0375 80
: i
Whether the contact list Length of the message

e Score(x) = wy+ wy;* 1(hyperlinks) + w, * 1(contact list)
+ w; * misspelling + w, * length

e Meaning of these weight?
— The more positive, the more we think the feature is associated with
Spam email.
— The more negative, the less that we think the feature 1s associated
with Spam email .



Intuition of the SGD algorithm on the “Spam
Filter” example

exp(—y; - a:;rw)

\ | l
Y

Scalar>0: Vector of dimension d:
= 0 if the prediction provides the direction
is correct of the gradient

= 1 otherwise

If we receive an example [1, 0, 0.0375, 80] like the one before.
And a label y = 1 saying that this is a spam.

How will the SGD update change the weight vector?

Then by moving w towards the negative gradient direction, we are
changing the weight vector by increasing the weights. i.e., increasing the
amount they contribute to the score function (if currently the classifier is
making a mistake on this example) 12



How to choose the step sizes / learning rates?

e In theory:

— Gradient decent: 1/L where L is the Gradient Lipschitz constant
of the function we minimize.

— SGD: d ne=00,> nf <oo
t t

ceg € [1/t,1/VH)

e In practice:
— Use cross-validation on a subsample of the data.
— Fixed learning rate for SGD is usually fine.
— Ifit diverges, decrease the learning rate.

— If for extremely small learning rate, it still diverges, check if your
gradient implementation 1s correct.
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The power of SGD

Extremely general:

— Specify an end-to-end differentiable score function, e.g., a complex
neural network.

— Beyond the context of machine learning

« Extremely simple: a few lines of code.

« Extremely scalable

— Just a few pass of the data, no need to store the data

« People are continuing to discover that many methods are
special cases of SGD.

14



Multiclass classification problem (HW 1)

* You will be implementing a multi-class classification
algorithm using linear logistic regression.

y=1{1,2,..,k}
» Recall that in binary classification you have one score

function, the multi-class has one score function for each

class.
h(z) = argmax Score,, (z) = argmax (z" w;)
je{l,....k} je{l,....k}
 Now you have k linear score functions. Represent them as
a matrix of weights W (what’s the dimension? )

* You use the softmax-cross-entropy loss instead of the
logistic loss. (work out details in the homework)

15



Decision boundaries of multi-class linear
logistic regression
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map image x to digit y
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From linear logistic regression to neural
networks

Output layer

Output layer

Hidden layer

Input layer

Fig. 3.4.1 Softmax regression is a single-layer neural network. Input layer

Fig. 4.1.1 An MLP with a hidden layer of 5 hidden units.

e Same input, same loss function

* The only difference 1s in how the score function 1s
computed

17



From linear logistic regression to neural
networks (side by side comparison)

18



Summary: steps to build a classifier agent

e (. Collect a large labeled dataset.

1. Data splitting into training-validation-testing

» 2. Feature extraction Return to Step 2 or 3

R ‘- . If not happy with the

3. Specifying a hypothesis class validation error.

4. Learning with SGD using logistic loss Do model selection
(e.g. hyperparameter

« 5. Validating on the validation set. tuning)

e 6. Testing on the test set.

« 7. Deploy the classifier agent.

19



So far, we’ve learning everything about a
classifier agent

 Modeling

— Design meaningful feature extractors

— Specify a family of classifiers on how the agent 1s going to classify
examples using the features (indexed by free parameters)

e Inference: Trivially follows from the specification

* Learning: minimize errors (surrogate losses) over “free
parameters”

This is called “discriminative” approach in modelling.

20



“Generative” modeling: Modeling the world
with a (joint) probability distribution

The “Discriminative approach” doesn’t care about the
underlying processes that give rise to the observed data.

Modeling: “Generative” modelling:

— Label 1s a random variable Y, features are a vector random
variables X = [X, ..., X4]"

— Model the world with a (family of) joint probability distributions.

Inference: Then we can make principled inference by
calculating P(Y|X)

— You don’t just get a prediction, but also confidence.

Learning: Find the distribution that fits the data well.

21



Side-by-side comparisons of two modelling
principles: “Discriminative” vs “Generative”

- “Discriminative” “Generative”

Modelling » Extract features * How data are generated
* Hypothesis class e Family of probability
* hg:X->Y distributions Pg(X,Y)

Inference Just apply the classifier: h(X)  Calculate P(Y|X)

Predict with: max,P(Y=y | X)

Learning Minimize error over “free Maximize likelihood over “free
parameters’”: 6 parameters’”: 6

See Ng and Jordan (NIPS-2001):
https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf
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https://ai.stanford.edu/~ang/papers/nips01-discriminativegenerative.pdf

Example: Spam filter

e “Discriminative modeling”:
— Think about features that has discriminative power

— Think about hypothesis class (e.g., shape of the decision
boundaries, functional form of the score function)

e “Generative modelling™:
— Think about how “spammers” write (generate) their emails.

— And also how “non-spammers” write their emails.

— Model the probability of certain words appear / the probability of
certain word combinations appear.

Once we learned probabilistic graphical model, we will be
able to do this effectively.

23



Structure of the course

Probabilistic Graphical Models)/ Deep Neural Networks

—

Classification / Regression Search Markov Decision Processes Logic, knowledge base

Bandits game playing Reinforcement Learning < Probabilistic inference >

Reflex Agents Planning Agents Reasoning agents
Low-level intelligence High-level intelligence

Machine Learning

(Again this idea is adapted from Percy Liang’s teachings) 24



Remaining time today and the next two
lectures

* Probability notations

 Joint distributions, marginal, conditional

— Representing these quantities as arrays / matrices
* Modelling with (joint) probability distributions
« Conditional independences
« BayesNet, and examples

 d-separation, reasoning and inference

25



Probability notation and notes

« Probabilities of propositions
— P(A), P(the sun is shining)
* Probabilities of random variables (r.v.)
- P(X=x,), P(Y =yy), P(x; <X <Xy)
* P(A) usually means P(A = True) (A is a proposition, not a variable)
— This 1s a probability value
— Technically, P(A) is a probability function
« P(X=Xx))
— This 1s a probability value (P(X) is a probability function)
* P(X)
— This is a probability distribution function, a.k.a probability mass

function (p.m.f.) for discrete r.v. or a probability density function
(p.d.f.) for continuous r.v.

e Technically, if X 1s an r.v., we should not write P(X) = 0.5

— Butrather P(X =x,)=0.5 .y



Discrete probability distribution

02 Zp(Xin)Zl

p(X) 5 m

1 2 3 4 5 6 7 8 9 10 11 12

X 27



Continuous probability distribution

0.4

| p(x)=1

p(X)
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o
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10
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Joint Probabilities

A complete probability model 1s a single joint probability
distribution over all propositions/variables in the domain

- PX, X5, .., X, ..0)
« A particular instance of the world has the probability
— P(Xlle N\ X2:X2/\ VAN Xi:XiA .. ) =P

Rather than stating knowledge as
— Raining = WetGrass —WetGrass ~ WetGrass

e We can state it as
— P(Raining, WetGrass) = 0.15 —Raining 0.8 0.04

— P(Raining, =WetGrass) = 0.01
— P(—=Raining, WetGrass) = 0.04

Raini
— P(—=Raining, =WetGrass) = 0.8 4ining 0.01 0.15

29



Marginal and Conditional Probability

* Marginal Probability
— Marginal probability (distribution) of X: P(X) = ),y P(X,Y)

— Bayesian interpretation: Probabilities associated with one
proposition or variable, prior to any evidence

— E.g., P(WetGrass), P(—Raining)
e Conditional Probability
— P(A | B) — “The probability of A given that we know B”

— Bayesian interpretation: After (posterior to) procuring evidence
— E.g., P(WetGrass | Raining)

P(XIY)=P§))((;§) o P(X|Y)P(Y)=P(X,Y)

Assumes P(Y) nonzero

30



The chain rule: factorizing a joint distribution

into marginal and conditionals
P(X,Y)=P(X|Y)P(Y)

By the Chain Rule
P(X.,Y,Z)=P(X|Y,Z)P(Y,Z)
=P(X|Y,Z)P(Y|Z)P(Z)
or, equivalently
=P(X)P(Y | X)P(Z|X,Y)

Notes: ¢ Precedence: °|”is lowest
« E.g., P(X|Y,Z)means which?
P((X]Y),Z)
PX|(Y,2)) <=

31



Thomas Bayes: 1701 - 1761

Chain Rule implies Bayes’ Rule
e Since PX,Y)=P(X|Y)P(Y)

and P(X,Y)=P(Y | X)P(X)

* Then px|y)P(Y)=P(Y|X)P(X)

P(Y | X) P(X)

Bayes’ Rule
P(Y)

P(X|Y)=

Funny fact: Thomas Bayes is arguably a frequentist.

Stephen Fienberg. “When did Bayesian inference become ‘Bayesian’?." Bayesian analysis 1.1 (2006): 1-40.
https://projecteuclid.org/euclid.ba/1340371071
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Representing Probability Distributions using
linear algebraic data structures (in python)

Continuous vars Discrete vars

P (X) Function (of one variable) m vector
P(X=x) Scalar* Scalar

P(X,Y) Function of two variables mxn matrix
P(X|Y) Function of two variables mxn matrix
P(X|Y=y) Function of one variable m vector
P(X=x[|Y) Function of one variable n vector
P(X=x|Y=y) Scalar* Scalar

* - actually zero. Should be P(x4 < X < x5) 33



Example: Joint probability distribution

From P(X,Y), we can always calculate:

Vi

Y2

P(X]Y)
P(Y[X)

X
X X X3
0.2 0.1 0.1
0.1 0.2 0.3

P(X=x,)
P(Y=y,)
P(X|Y=y))
P(Y|X=x,)
P(X=x,|Y)
etc.

34



P(X,Y)
X X X
: ’ ’ P(X)
yi| 02 0.1 0.1 A1 X; X3
0.3 0.3 0.4
V2 0.1 0.2 0.3
P(Y) P(X|Y)
X X5 X3
Vi 0.4
Yi| 05 0.25 0.25
0.6
»? y,| 0.167 0.333 0.5
P(X=x,Y=y,) = ?
o) P(YIX)
P(X=x,) =? X, - X,
P(Y=y,) =7
P(X|Y=y,)=? Yi| 0.667 0.333 0.25
PX=x,Y)=7 yo| 0333 | 0667 | 075 |5




Quick checkpoint

* Probability notations
— P(A) 1s a number when A is an event / predicate.

— P(X) 1s a vector/function when X is a random variable.

 Joint probability distribution
— Enumerating all combinations of events.
— All values the random variables can take.

— Assign a non-negative value to each.

* Marginals, conditionals

— How they are related: Chain rule, Bayes rule

36



How can a joint-distribution help us?

* A principled way to model the world
— Handles missing data/variables

— Easy to incorporate prior knowledge

e With the joint distribution, we can do anything we want
— Design classifiers
y = argmax,P(Y =y [X)
— We can make Bayesian inference (probabilistic reasoning)
 Sherlock Holmes: P(Murderer | Observed Evidence)
e Doctor: P( Disease | Symptoms ), P(Effect | Treatment)
 Parenting:
— P( Dirty Diaper, Hungry, Lonely | 5 a.m., Baby crying)
— P(Baby crying at 5 a.m. | feeding at 2 a.m.)
— P(Baby crying at 5 a.m. | feeding at 1 a.m.) 37



(3 min discussion) Modeling the world with
probability distribution

 Example: Author attribution as in HW1
— Vanables: Word 1, Word 2, Word 3, ..., Word N, Author

— 15 authors in total: {Dickens, Shakespeare, Jane Austen, Tolkien,
George RR. Martin, ... , Xueqin Cao, Douglas Adams}

— A vocabulary of size 3000

* (Questions:
— What is the dimension(s) of the joint distribution?

— How many free parameters are needed to represent this
distribution?

38



Statistical Independences

(Marginal / absolute) Independence
« Xand Y are independent 1ff
— P(X,Y) =P(X) P(Y)
— P(X|Y)=P(X) since P(X|Y) = P(X, Y)/IP(Y) = P(X) P(Y)/P(Y)

Conditional Independence
 If X and Y are (conditionally) independent given Z, then
- PX|Y,Z)=P(X|Z2)
— Example:
 P(WetGrass | Season, Rain) = P(WetGrass | Rain)

39



Example of Conditional Independence

* In practice, conditional independence 1s more common than
marginal independence.

— P(Final exam grade | Weather) # P(Final exam grade)
* 1.e., they are not independent

— P(Final exam grade | Weather, Effort) = P(Final exam grade | Effort)
« But they are conditionally independent given Effort

40



(Example continued) Modeling the world with
probability distribution

 Example: Author attribution as in HW1
— Variables: Word 1, Word 2, Word 3, ..., Word N, Author

— 15 authors in total: {Dickens, Shakespeare, Tolkien, George RR.
Martin, ... ,Douglas Adams}

— A vocabulary of size 3000

* In addition, assume that: Word 1, ..., Word N are mutually
independent given Author
— P(Word 1, ..., Word N | Author) = P(Word 1 | Author) % ... X P(Word N | Author)

* (Question:
— What are the dimensions of each factor?

— How many “free parameters” are needed in total?

e Answer: 14 + 2999 x 15 x N. ( Linear in N)

41



Quiz time: Representing a joint Probability

e Joint probability: P(X,, X,, ..., X\)
— Defines the probability for any possible state of the world

— Let the variables be binary. How many numbers (“free
parameters”) does it take to define the joint distribution?

 [If the variables are independent, then
P(Xy, Xy, .., Xn) = P(X)) P(X,) ... P(Xy)

— How many numbers does it take to define the joint distribution?

42



Tradeoffs in our model choices

Fully Independent : Fully general

P(X1, Xo, .. Xn) ® P(X1, X, .., Xu)

O(N) } O(e™)

Space / computation efficiency

Expressiveness

Idea:
1.Independent groups of variables?

2.Conditional independences? 13



Key points of today’s lecture

* Probability notations

— Distinguish between events and random variables, apply rules of
probabilities

* Representing a joint-distribution
— number of parameters exponential in the number of variables

— Calculating marginals and conditionals from the joint-distribution.

« Conditional independences and factorization of joint-
distributions

— Saves parameters, often exponential improvements

44



Next lectures

« Bayes networks, directed graphical models.
« Read off conditional independences from the graph!

 More examples

45



