
Artificial Intelligence
CS 165A

Oct 20, 2020

Instructor: Prof. Yu-Xiang Wang

® Factorization and conditional independence
® Bayesian Network Examples
® Conditional Independence
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Recap: Example: Modelling with Belief Net

I’m at work and my neighbor John called to say my home 
alarm is ringing, but my neighbor Mary didn’t call.  The 
alarm is sometimes triggered by minor earthquakes.  Was 
there a burglar at my house?

• Random (boolean) variables:
– JohnCalls, MaryCalls, Earthquake, Burglar, Alarm

• The belief net shows the causal links
• This defines the joint probability

– P(JohnCalls, MaryCalls, Earthquake, Burglar, Alarm)

• What do we want to know?
P(B | J, ¬M)
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Recap: What are the CPTs? What are their 
dimensions?
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Question: How to fill values into these CPTs?
Ans: Specify by hands. Learn from data (e.g., MLE).
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Recap: Example

Joint probability?  P(J, ¬M, A, B, ¬E)?



This lecture

• Continue with the above example
– Probabilistic inference via marginalization

• Conditional independence

• Reading off Conditional Independences from a Bayesian 
Network
– d-separation
– Bayes Ball algorithm
– Markov Blanket
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Calculate P(J, ¬M, A, B, ¬E)

Read the joint pf from the graph:
P(J, M, A, B, E) = P(B) P(E) P(A|B,E) P(J|A) P(M|A)
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P(J, M, A, B, E) = P(B) P(E) P(A|B,E) P(J|A) P(M|A)

Plug in the desired values:
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Calculate P(J, ¬M, A, B, ¬E)
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= 0.001 * 0.998 * 0.94 * 0.9 * 0.3
= 0.0002532924

How about P(B | J, ¬M) ?
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Calculate P(J, ¬M, A, B, ¬E)

Read the joint pf from the graph:
P(J, M, A, B, E) = P(B) P(E) P(A|B,E) P(J|A) P(M|A)

Plug in the desired values:
P(J, ¬M, A, B, ¬E) = P(B) P(¬E) P(A|B,¬E) P(J|A) P(¬M|A)

= 0.001 * 0.998 * 0.94 * 0.9 * 0.3
= 0.0002532924

How about P(B | J, ¬M) ?

Remember, this means P(B=true | J=true, M=false)
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Calculate P(B | J, ¬M)
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Calculate P(B | J, ¬M)
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Variable elimination algorithm
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Quick checkpoint

• Bayesian Network as a modelling tool

• By inspecting the cause-effect relationships, we can draw 
directed edges based on our domain knowledge

• The product of the CPTs give the joint distribution
– We can calculate P(A | B) for any A and B
– The factorization makes it computationally more tractable

9
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What else can we get?  
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Example: Conditional Independence

• Conditional independence is seen here
– P(JohnCalls | MaryCalls, Alarm, Earthquake, Burglary) = 

P(JohnCalls | Alarm)
– So JohnCalls is independent of MaryCalls, Earthquake, and 

Burglary, given Alarm
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Burglary, given Alarm

• Does this mean that an earthquake or a burglary do not 
influence whether or not John calls?
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Example: Conditional Independence

• Conditional independence is seen here
– P(JohnCalls | MaryCalls, Alarm, Earthquake, Burglary) = 

P(JohnCalls | Alarm)
– So JohnCalls is independent of MaryCalls, Earthquake, and 

Burglary, given Alarm

• Does this mean that an earthquake or a burglary do not 
influence whether or not John calls?
– No, but the influence is already accounted for in the Alarm 

variable
– JohnCalls is conditionally independent of Earthquake, but not 

marginally independent of it

*This conclusion is independent to values of CPTs! 



Question

If X and Y are independent, are they therefore independent 
given any variable(s)?

I.e., if  P(X, Y) = P(X) P(Y)  [ i.e., if P(X|Y) = P(X) ], can we 
conclude  that 
P(X | Y, Z) = P(X | Z)?
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If X and Y are independent, are they therefore independent 
given any variable(s)?

I.e., if  P(X, Y) = P(X) P(Y)  [ i.e., if P(X|Y) = P(X) ], can we 
conclude  that 
P(X | Y, Z) = P(X | Z)?

The answer is no, and here’s a counter example:

X

Z

YWeight of 
Person A

Weight of 
Person B

Their combined weight

P(X | Y) = P(X)
P(X | Y, Z) ≠ P(X | Z) 

12

Note: Even though Z is a deterministic function of X and Y, it is still a random variable with a 
probability distribution
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I.e., if  P(X, Y) = P(X) P(Y)  [ i.e., if P(X|Y) = P(X) ], can we 
conclude  that 
P(X | Y, Z) = P(X | Z)?

The answer is no, and here’s a counter example:

X

Z

YWeight of 
Person A

Weight of 
Person B

Their combined weight

P(X | Y) = P(X)
P(X | Y, Z) ≠ P(X | Z) 

12

Note: Even though Z is a deterministic function of X and Y, it is still a random variable with a 
probability distribution

*Again: This conclusion is independent to values of CPTs! 



Big question: Is there a general way that we 
can answer questions about conditional 
independences by just inspecting the graphs?
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• Turns out the answer is “Yes!”
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Intuition: the graph and the edges controls the 
information flow, if there is no path that the 
information can flow from one-node to another, 
we say these two nodes are independent..

1X

2X

3X

X 4

X 5

X6

14From Chapter 2 of Jordan book “Introduction to Probabilistic Graphical Models”



Intuition: the graph and the edges controls the 
information flow, if there is no path that the 
information can flow from one-node to another, 
we say these two nodes are independent..

1X

2X

3X

X 4

X 5

X6

14From Chapter 2 of Jordan book “Introduction to Probabilistic Graphical Models”

“Shading” denotes 
“observing” or 
”conditioning on” that 
variables.



d-separation in three canonical graphs 
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X ⟂ Z | Y
“Chain: X and Z are d-
separated by the 
observation of Y.”

X ⟂ Z | Y
“Fork: X and Z are d-
separated by the 
observation of Y.”

X ⟂ Z
“Collider: X and Z are d-
separated by NOT 
observing Y nor any 
descendants of Y.”
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Examples
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Rain Wet
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F CT
Tired Flu Cough

P(T | C, F) = P(T | F)

M IW
Work Money Inherit

P(W | I, M) ¹ P(W | M)
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Examples

G WR
Rain Wet

Grass
Worms

P(W | R, G) = P(W | G)

F CT
Tired Flu Cough

P(T | C, F) = P(T | F)

M IW
Work Money Inherit

P(W | I, M) ¹ P(W | M)

P(W | I) = P(W)
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Examples
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Z

Y

X – wet grass
Y – rainbow 
Z – rain

Are X and Y ind.? Are X and Y cond. ind. given…?
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P(X, Y) ¹ P(X) P(Y)

Are X and Y ind.? Are X and Y cond. ind. given…?
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Examples

X

Z

Y

X – wet grass
Y – rainbow 
Z – rain

P(X, Y) ¹ P(X) P(Y)
P(X | Y, Z) = P(X | Z)

Are X and Y ind.? Are X and Y cond. ind. given…?
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X

Z

Y
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Examples

X

Z

Y

X – wet grass
Y – rainbow 
Z – rain

X – rain
Y – sprinkler
Z – wet grass
W – worms 

P(X, Y) ¹ P(X) P(Y)
P(X | Y, Z) = P(X | Z)

P(X, Y) = P(X) P(Y)
P(X | Y, Z) ¹ P(X | Z)
P(X | Y, W) ¹ P(X | W)

X

Z

Y

W

Are X and Y ind.? Are X and Y cond. ind. given…?



The Bayes Ball algorithm

• Let X, Y, Z be “groups” of nodes / set / subgraphs.

• Shade nodes in Y
• Place a “ball” at each node in X
• Bounce balls around the graph according to rules

• If no ball reaches any node in Z, then declare

X ⟂ Z | Y

18



The Ten Rules of Bayes Ball Algorithm

19
Please read [Jordan PGM Ch. 2.1] 
to learn more about the Bayes Ball algorithm
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Examples (revisited using 
Bayes-ball alg)

X

Z

Y

X – wet grass
Y – rainbow 
Z – rain

X – rain
Y – sprinkler
Z – wet grass
W – worms 

P(X, Y) ¹ P(X) P(Y)
P(X | Y, Z) = P(X | Z)

P(X, Y) = P(X) P(Y)
P(X | Y, Z) ¹ P(X | Z)
P(X | Y, W) ¹ P(X | W)

X

Z

Y

W

Are X and Y ind.? Are X and Y cond. ind. given…?
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Examples (3 min work)

X

W

Y

X – rain
Y – sprinkler
Z – rainbow
W – wet grass

Z

X

W

Y

X – rain
Y – sprinkler
Z – rainbow
W – wet grass

Z

P(X,Y) = P(X) P(Y)   Yes
P(X | Y, Z) = P(X | Z)   Yes

P(X,Y) ¹ P(X) P(Y)   No
P(X | Y, Z) ¹ P(X | Z)   No

Are X and Y independent?
Are X and Y conditionally independent given Z?
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Conditional Independence

• Where are conditional independences here?
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Radio and Ignition, given Battery?
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Conditional Independence

• Where are conditional independences here?

Radio and Ignition, given Battery?
Yes 

Radio and Starts, given Ignition?
Yes

Gas and Radio, given Battery?
Yes

Gas and Radio, given Starts?
No

Gas and Radio, given nil?
Yes
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Conditional Independence

• Where are conditional independences here?

Radio and Ignition, given Battery?
Yes 

Radio and Starts, given Ignition?
Yes

Gas and Radio, given Battery?
Yes

Gas and Radio, given Starts?
No

Gas and Radio, given nil?
Yes

Gas and Battery, given Moves?
No



Quick checkpoint

• Reading conditional independences from the DAG itself.

• d-separation
– Three canonical graphs: Chain,  Fork,  Collider

• Bayes ball algorithm for determining whether X ⟂ Z | Y
– Bounce the ball from any node in X by following the ten rules
– If any ball reaches any node in Z, then return “False”
– Otherwise, return “True”

23



An alternative view: Markov Blankets

24

Then A is d-separated from everything else.
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1. Parents

2. Children

24

Then A is d-separated from everything else.



An alternative view: Markov Blankets

1. Parents

2. Children

3. Children’s other parents

24

Then A is d-separated from everything else.



Example: Markov Blankets

• Question: What is the Markov Blanket of …
– “Ignition”:  
– “Starts”:

25
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Why are conditional independences 
important?
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Why are conditional independences 
important?
• Helps the developer (or the user) verify the graph structure 

– Are these variables really independent?
– Do I need more/fewer edges in the graphical model?

• Statistical tests for (Conditional) Independence
• Hilbert-Schmidt Independence Criterion (not covered)

• Hints on computational efficiencies 

• Shows that you understand BNs…



Inference in Bayesian networks

• We’ve seen how to compute any probability from the 
Bayesian network
– This is probabilistic inference

• P(Query | Evidence)
– Since we know the joint probability, we can calculate anything via 

marginalization
• P(Query, Evidence) / P(Evidence)

27



Inference in Bayesian networks

• We’ve seen how to compute any probability from the 
Bayesian network
– This is probabilistic inference

• P(Query | Evidence)
– Since we know the joint probability, we can calculate anything via 

marginalization
• P(Query, Evidence) / P(Evidence)

• However, things are usually not as simple as this
– Structure is large or very complicated 
– Calculation by marginalization is often intractable
– Bayesian inference is NP hard in space and time!!
– (Details in AIMA Ch. 14.4 (Ch 13.4 in the Fourth Edition))

27



Inference in Bayesian networks (cont.)

• So in all but the most simple BNs, probabilistic inference 
is not really done just by marginalization

• Instead, there are practical algorithms for doing 
approximate probabilistic inference
– Recall a similar argument in surrogate losses in ML

28



Inference in Bayesian networks (cont.)

• So in all but the most simple BNs, probabilistic inference 
is not really done just by marginalization

• Instead, there are practical algorithms for doing 
approximate probabilistic inference
– Recall a similar argument in surrogate losses in ML

• Markov Chain Monte Carlo, Message Passing / Loopy
Belief Propagation
– Active area of research!
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Inference in Bayesian networks (cont.)

• So in all but the most simple BNs, probabilistic inference 
is not really done just by marginalization

• Instead, there are practical algorithms for doing 
approximate probabilistic inference
– Recall a similar argument in surrogate losses in ML

• Markov Chain Monte Carlo, Message Passing / Loopy
Belief Propagation
– Active area of research!

• We won’t cover these probabilistic inference algorithms 
though…. (Read Ch. 14.5 in the AIMA book (Ch 13.5 in 
the Fourth Edition))

28
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One more thing: Continuous Variables?

• Dimension check: What are the shapes of the CPTs?

• Discretize? Very large CPT..
• Usually, we parametrize the conditional distribution.

– e.g., P(Cost | Harvest) = Poisson( θT Harvest )

29

You will see GMM in the
discussion class.



Summary of the today

• Encode knowledge / structures using a DAG

• How to check conditional independence algebraically by 
the factorizations?

• How to read off conditional independences from a DAG
– d-separation, Bayes Ball algorithm, Markov Blanket

• Remarks on BN inferences and continuous variables
(More examples in the discussion: Hidden Markov 
Models, AIMA 15.3 or 14.3 in the 4th Edition)
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Additional resources about PGM

• Recommended:  Ch.2 Jordan book.  AIMA Ch. 13-14.

• More readings: 
– Koller’s PGM book: https://www.amazon.com/Probabilistic-

Graphical-Models-Daphne-Koller/dp/B007YXTT12
– Probabilistic programming: http://probabilistic-

programming.org/wiki/Home

• Software for PGMs and modeling and inference:
– Stan: https://mc-stan.org/
– JAGS: http://mcmc-jags.sourceforge.net/
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Upcoming lectures

• Oct 22: Problem solving by search
• Oct 27: Search algorithms 
• Oct 29: Minimax search and game playing 
• Nov 3: Midterm review.  HW2 Due.

• Recommended readings on search:  
– AIMA Ch 3, Ch 5.1-5.3.
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