Artificial Intelligence

CS 165A
Nov 19, 2020

Instructor: Prof. Yu-Xiang Wang

S B

& — Contextual Bandits

»
- : :

— Reinforcement Learning
= |

A
-
-4

w7

Recap: Multi-arm bandits: Problem setup

. No state. k-actions a € A = {1, 2, cens k‘}

* You decide which arm to pull in every iteration

A17 A27 "t AT

* You collect a cumulative payoff of Z Ry
t=1

* The goal of the agent 1s to maximize the expected payoff.
— For future payoffs?

— For the expected cumulative payoff?

Recap: How do we measure the performance
of an online learning agent?
e The notion of “Regret™:

— I wish I have done things differently.

— Comparing to the best actions in the hindsight, how much worse
did I do.

 For MAB, the regret is defined as follow

T
TmaXER la] ZEQNW |R¢|al]
t=1

a€lk]

Recap: MAB Algorithms

e Idea: Plug-in estimate of the reward value @((o@i)

—
* Greedy: Regret=0O(T) b -8

/! 5’/\ A 9
« Explore-first: Regret=0(T?/3) K@G[Q(”\)’\/jﬁ) Q@fﬁj
/ g
o epsilon-greedy: Regret=0(T?/3) Qﬁj}
)

« Upper Confidence Bound: Regret=0(T1/?)

— Optimal in the sense that no algorithm can do better

Recap: Upper Confidence Bound algorithm

(UCB)

o At time t, choose the action 9 SRS |
NS

log(1 +t)
N¢(a)

Ay < argmax {Qt(a) + %\/

« Idea: Be optimistic

— Choose an option that maximizes the upper confidence bound.
E[Regret] = O(VTk)

« The proof is out of the scope of this course. For those who
are interested, please look up. It's not difficult.

Idea of the analysis of UCB

e Design principle: Optimistic in the face of uncertainty

e Idea why UCB improves over random exploration:

— When you follow the UCB approach, the maximum regret that you
can incur in each iteration 1s the confidence interval of the arm you
pick. (why is that?)

— Exploration will be restricted to those arms that are not
"eliminated” yet.

/)
%QLL{ But E(q«%) 40 ot = G1)- G < ©® (sz)*%“ [&f') '3()
it))

¢, 1O S
Q! Q- ~ % S @(lrf‘{/ -— (&(l | -{)
et “
. D-=>¢

* In other words, UCB explore and exploit at the same time!

Intuitively why is the O(T''/?) regret optimal?

e Consider a 2-arm bandit problem and two parallel worlds:
— Arm 1 has expected reward 0.5, Arm 2 has 0.5 + eps
— Arm 1 has expected reward 0.5+eps, Arm 2 has 0.5

— Reward distribution 1s Bernoulli distribution.

e Set eps = O(1/V/T). Recall that you need to pull Arm 1 and
Arm 2 both for U(T) times in order to 1dentify which one

is better. Thus the regret needs to be Q(T X %).

* To say it differently: If any algorithm 1s able to achieve
better regret, then i1t implies an estimator that estimates the
p of a biased coin with fewer samples than required. Thus
a contradiction.

A 10-armed bandits benchmark

3
2
«(3)
1 ! q*(5)
‘I*(g)
Reward g.(1) e
. . . - - = - - - - - - - _ = _— —*—7) _—] —_—— .
distribution q W0
Q*(2)
-1 .(8)
qx (6)
-2
-3

Action

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value g.(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g.(a) unit variance
normal distribution, as suggested by these gray distributions.

Comparing the different algorithms

15 _
e=0.1
e=0.01
1 — -‘” ML ‘MH'MN
=0 (greed
Average b dnrs
reward
0.5 _

0 | I I I

! 250 500 750 1000

Steps

UCB vs. e-Greedy

15F

Average
reward

05+

d

UCB c=2

WMMWWWWMWW

e-greedy € =0.1

250

500

Steps

750

1000

10

Variants of Bandits problems

Online Learning from Expert Advice
— Adversarial chooses the outcome
— You observe outcome of other arms as well

— Compare against the best arm in the hindsight

Adversarial k-Armed Bandits

— Same as above. But you observe only your arm.

« Nonstationary Bandits
— Stochastic but the reward distribution changes over time.

— Compare against the best arm for each time.

Contextual bandits: you have a state in each time point. 0

Variants of Bandits problems

Online Learning from Expert Advice

— Adversarial chooses the outcome Remark: In all

— You observe outcome of other arms as well these problems,
— Compare against the best arm in the hindsight thgre are
algorithms with
provably low-
e Adversarial k-Armed Bandits regret.

— Same as above. But you observe only your arm.

« Nonstationary Bandits
— Stochastic but the reward distribution changes over time.

— Compare against the best arm for each time.

Contextual bandits: you have a state in each time point. s

Do I have to try, if I have features?

Features:
Features: . : : : :
[Burger, Fries, Onion Ring, Fried Chicken]

959,

AND
Srenne!

gER

\j

[Noodles, Tom Yum Soup, Poor service]

it

1

(lllustration from Dan Klein and Pieter Abbeel’s course in UC Berkeley)

We know how to use with features, don’t we?

e C(lassifier agent

— Take features of a restaurant as input
— OQutput a prediction of “will I like the food?”

* Train with supervised learning
— Using the my previous visits to the restaurants

— Using Yelp reviews

13.1

We know how to use with features, don’t we?

e C(lassifier agent

— Take features of a restaurant as input
— OQutput a prediction of “will I like the food?”

* Train with supervised learning
— Using the my previous visits to the restaurants

— Using Yelp reviews

Why can’t we just use that?

13.2

We know how to use with features, don’t we?

e C(lassifier agent

— Take features of a restaurant as input
— OQutput a prediction of “will I like the food?”

* Train with supervised learning
— Using the my previous visits to the restaurants

— Using Yelp reviews

Why can’t we just use that?
How to explore?

13.3

Contextual Bandits: Problem Setup

* Foreachroundt=1,2,3,...,T:

— A context x,~ unknown distribution 1.1.d.
— Agent picks an action a, = 1,2,3,...K
— Reward I~ D(| X4, at)

e Agent’s goals: A finite family of policies
— Learn the best policy out of many policies H

— Minimize the cumulative regret

A
T - Hleal%i ET(‘ [Tt (ZEt, a't)] — IEE*Agelrlt’s policy E Tt 5Ct7 at
0

?
Reward collected by the Agent

Reward from the best policy

14

Applications of Contextual Bandits

15.1

Applications of Contextual Bandits

Personalized news?

R
i | s
o =
= o

%5
e S

Repeatedly:
1. Observe features of user+articles
2. Choose a news article.

3. Observe click-or-not

Goal: Maximize fraction of clicks

15.2

Applications of Contextual Bandits

Personalized news? Health advice?

o

= A
Repeatedly: e M A B Repeatedly:
1. Observe features of user+articles 1. Observe features of user+advice
2. Choose a news article. 2. Choose an advice.
3. Observe click-or-not 3. Observe steps walked
Goal: Maximize fraction of clicks Goal: Healthy behaviors (e.g. step count)

15.3

Applications of Contextual Bandits

Personalized news? Health advice?

o

Repeatedly: % = E - Repeatedly:

1. Observe features of user+articles 1. Observe features of user+advice

2. Choose a news article. 2. Choose an advice.

3. Observe click-or-not 3. Observe steps walked

Goal: Maximize fraction of clicks Goal: Healthy behaviors (e.g. step count)
Recommendations

amaZzon

buy or not buy

154

Exploration vs. Exploitation in Contextual
Bandits.

16.1

Exploration vs. Exploitation in Contextual
Bandits.

« (Challenging because:
— Infinite state space, never see the same context again.

— Exponentially large policy space

16.2

Exploration vs. Exploitation in Contextual
Bandits.

« (Challenging because:
— Infinite state space, never see the same context again.
— Exponentially large policy space

* Ideas:
— ExploreFirst, e-Greedy O(TQ/ 3)

16.3

Exploration vs. Exploitation in Contextual
Bandits.

« (Challenging because:
— Infinite state space, never see the same context again.
— Exponentially large policy space

* Ideas:
— ExploreFirst, e-Greedy O(TQ/ 3)

— UCB? But how do we construct Confidence Interval for an
exponentially large set of policies?

16.4

Exploration vs. Exploitation in Contextual
Bandits.

« (Challenging because:
— Infinite state space, never see the same context again.
— Exponentially large policy space

* Ideas:
— ExploreFirst, e-Greedy O(TQ/ 3)

— UCB? But how do we construct Confidence Interval for an
exponentially large set of policies?

e Optimal regret:

O(v/ KT log 1))

Remainder of the lecture today

* Reinforcement learning for MDPs
— Model-based vs model-free algorithms
— Online policy iterations

— Temporal difference learning

e Readings:
— AIMA Ch. 21.1-21.3 (Ch 22.1- 22.3 in 4th Edition)
— Sutton and Barto: Ch 4-6
— Maybe: Sutton and Barto: Ch 6, Ch 13

17

Let us tackle different aspects of the RL
problem one at a time

e Markov Decision Processes:

— Dynamics are given no need to learn

« Bandits: Explore-Exploit in simple settings
— RL without dynamics

* Full Reinforcement Learning
— Learning MDPs

18

Recap: Tabular MDP

* Discrete State, Discrete Action, Reward and Observation

S;eS Are A R, e R 6H67+<6—

« Policy:
— When the state is observable: T . S —> .A
——Crreir eSS tateisTetehservanie —
O AR L A

» Learn the best policy that maximizes the expected reward

T
— Finite horizon (episodic) RL: 7" = arg lglgﬁ(E[Z Rt] T: horizon
t=1

N —
— Infinite horizon RL: 7 = arg max E[Z W’t_lRt]

y: discount factor

Recap: Policy Iterations and Value Iterations

What are these algorithms for?

— Algorithms of computing the V* and Q* functions from MDP
parameters

* Policy Iterations

7T0—>EV7TO—>I7T1—>EV7T1 —>I...—>I7T*—>EV*

Value 1terations

Vier1(s) + mgxz P(s'|s,a)[r(s,a,s") +yVi(s")]

» How do we make sense of them?

— Recursively applying the Bellman equations until convergence.

20.1

Recap: Policy Iterations and Value Iterations

What are these algorithms for?

— Algorithms of computing the V* and Q* functions from MDP
parameters

* Policy Iterations

7T0—>EV7TO—>I7T1—>EV7T1 —>I...—>I7T*—>EV*

Value 1terations

Vier1(s) + mgxz P(s'|s,a)[r(s,a,s") +yVi(s")]

» How do we make sense of them?

— Recursively applying the Bellman equations until convergence.

*These methods are called “Dynamic Programming” approaches in Chap 4
of Sutton and Barto.

Revisit the dynamic programming approach

e Policy Evaluation

Via(s) < D _m(als) Y P(s'ls,a)[r(s,a,8") + Vi (s)

* Policy improvement
'(s) = argmax Q" (s, a)
— arg max Z P(S/‘S, a) [T(S, a, S/) + /VVkW(S/)]
* Value iterations

Vier1(s) < mgxz P(s'|s,a)[r(s,a,s") +yVi(s")]

21.1

Revisit the dynamic programming approach

e Policy Evaluation

Vi (s) < Y mlals)) P Mtsrans) + Vi (s')]

* Policy improvement

7' (s) = arg max Q" (s,a)
= argmax) PT8sra)[tsrans]) + V) (s)

 Value iterations

Vit1(s) mgxz P54l [Tsrersl) + 7 Vie(s)]

*We do not have the MDP parameters in RL! 212

Example: Robot in a room.

actions: UP, DOWN, LEFT, RIGHT

— R

80% move UP

START 10% move LEFT

10% move RIGHT
« reward +1 at [4,3], -1 at [4,2]

e reward -0.04 for each step

e what’s the strategy to achieve max reward?

22.1

Example: Robot in a room.

actions: UP, DOWN, LEFT, RIGHT

g X

80% move UP

START 10% move LEFT

10% move RIGHT

e what’s the strategy to achieve max reward?

222

Example: Robot in a room.

actions: UP, DOWN, LEFT, RIGHT

START

e what’s the strategy to achieve max reward?

22.3

Example: Robot in a room.

Action 1, Action 2, Action 3, Action 4

actions —gPDOWN;EFT, RIGHT—

START

move RIGH

e what’s the strategy to achieve max reward?

224

Instead, reinforcement learning agents have
“online” access to an environment

« State, Action, Reward
 Unknown reward function, unknown state-transitions.

« Agents can “act” and “experiment”, rather than only doing
offline planning.

state reward
\Y

Environment

Idea 1: Model-based Reinforcement Learning

* Model-based idea

— Let’s approximate the model based on experiences

— Then solve for the values as if the learned model were correct

e Step 1: Get data by running the agent to explore

— Many data points of the form:
{(Sl: q1r SZ} 7:1)1 Ly (SN' an, SN+1, rN)}

« Step 2: Estimate the model parameters

- P (s’|s,a) --- again this is a CPT we need to observe the transition
many times for each s, a

- 7(s’,a, s) --- this is an estimate of the empirical rewards.

24

Then we can plug in these estimates and then
use dynamic programming for policy
evaluation / improvements.

Viii(s (—ZT(als) ZP (s'|s,a)[F(s,a,s") +~yVI(s)]
T %argmaXZP 'Is,a)[F(s,a,8") + Vi (s")

Via1(s)%maXZP "Is,a)[F(s,a,s") +yVi(s')]

25.1

Then we can plug in these estimates and then
use dynamic programming for policy
evaluation / improvements.

Via(s) < D _mlals) Y |P(s']s,a)[7(s, a, 8" +~Vi ()]

S/

7’ < arg maxz P(s'|s,a)[f(s,a,s) +~yV(s")]

Vit1(s) < maXZ P(s'|s,a)[#(s,a,8") +7Vi(s')]

25.2

Then we can plug in these estimates and then
use dynamic programming for policy
evaluation / improvements.

Via(s) <) _mlals))

S/

m' < arg max E P(s
a
8/

Vir1(s) < maxz P(s

P(s'|s,a)[P(s,a, 8"} + YV (s)]

Is,a)[?(s,a,8") + Vi (s)]

"Is,a)[F(s,a,s") +yVi(s')]

* Note the “hat”. Usually it indicates empirical estimates.

253

Then we can plug in these estimates and then
use dynamic programming for policy

evaluation / improvements.

Via(s) < D _mlals) Y |P(s']s,a)[7(s, a, 8" +~Vi ()]

3/

7' < arg max g P(s'|s,a)[f(s,a,s")
a
S/

+ Vi (s')]

Vier1(s) < max > | P(s'|s, a)[(s, a, s")H YVi(s))]

* Note the “hat”. Usually it indicates empirical estimates.

* These iterations will produce 7* and Q* functions, and then #*

254

Example: Model-Based RL (2 min exercise)

Input Policy & Observed Episodes (Training) Learned Model
P(s']s,a)

e colfo]
ﬂ r(s,a,s’)

Assume:y=1

Slide credits: Pat and Stephanie 26.1

Example: Model-Based RL (2 min exercise)

Input Policy &t

En
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

AY4

B, east, C, -1
C, east, D, -1

D, exit, x, +10)

N
B, east, C, -1

C, east, D, -1

D, exit, x,+10

Episode 3

Episode 4

E, north, C, -1\ 4

C,east, D, -1

D, exit, x,+10)

~N
E, north, C, -1
C, east, A, -1

_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

Learned Model
P(s']s,a)

r(s,a,s’)

26.2

Example: Model-Based RL (2 min exercise)

Input Policy &t

En
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

-
B, east, C, -1
C, east, D, -1

—

AY4

D, exit, x, +10)

N
B, east, C, -1

C, east, D, -1

Learned Model

D, exit, x,+10

Episode 3

Episode 4

E, north, C, -1\ 4

C, east,

~—

D, -1

D, exit, x,+10)

~N
E, north, C, -1
C, east, A, -1

_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

P(s'|s, a)
T(B, east, C) = é \\
T(C, east, D) = 2
T(C, east, A) = [4'

_ T

r(s,a,s’)

4 _
R(B, east, C) = —\’L \
R(C, east, D) = [
_R(D, exit, x) =(Q-(—/a{(a—

— g

26.3

Example: Model-Based RL (2 min exercise)

Input Policy & Observed Episodes (Training) Learned Model
P(s']s,a)

e colfo]
ﬂ r(s,a,s’)

Assume:y=1

Slide credits: Pat and Stephanie 27.1

Example: Model-Based RL (2 min exercise)

Input Policy &t

En
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

AY4

B, east, C, -1
C, east, D, -1

D, exit, x, +10)

N
B, east, C, -1

C, east, D, -1

D, exit, x,+10

Episode 3

Episode 4

E, north, C, -1\ 4

C,east, D, -1

D, exit, x,+10)

~N
E, north, C, -1
C, east, A, -1

_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

Learned Model
P(s']s,a)

r(s,a,s’)

27.2

Example: Model-Based RL (2 min exercise)

Input Policy &t

mn
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

AY4

B, east, C, -1
C, east, D, -1

D, exit, x, +10)

N
B, east, C, -1

C, east, D, -1

Learned Model

D, exit, x,+10

Episode 3

Episode 4

C,east, D, -1

E, north, C, -1\ 4

D, exit, x,+10)

E, north, C, -1
C, east, A, -1

_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

Y
P(s'|s,a)

4)
T(B, east, C) = 1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

k ces)

r(s,a,s’)

4)
R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

k cen)

27.3

This 1s simply the “Exploration-First”
strategy! But there are complications.

28.1

This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

28.2

This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

e For MDPs

— Often we need to take a carefully chosen sequence of actions to
reach a state

— The chance of randomly running into a state can be exponentially
small.

28.3

This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

e For MDPs

— Often we need to take a carefully chosen sequence of actions to
reach a state

— The chance of randomly running into a state can be exponentially
small.

— Question: What is an example of this?

284

This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

e For MDPs

— Often we need to take a carefully chosen sequence of actions to
reach a state

— The chance of randomly running into a state can be exponentially

small. & ' 39 = /\’f@ N
2 e .
WG 5 & 2
— Question: What is an example of this? !2; [>V

*Need to somehow update the “exploration policy” on the fly!
28.5

More caveats

« The fitted model is just an approximation of the
environment.

» How does the error in the fitted MDP translate into the
error 1n the estimated value functions V* and Q*?

[- &l<e

» How does the error in the estimated Q>X< function affect the
suboptimality of the policy that maximizes Q*?

* Answered by “Simulation Lemma” (Kearns and Singh, 2002)

— Resurgence of research on this more recently: Yin and W. (2020),
Yin, Bai and W. (2020)

29

Even more caveats

 How many free parameters are there to represent an MDP?

30.1

Even more caveats

 How many free parameters are there to represent an MDP?
— Ans: O(5"2A)

30.2

Even more caveats

 How many free parameters are there to represent an MDP?
— Ans: O(5"2A)

* S is often large
— 9-puzzle, Tic-Tac-Toe: 9! =362,800, S*2=1.3*10"11

30.3

Even more caveats

 How many free parameters are there to represent an MDP?
— Ans: O(5"2A)

* S is often large

— 9-puzzle, Tic-Tac-Toe: 9! =362,800, S*2=1.3*10"11
— PACMAN with 20 by 20 grid. S = 0(27400), S*2 = 0(2"800)

30.4

Even more caveats

 How many free parameters are there to represent an MDP?
— Ans: O(5"2A)

* S is often large
— 9-puzzle, Tic-Tac-Toe: 9! =362,800, S*2=1.3*10"11

— PACMAN with 20 by 20 grid. S =0(27400), S*2 =0(27800)

« In practice, we often have to use an approximate model.

30.5

Even more caveats

 How many free parameters are there to represent an MDP?
— Ans: O(5"2A)

* S is often large
— 9-puzzle, Tic-Tac-Toe: 9! =362,800, S*2=1.3*10"11

— PACMAN with 20 by 20 grid. S =0(27400), S*2 =0(27800)

« In practice, we often have to use an approximate model.

30.6

Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

7T0—>EV7TO—>I7T1—>EV7T1 _>I”._>I7_‘_>|<_>EV>|<

31.1

Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

— How many free parameters are there to represent the Q-
function?

7T0—>EV7TO—>I7T1—>EV7T1 _>I.”_>I7_‘_>|<_>EV>|<

31.2

Idea 2: Model-free Reinforcement Learning
* Do we need the model? Can we learn the Q function

directly?

— How many free parameters are there to represent the Q-
function?

— Ans: SA << O(S"2A)

7T0—>EV7TO—>I7T1—>EV7T1 _>I.”_>I7_‘_>|<_>EV>|<

31.3

Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

— How many free parameters are there to represent the Q-
function?

— Ans: SA << O(S"2A)

e Recall: Policy iterations

7T0—>EV7TO—>I7T1—>EV7T1 _>I.”_>I7_‘_>|<_>EV>|<

314

Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

— How many free parameters are there to represent the Q-
function?

— Ans: SA << O(S"2A)

e Recall: Policy iterations

7T0—>EV7TO—>I7T1—>EV7T1 _>I.”_>I7_‘_>|<_>EV>|<

— Maybe we can do policy evaluation without estimating the model?

31.5

Monte Carlo Policy Evaluation (Prediction)

« want to estimate V7(s)
= expected return starting from s and following

— estimate as average of observed returns in state s

 We can execute the policy

. ﬁgst—visit MC

— average returns following the first visit to state s

S S
® ® ® ® ® ® ® C— =
Sg @ o 0 v o > @ 5 o v o 3 O " (21(5) +2

32.1

Monte Carlo Policy Evaluation (Prediction)

« want to estimate V™(s) = E [Qf 1 {2@(\ + -

<
= expected return starting from s and following

— estimate as average of observed returns in state s g QFF?@/
 We can execute the policy
e first-visit MC

— average returns following the first visit to state s

S
S O—e—0—o —0—0—0 o000 o1 =
X +1 29 0 +1 3 +5 Gi(s) = +2
So O——0——0—0—0—0—0—0—0—0—0—0—0—o—1
5 —0— —— ——@—— —o— —o—@—o— —o— Gy(S) = +1
5, 0——@—o—0—o—0—o—0—o—0—o—0—o—0—o—l Gs(s)=-5
So O——@——0—0—0—0—0—0—0—0—0—0—0—0—1
So O—0—0—0—0—0—0—0—0— 00— 0—0—0—0—0—1lll (ys)=+4
Vi(s) = (2+1-5+4)/4=0>

Monte Carlo Policy Optimization (Control)

* V7™ not enough for policy improvement
— need exact model of environment

, F G
U S) = B”E}u) er/tg, \/7\ :)7

 estimate Q7(s,a) E 1508

, i Clcley
m(s) = argmax Q" (s, a) 7S Canelete (e

N
e O/
e MC control # pf e 15)
o —% Q™ :;{771 —>?Q7T1 b o LB
— update after each episode

 Two problems

— greedy policy won’t explore all actions

— Requires many independent episodes for the estimated value
function to be accurate.

33.1

Monte Carlo Policy Optimization (Control)

* V7™ not enough for policy improvement
— need exact model of environment

estimate Q7(s,a)
7'(s) = arg max Q" (s, a)

e MC control
70 _>EQ7TO _>I7-(-1 —>EQ7T1 _>I..._>I7T* —>EQ*

— update after each episode

Two problems

— greedy policy won’t explore all actions eps-greedy!

— Requires many independent episodes for the estimated value
function to be accurate.

33.2

Improved Monte-Carlo Q-function estimate
using Bellman equations

e Recall:

Q"(s,a) = Y P(s'|s,a)[r(s,a,8') +~) m(a'|s)Q7(s',a")]

—

@MQ&Q{ { Yy \//73{/))

QW(‘,Sa CL) — rﬂ(sa CL) -+ /V]ES/NP(S/ s,a) [VW(S/)]

34.1

Improved Monte-Carlo Q-function estimate
using Bellman equations

e Recall:

Q" (s,0) =Y P(s|s,a)[r(s,a,s") +~) w(d'|sYQ™(s',a')]
QW(Sv CL) — Tﬁ(sa CL) =+ /YES/NP(S/ls,CL) [VW(S/)]
 We can use the empirical (Monte Carlo) estimate.

Q™ (s,a) = 77(8,a) + YE g p(sr)s.a) [V (5)]

34.2

Improved Monte-Carlo Q-function estimate
using Bellman equations

e Recall:

Q" (s,0) =Y P(s|s,a)[r(s,a,s") +~) w(d'|sYQ™(s',a')]
QW(Sa CL) — rﬁ(sa CL) =+ /VES’NP(SWS,GJ) [VW(S/)]
 We can use the empirical (Monte Carlo) estimate.

Q™ (s,a) = 77(8,a) + YE g p(sr)s.a) [V (5)]

*No need to estimate P(s’ | s,a) or r(s,a,s’) as intermediate steps.

*Require only O(SA) space, rather than O(S”*2A) 343

Online averaging representation of MC

S S
Sog O—o—0—o—0@ : O ._2 @ .0 @ .+1 O ._3 O .+5. Gq(s) = +2
So O——0——0—0—0——0—0—0—0—0—0—0—0—1
S O——@——0@—0—0@—0—0—0—0—0—0—o— 01 Gy(s) = +1
So O——@——0—0—0——0—0—0—0—0—0—0——1 Gs(s) = -5
So O——0——0—0—0—0—0—0—0—0—0—0—0——1
So O——0——0—0—0—0—0—0—0—0—0—0—0—0—1 Gy(s) = +4

Vr(s) = (2+1-5+4)/4=0.5

_——

» Alternative, online averaging update

V(S,) « V(S,) +oz[Gt _ V(st)}, where oo = 1/NGg,
SRR L o

) \/@T] -+ X Qt 35

DP + MC = Temporal Difference Learning

* Monte Carlo
V(S) « V(S) +a|G = V(S))],

36.1

DP + MC = Temporal Difference Learning
* Monte Carlo

V(S:) « V(S) +a|G - V(S))],

Issue: G; can only be obtained after the entire episode!

36.2

DP + MC = Temporal Difference Learning

e Monte Carlo
V(S,) « V(S)) + [Gt _ V(st)} |

Issue: G; can only be obtained after the entire episode!

* The idea of TD learning:
Ex|Gt] = Ex|[Re|St] + V7 (St41)

36.3

DP + MC = Temporal Difference Learning

* Monte Carlo
V(S) « V(S) +a|G = V(S))],

Issue: G; can only be obtained after the entire episode!
* The idea of TD learning:
Er|Gt] = Ex[Re|St] + V7 (St41)

We only need one step before we can plug-in and estimate the RHS!

36.4

DP + MC = Temporal Difference Learning

* Monte Carlo
V(S) < V(S) +a|G = V(S))],

Issue: G; can only be obtained after the entire episode!

* The idea of TD learning:
Ex|Gt] = Ex|[Re|Se] + V7 (St41)

We only need one step before we can plug-in and estimate the RHS!

« TD-Policy evaluation

V(S,) « V(S,) + a [Rm AV (S) — V(St)]
‘. 2/

36.5

DP + MC = Temporal Difference Learning

e Monte Carlo
V(S,) « V(S)) + [Gt _ V(st)},

Issue: G; can only be obtained after the entire episode!
* The idea of TD learning:
Er|Gt] = Ex[Re|St] + V7 (St41)

We only need one step before we can plug-in :fnd estimate the RHS!

« TD-Policy evaluation Bootstrapping!

|
V(S,) « V(S,) + a [Rtﬂ AV (Si) — V(St)]

36.6

Bootstrap’s origin

* “The Surprising Adventures of Baron Miinchausen”
— Rudolf Erich Raspe, 1785

ot Pulling' PULL
/ o/ YOURSELF
UP BY

THE
BOOT
STRAPS!!!

 In statistics: Brad Efron’s resampling methods
* In computing: Booting...
 In RL: It simply means TD learning

37

TD policy optimization (TD-control)

« SARSA (On-Policy TD-control)
— Update the Q function by bootstrapping Bellman Equation

Q(S, A) — Q(S, A) + a[R+1Q(S, A') — Q(S, A)
— Choose the next é’ using Q, e.g., eps-greedy. '

* (Q-Learning (Off-policy TD-control)
— Update the Q function by bootstrapping Be/llman Optimality Eq.

Q(S, 4) Q(S, 4) + a| R + ymaxa Q(S", a) — Q(S, 4)]

— Choose the next A’ using Q, e.g., eps-greedy, or any other policy.

Remarks:

» These are proven to converge asymptotically.
» Much more data-efficient in practice, than MC. .
* Regret analysis is still active area of research.

Advantage of TD over Monte Carlo

* Given a trajectory, a roll-out, of T steps.
— MC updates the Q function only once

— TD updates the Q function (and the policy) T times!

39.1

Advantage of TD over Monte Carlo

* Given a trajectory, a roll-out, of T steps.
— MC updates the Q function only once

— TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent
to Stochastic Gradient Descent (SGD).

39.2

The problem of large state-space 1s still there

We need to represent and learn SA parameters in Q-
learning and SARSA.

* S is often large
— 9-puzzle, Tic-Tac-Toe: 9! =362,800, S*2=1.3*10"11
— PACMAN with 20 by 20 grid. S =0(27400), S*2 = 0O(27800)

* O(S) 1s not acceptable in some cases.

« Need to think of ways to “generalize”/share information
across states.

40

Example: Pacman

Let’s say we discover
through experience
that this state is bad:

*
*
*
*
*
*
*
*
®

(From Dan Klein and Pieter Abbeel)
41.1

Example: Pacman

Let’s say we discover In naive g-learning,
through experience we know nothing
that this state is bad: about this state:

*
*

*

s s s s s s s + @
»

*
*
*
*
*
*
*
*
o

*
*

(From Dan Klein and Pieter Abbeel)
41.2

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

*
*

*
*

s s s s s s s + @
»

* *
* *
* *
* *
* *
* *
* *
* *
® °

*
*
*

(From Dan Klein and Pieter Abbeel)
413

Video of Demo Q-Learning Pacman — Tiny —
Watch All

42

Video of Demo Q-Learning Pacman — Tiny —
Silent Train

43

Video of Demo Q-Learning Pacman — Tricky —
Watch All

44

Why not use an evaluation function?
A Feature-Based Representations

* Solution: describe a state using a
vector of features (properties)

— Features are functions from states to real
numbers (often 0/1) that capture
important properties of the state

— Example features:

» Distance to closest ghost
» Distance to closest dot
Number of ghosts
1 / (dist to dot)?
» Is Pacman in a tunnel? (0/1)
° ... etc.
 Is it the exact state on this slide?

— Can also describe a g-state (s, a) with

features (e.g. action moves closer to
food)

45

[Linear Value Functions

Using a feature representation, we can write a q function (or
value function) for any state using a few weights:

— Vy(s) = witi(s) + woty(s) + ... + wyiy(s)

o QW(Saa) — Wlfl(saa) + W2f2(saa) . F ann(saa)

Advantage: our experience 1s summed up 1n a few powerful
numbers

Disadvantage: states may share features but actually be very
different in value! 46

Updating a linear value function

47.1

Updating a linear value function

* Origial Q learning rule tries to reduce prediction error at s, a:

Q(s.a) o Q(s,a) + a-[R(s,a,87) +ymax, Q(s”,a") - Q(s,a)]

47.2

Updating a linear value function

* Origial Q learning rule tries to reduce prediction error at s, a:
Q(s,a) o Q(s,a) + o~ [R(s,a,87) +ymax, Q(s’.a) - Q(s,a)]

« Instead, we update the weights to try to reduce the error at s, a:

47.3

Updating a linear value function

* Origial Q learning rule tries to reduce prediction error at s, a:
Q(s,a) o Q(s,a) + o~ [R(s,a,87) +ymax, Q(s’.a) - Q(s,a)]

« Instead, we update the weights to try to reduce the error at s, a:

w; Ll w;+ o - [R(s,a,8") +ymax, Q(s’,a’) - Q(s,a) | HQy(s,a)/ow;
= w;t a-[R(s,a,s7) +ymax, Q(s’,a") - Q(s,a)]£i(s,a)

47.4

Updating a linear value function

* Origimal Q learning rule tries to reduce prediction error at s, a:
Q(s,a) € Q(s,a) + o - [R(s,a,87) +ymax, Q(s’.a’) - Q(s,a)]

« Instead, we update the weights to try to reduce the error at s, a:
w; € wit - [R(s,a,87) +ymax, Q(s%,a7) - Q(s,a)] 0Qy(s,a)/0w;
= w;t a-[R(s,a,s7) +ymax, Q(s’,a") - Q(s,a)]£i(s,a)

* Qualitative justification:

— Pleasant surprise: increase weights on positive features, decrease on
negative ones

— Unpleasant surprise: decrease weights on positive features, increase
on negative ones

48

Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

49.1

Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

49.2

Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)

49.3

Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + ~ max Q(s, a/)] — Q(s,a)
a

49.4

Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r 4+ vy maxQ(s, a/)] — Q(s,a)
CL,
Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

49.5

Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r 4+ vy maxQ(s, a/)] — Q(s,a)
CL,
Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Q’s

49.6

Q-Learning with function approximation

v/‘ >\Y

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

;_) J

* (Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + v max Q(s, a/)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + o [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Q’s

* Intuitive interpretation:
— Adjust weights of active features

— E.g., if something unexpectedly bad happens, blame the
features that were on: disprefer all states with that state’s
features

49.7

Q-Learning with function approximation

v/‘ >\v

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

_ Y,

* (Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + v max Q(s, a/)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Q’s

* Intuitive interpretation:
— Adjust weights of active features
— E.g., if something unexpectedly bad happens, blame the

features that were on: disprefer all states with that state’s
features

» Formal justification: online least squares (Read the textbook!)

49.8

PACMAN Q-Learning (Linear function approx.)

50

So far, in RL algorithms

Model-based approaches
— Estimate the MDP parameters.

— Then use policy-iterations, value iterations.

Monte Carlo methods:

— estimating the rewards by empirical averages

Temporal Difference methods:

— Combine Monte Carlo methods with Dynamic Programming

Linear function approximation in Q-learning
— Similar to SGD

— Learning heuristic function
51.1

So far, in RL algorithms

Model-based approaches
— Estimate the MDP parameters.

— Then use policy-iterations, value iterations.

Monte Carlo methods:

— estimating the rewards by empirical averages

Temporal Difference methods:

— Combine Monte Carlo methods with Dynamic Programming

Linear function approximation in Q-learning
— Similar to SGD

— Learning heuristic function

51.2
*Question: What is the policy class I1 of interest in these methods?

Next lecture

 Wrap up RL lectures
— Policy gradients methods

« Start logic agents / knowledge representation

52

