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Recap: Multi-arm bandits: Problem setup

. No state. k-actions a € A = {1, 2, cens k‘}

* You decide which arm to pull in every iteration

A17 A27 "t AT

* You collect a cumulative payoff of Z Ry
t=1

* The goal of the agent 1s to maximize the expected payoff.
— For future payoffs?

— For the expected cumulative payoff?



Recap: How do we measure the performance
of an online learning agent?
e The notion of “Regret™:

— I wish I have done things differently.

— Comparing to the best actions in the hindsight, how much worse
did I do.

 For MAB, the regret is defined as follow
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Recap: MAB Algorithms

e Idea: Plug-in estimate of the reward value @((o@i)

—
* Greedy: Regret=0O(T) b -8

/! 5’/\ A 9
« Explore-first: Regret=0(T?/3) K@G[Q(”\)’\/jﬁ) Q@fﬁj
/ g
o epsilon-greedy: Regret=0(T?/3) Qﬁj}
)

« Upper Confidence Bound: Regret=0(T1/?)

— Optimal in the sense that no algorithm can do better



Recap: Upper Confidence Bound algorithm

(UCB)

o At time t, choose the action 9 SRS |
NS

log(1 +t)
N¢(a)

Ay < argmax {Qt(a) + %\/

« Idea: Be optimistic

— Choose an option that maximizes the upper confidence bound.
E[Regret] = O(VTk)

« The proof is out of the scope of this course. For those who
are interested, please look up. It's not difficult.



Idea of the analysis of UCB

e Design principle: Optimistic in the face of uncertainty

e Idea why UCB improves over random exploration:

— When you follow the UCB approach, the maximum regret that you
can incur in each iteration 1s the confidence interval of the arm you
pick. (why is that?)

— Exploration will be restricted to those arms that are not
"eliminated” yet.
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* In other words, UCB explore and exploit at the same time!



Intuitively why is the O(T''/? ) regret optimal?

e Consider a 2-arm bandit problem and two parallel worlds:
— Arm 1 has expected reward 0.5, Arm 2 has 0.5 + eps
— Arm 1 has expected reward 0.5+eps, Arm 2 has 0.5

— Reward distribution 1s Bernoulli distribution.

e Set eps = O(1/V/T). Recall that you need to pull Arm 1 and
Arm 2 both for U(T) times in order to 1dentify which one

is better. Thus the regret needs to be Q(T X %).

* To say it differently: If any algorithm 1s able to achieve
better regret, then i1t implies an estimator that estimates the
p of a biased coin with fewer samples than required. Thus
a contradiction.



A 10-armed bandits benchmark
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Figure 2.1: An example bandit problem from the 10-armed testbed. The true value g.(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g.(a) unit variance
normal distribution, as suggested by these gray distributions.



Comparing the different algorithms
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UCB vs. e-Greedy
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Variants of Bandits problems

Online Learning from Expert Advice
— Adversarial chooses the outcome
— You observe outcome of other arms as well

— Compare against the best arm in the hindsight

Adversarial k-Armed Bandits

— Same as above. But you observe only your arm.

« Nonstationary Bandits
— Stochastic but the reward distribution changes over time.

— Compare against the best arm for each time.

Contextual bandits: you have a state in each time point. 0



Variants of Bandits problems

Online Learning from Expert Advice

— Adversarial chooses the outcome Remark: In all

— You observe outcome of other arms as well these problems,
— Compare against the best arm in the hindsight thgre are
algorithms with
provably low-
e Adversarial k-Armed Bandits regret.

— Same as above. But you observe only your arm.

« Nonstationary Bandits
— Stochastic but the reward distribution changes over time.

— Compare against the best arm for each time.

Contextual bandits: you have a state in each time point. s



Do I have to try, if I have features?

Features:
Features: . : : : :
[Burger, Fries, Onion Ring, Fried Chicken]

959,

AND
Srenne!

gER

\j

[Noodles, Tom Yum Soup, Poor service]

it

1

(lllustration from Dan Klein and Pieter Abbeel’s course in UC Berkeley)



We know how to use with features, don’t we?

e C(lassifier agent

— Take features of a restaurant as input
— OQutput a prediction of “will I like the food?”

* Train with supervised learning
— Using the my previous visits to the restaurants

— Using Yelp reviews

13.1
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We know how to use with features, don’t we?

e C(lassifier agent

— Take features of a restaurant as input
— OQutput a prediction of “will I like the food?”

* Train with supervised learning
— Using the my previous visits to the restaurants

— Using Yelp reviews

Why can’t we just use that?
How to explore?

13.3



Contextual Bandits: Problem Setup

* Foreachroundt=1,2,3,...,T:

— A context x,~ unknown distribution 1.1.d.
— Agent picks an action a, = 1,2,3,...K
— Reward I~ D( | X4, at)

e Agent’s goals: A finite family of policies
— Learn the best policy out of many policies H

— Minimize the cumulative regret

A
T - Hleal%i ET(‘ [Tt (ZEt, a't)] — IEE*Agelrlt’s policy E Tt 5Ct7 at
0

?
Reward collected by the Agent

Reward from the best policy

14



Applications of Contextual Bandits

15.1



Applications of Contextual Bandits

Personalized news?

R
i | s
o =
= o

%5
e S

Repeatedly:
1. Observe features of user+articles
2. Choose a news article.

3. Observe click-or-not

Goal: Maximize fraction of clicks

15.2



Applications of Contextual Bandits

Personalized news? Health advice?

o

= A
Repeatedly: e M A B Repeatedly:
1. Observe features of user+articles 1. Observe features of user+advice
2. Choose a news article. 2. Choose an advice.
3. Observe click-or-not 3. Observe steps walked
Goal: Maximize fraction of clicks Goal: Healthy behaviors (e.g. step count)
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Applications of Contextual Bandits

Personalized news? Health advice?

o

Repeatedly: % = E - Repeatedly:

1. Observe features of user+articles 1. Observe features of user+advice

2. Choose a news article. 2. Choose an advice.

3. Observe click-or-not 3. Observe steps walked

Goal: Maximize fraction of clicks Goal: Healthy behaviors (e.g. step count)
Recommendations

amaZzon

buy or not buy

154



Exploration vs. Exploitation in Contextual
Bandits.

16.1



Exploration vs. Exploitation in Contextual
Bandits.

« (Challenging because:
— Infinite state space, never see the same context again.

— Exponentially large policy space
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Exploration vs. Exploitation in Contextual
Bandits.

« (Challenging because:
— Infinite state space, never see the same context again.
— Exponentially large policy space

* Ideas:
— ExploreFirst, e-Greedy O(TQ/ 3)

— UCB? But how do we construct Confidence Interval for an
exponentially large set of policies?

e Optimal regret:

O(v/ KT log 1))



Remainder of the lecture today

* Reinforcement learning for MDPs
— Model-based vs model-free algorithms
— Online policy iterations

— Temporal difference learning

e Readings:
— AIMA Ch. 21.1-21.3 (Ch 22.1- 22.3 in 4th Edition)
— Sutton and Barto: Ch 4-6
— Maybe: Sutton and Barto: Ch 6, Ch 13

17



Let us tackle different aspects of the RL
problem one at a time

e Markov Decision Processes:

— Dynamics are given no need to learn

« Bandits: Explore-Exploit in simple settings
— RL without dynamics

* Full Reinforcement Learning
— Learning MDPs

18



Recap: Tabular MDP

* Discrete State, Discrete Action, Reward and Observation

S;eS Are A R, e R 6H67+<6—

« Policy:
— When the state is observable: T . S —> .A
——Crreir eSS tateisTetehservanie —
O AR L A

» Learn the best policy that maximizes the expected reward

T
— Finite horizon (episodic) RL: 7" = arg lglgﬁ( E[Z Rt] T: horizon
t=1

N —
— Infinite horizon RL: 7 = arg max E[Z W’t_lRt]

y: discount factor



Recap: Policy Iterations and Value Iterations

What are these algorithms for?

— Algorithms of computing the V* and Q* functions from MDP
parameters

* Policy Iterations

7T0—>EV7TO—>I7T1—>EV7T1 —>I...—>I7T*—>EV*

Value 1terations

Vier1(s) + mgxz P(s'|s,a)[r(s,a,s") +yVi(s")]

» How do we make sense of them?

— Recursively applying the Bellman equations until convergence.

20.1



Recap: Policy Iterations and Value Iterations

What are these algorithms for?

— Algorithms of computing the V* and Q* functions from MDP
parameters

* Policy Iterations

7T0—>EV7TO—>I7T1—>EV7T1 —>I...—>I7T*—>EV*

Value 1terations

Vier1(s) + mgxz P(s'|s,a)[r(s,a,s") +yVi(s")]

» How do we make sense of them?

— Recursively applying the Bellman equations until convergence.

*These methods are called “Dynamic Programming” approaches in Chap 4
of Sutton and Barto.



Revisit the dynamic programming approach

e Policy Evaluation

Via(s) < D _m(als) Y P(s'ls,a)[r(s,a,8") + Vi (s)

* Policy improvement
'(s) = argmax Q" (s, a)
— arg max Z P(S/‘S, a) [T(S, a, S/) + /VVkW(S/)]
* Value iterations

Vier1(s) < mgxz P(s'|s,a)[r(s,a,s") +yVi(s")]

21.1



Revisit the dynamic programming approach

e Policy Evaluation

Vi (s) < Y mlals) ) P Mtsrans) + Vi (s')]

* Policy improvement

7' (s) = arg max Q" (s,a)
= argmax )  PT8sra)[tsrans]) + V) (s)

 Value iterations

Vit1(s) mgxz P54l [Tsrersl) + 7 Vie(s)]

*We do not have the MDP parameters in RL! 212



Example: Robot in a room.

actions: UP, DOWN, LEFT, RIGHT

— R

80% move UP

START 10% move LEFT

10% move RIGHT
« reward +1 at [4,3], -1 at [4,2]

e reward -0.04 for each step

e what’s the strategy to achieve max reward?

22.1



Example: Robot in a room.

actions: UP, DOWN, LEFT, RIGHT

g X

80% move UP

START 10% move LEFT

10% move RIGHT

e what’s the strategy to achieve max reward?
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Example: Robot in a room.

actions: UP, DOWN, LEFT, RIGHT

START

e what’s the strategy to achieve max reward?

22.3



Example: Robot in a room.

Action 1, Action 2, Action 3, Action 4

actions —gPDOWN;EFT, RIGHT—

START

move RIGH

e what’s the strategy to achieve max reward?

224



Instead, reinforcement learning agents have
“online” access to an environment

« State, Action, Reward
 Unknown reward function, unknown state-transitions.

« Agents can “act” and “experiment”, rather than only doing
offline planning.

state reward
\Y

Environment




Idea 1: Model-based Reinforcement Learning

* Model-based idea

— Let’s approximate the model based on experiences

— Then solve for the values as if the learned model were correct

e Step 1: Get data by running the agent to explore

— Many data points of the form:
{(Sl: q1r SZ} 7:1)1 Ly (SN' an, SN+1, rN)}

« Step 2: Estimate the model parameters

- P (s’|s,a) --- again this is a CPT we need to observe the transition
many times for each s, a

- 7(s’,a, s) --- this is an estimate of the empirical rewards.

24



Then we can plug in these estimates and then
use dynamic programming for policy
evaluation / improvements.

Viii(s (—ZT( als) ZP (s'|s,a)[F(s,a,s") +~yVI(s)]
T %argmaXZP 'Is,a)[F(s,a,8") + Vi (s")

Via1(s )%maXZP "Is,a)[F(s,a,s") +yVi(s')]

25.1



Then we can plug in these estimates and then
use dynamic programming for policy
evaluation / improvements.

Via(s) < D _mlals) Y |P(s']s,a)[7(s, a, 8" +~Vi ()]

S/

7’ < arg maxz P(s'|s,a)[f(s,a,s) +~yV(s")]

Vit1(s) < maXZ P(s'|s,a)[#(s,a,8") +7Vi(s')]

25.2



Then we can plug in these estimates and then
use dynamic programming for policy
evaluation / improvements.

Via(s) < ) _mlals) )

S/

m' < arg max E P(s
a
8/

Vir1(s) < maxz P(s

P(s'|s,a)[P(s,a, 8"} + YV (s)]

Is,a)[?(s,a,8") + Vi (s)]

"Is,a)[F(s,a,s") +yVi(s')]

* Note the “hat”. Usually it indicates empirical estimates.

253



Then we can plug in these estimates and then
use dynamic programming for policy

evaluation / improvements.

Via(s) < D _mlals) Y |P(s']s,a)[7(s, a, 8" +~Vi ()]

3/

7' < arg max g P(s'|s,a)[f(s,a,s")
a
S/

+ Vi (s')]

Vier1(s) < max > | P(s'|s, a)[(s, a, s")H YVi(s))]

* Note the “hat”. Usually it indicates empirical estimates.

* These iterations will produce 7* and Q* functions, and then #*

254



Example: Model-Based RL (2 min exercise)

Input Policy & Observed Episodes (Training) Learned Model
P(s']s,a)

e colfo]
ﬂ r(s,a,s’)

Assume:y=1

Slide credits: Pat and Stephanie 26.1



Example: Model-Based RL (2 min exercise)

Input Policy &t

En
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

AY4

B, east, C, -1
C, east, D, -1

D, exit, x, +10 )

N
B, east, C, -1

C, east, D, -1

D, exit, x,+10

Episode 3

Episode 4

E, north, C, -1\ 4

C,east, D, -1

D, exit, x,+10)

~N
E, north, C, -1
C, east, A, -1

\_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

Learned Model
P(s']s,a)

r(s,a,s’)

26.2



Example: Model-Based RL (2 min exercise)

Input Policy &t

En
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

-
B, east, C, -1
C, east, D, -1

—

AY4

D, exit, x, +10 )

N
B, east, C, -1

C, east, D, -1

Learned Model

D, exit, x,+10

Episode 3

Episode 4

E, north, C, -1\ 4

C, east,

~—

D, -1

D, exit, x,+10)

~N
E, north, C, -1
C, east, A, -1

\_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

P(s'|s, a)
T(B, east, C) = é \\
T(C, east, D) = 2
T(C, east, A) = [4'

\_ T

r(s,a,s’)

4 _
R(B, east, C) = —\’L \
R(C, east, D) = [
_R(D, exit, x) =(Q-(—/a{(a—

— g

26.3
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Example: Model-Based RL (2 min exercise)

Input Policy &t

mn
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

AY4

B, east, C, -1
C, east, D, -1

D, exit, x, +10 )

N
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C, east, D, -1

Learned Model
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C,east, D, -1

E, north, C, -1\ 4

D, exit, x,+10)

E, north, C, -1
C, east, A, -1

\_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

Y
P(s'|s,a)

4 )
T(B, east, C) = 1.00
T(C, east, D) =0.75
T(C, east, A) =0.25

k ces )

r(s,a,s’)

4 )
R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

k cen )
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This 1s simply the “Exploration-First”
strategy! But there are complications.

28.1



This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

28.2



This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

e For MDPs

— Often we need to take a carefully chosen sequence of actions to
reach a state

— The chance of randomly running into a state can be exponentially
small.
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This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

e For MDPs
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— Question: What is an example of this?
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This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

e For MDPs

— Often we need to take a carefully chosen sequence of actions to
reach a state

— The chance of randomly running into a state can be exponentially

small. & ' 39 = /\’f@ N
2 e .
WG 5 & 2
— Question: What is an example of this? !2; [ >V

*Need to somehow update the “exploration policy” on the fly!
28.5



More caveats

« The fitted model is just an approximation of the
environment.

» How does the error in the fitted MDP translate into the
error 1n the estimated value functions V* and Q*?

[ - &l<e

» How does the error in the estimated Q>X< function affect the
suboptimality of the policy that maximizes Q*?

* Answered by “Simulation Lemma” (Kearns and Singh, 2002)

— Resurgence of research on this more recently: Yin and W. (2020),
Yin, Bai and W. (2020)

29



Even more caveats

 How many free parameters are there to represent an MDP?
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Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

7T0—>EV7TO—>I7T1—>EV7T1 _>I”._>I7_‘_>|<_>EV>|<

31.1



Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

— How many free parameters are there to represent the Q-
function?
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Idea 2: Model-free Reinforcement Learning
* Do we need the model? Can we learn the Q function

directly?

— How many free parameters are there to represent the Q-
function?

— Ans: SA << O(S"2A)

7T0—>EV7TO—>I7T1—>EV7T1 _>I.”_>I7_‘_>|<_>EV>|<
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Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

— How many free parameters are there to represent the Q-
function?

— Ans: SA << O(S"2A)

e Recall: Policy iterations

7T0—>EV7TO—>I7T1—>EV7T1 _>I.”_>I7_‘_>|<_>EV>|<
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Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

— How many free parameters are there to represent the Q-
function?

— Ans: SA << O(S"2A)

e Recall: Policy iterations

7T0—>EV7TO—>I7T1—>EV7T1 _>I.”_>I7_‘_>|<_>EV>|<

— Maybe we can do policy evaluation without estimating the model?

31.5



Monte Carlo Policy Evaluation (Prediction)

« want to estimate V7(s)
= expected return starting from s and following

— estimate as average of observed returns in state s

 We can execute the policy

. ﬁgst—visit MC

— average returns following the first visit to state s

S S
® ® ® ® ® ® ® C— =
Sg @ o 0 v o > @ 5 o v o 3 O " (21(5) +2

32.1



Monte Carlo Policy Evaluation (Prediction)

« want to estimate V™(s) = E [ Qf 1 {2@(\ + -

<
= expected return starting from s and following

— estimate as average of observed returns in state s g QFF?@/
 We can execute the policy
e first-visit MC

— average returns following the first visit to state s

S
S O—e—0—o —0—0—0 o000 o1 =
X +1 29 0 +1 3 +5 Gi(s) = +2
So O——0——0—0—0—0—0—0—0—0—0—0—0—o—1
5 —0— —— ——@—— —o— —o—@—o— —o—  Gy(S) = +1
5, 0——@—o—0—o—0—o—0—o—0—o—0—o—0—o—l  Gs(s)=-5
So O——@——0—0—0—0—0—0—0—0—0—0—0—0—1
So O—0—0—0—0—0—0—0—0— 00— 0—0—0—0—0—1lll (ys)=+4
Vi(s) = (2+1-5+4)/4=0>



Monte Carlo Policy Optimization (Control)

* V7™ not enough for policy improvement
— need exact model of environment

, F G
U S) = B”E}u) er/tg, \/7\ : )7

 estimate Q7(s,a) E 1508

, i Clcley
m(s) = argmax Q" (s, a) 7S Canelete (e

N
e O/
e MC control # pf e 15)
o —% Q™ :;{771 —>?Q7T1 b o LB
— update after each episode

 Two problems

— greedy policy won’t explore all actions

— Requires many independent episodes for the estimated value
function to be accurate.
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Monte Carlo Policy Optimization (Control)

* V7™ not enough for policy improvement
— need exact model of environment

estimate Q7(s,a)
7'(s) = arg max Q" (s, a)

e MC control
70 _>EQ7TO _>I7-(-1 —>EQ7T1 _>I..._>I7T* —>EQ*

— update after each episode

Two problems

— greedy policy won’t explore all actions eps-greedy!

— Requires many independent episodes for the estimated value
function to be accurate.

33.2



Improved Monte-Carlo Q-function estimate
using Bellman equations

e Recall:

Q"(s,a) = Y P(s'|s,a)[r(s,a,8') +~ ) m(a'|s)Q7(s',a")]

—

@MQ&Q{ { Yy \//73{/ ) )

QW(‘,Sa CL) — rﬂ(sa CL) -+ /V]ES/NP(S/ s,a) [VW(S/)]
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Improved Monte-Carlo Q-function estimate
using Bellman equations

e Recall:

Q" (s,0) =Y P(s|s,a)[r(s,a,s") +~ ) w(d'|sYQ™(s',a')]
QW(Sv CL) — Tﬁ(sa CL) =+ /YES/NP(S/ls,CL) [VW(S/)]
 We can use the empirical (Monte Carlo) estimate.

Q™ (s,a) = 77(8,a) + YE g p(sr)s.a) [V (5)]
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Improved Monte-Carlo Q-function estimate
using Bellman equations

e Recall:

Q" (s,0) =Y P(s|s,a)[r(s,a,s") +~ ) w(d'|sYQ™(s',a')]
QW(Sa CL) — rﬁ(sa CL) =+ /VES’NP(SWS,GJ) [VW(S/)]
 We can use the empirical (Monte Carlo) estimate.

Q™ (s,a) = 77(8,a) + YE g p(sr)s.a) [V (5)]

*No need to estimate P(s’ | s,a) or r(s,a,s’) as intermediate steps.

*Require only O(SA) space, rather than O(S”*2A) 343



Online averaging representation of MC

S S
Sog O—o—0—o—0@ : O ._2 @ .0 @ .+1 O ._3 O .+5. Gq(s) = +2
So O——0——0—0—0——0—0—0—0—0—0—0—0—1
S O——@——0@—0—0@—0—0—0—0—0—0—o— 01 Gy(s) = +1
So O——@——0—0—0——0—0—0—0—0—0—0——1 Gs(s) = -5
So O——0——0—0—0—0—0—0—0—0—0—0—0——1
So O——0——0—0—0—0—0—0—0—0—0—0—0—0—1 Gy(s) = +4

Vr(s) = (2+1-5+4)/4=0.5

_——

» Alternative, online averaging update

V(S,) « V(S,) +oz[Gt _ V(st)}, where oo = 1/NGg,
SRR L o

) \/@T] -+ X Qt 35



DP + MC = Temporal Difference Learning

* Monte Carlo
V(S) « V(S) +a|G = V(S))],

36.1



DP + MC = Temporal Difference Learning
* Monte Carlo

V(S:) « V(S) +a|G - V(S))],

Issue: G; can only be obtained after the entire episode!
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DP + MC = Temporal Difference Learning

e Monte Carlo
V(S,) « V(S)) + [Gt _ V(st)} |

Issue: G; can only be obtained after the entire episode!

* The idea of TD learning:
Ex|Gt] = Ex|[Re|St] + V7 (St41)
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DP + MC = Temporal Difference Learning

* Monte Carlo
V(S) « V(S) +a|G = V(S))],

Issue: G; can only be obtained after the entire episode!
* The idea of TD learning:
Er|Gt] = Ex[Re|St] + V7 (St41)

We only need one step before we can plug-in and estimate the RHS!
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DP + MC = Temporal Difference Learning

* Monte Carlo
V(S) < V(S) +a|G = V(S))],

Issue: G; can only be obtained after the entire episode!

* The idea of TD learning:
Ex|Gt] = Ex|[Re|Se] + V7 (St41)

We only need one step before we can plug-in and estimate the RHS!

« TD-Policy evaluation

V(S,) « V(S,) + a [Rm AV (S) — V(St)]
‘. 2/
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DP + MC = Temporal Difference Learning

e Monte Carlo
V(S,) « V(S)) + [Gt _ V(st)},

Issue: G; can only be obtained after the entire episode!
* The idea of TD learning:
Er|Gt] = Ex[Re|St] + V7 (St41)

We only need one step before we can plug-in :fnd estimate the RHS!

« TD-Policy evaluation Bootstrapping!

|
V(S,) « V(S,) + a [Rtﬂ AV (Si) — V(St)]
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Bootstrap’s origin

* “The Surprising Adventures of Baron Miinchausen”
— Rudolf Erich Raspe, 1785

ot Pulling' PULL
/ o/  YOURSELF
UP BY

THE
BOOT
STRAPS!!!

 In statistics: Brad Efron’s resampling methods
* In computing: Booting...
 In RL: It simply means TD learning

37



TD policy optimization (TD-control )

« SARSA (On-Policy TD-control)
— Update the Q function by bootstrapping Bellman Equation

Q(S, A) — Q(S, A) + a[R+1Q(S, A') — Q(S, A)
— Choose the next é’ using Q, e.g., eps-greedy. '

* (Q-Learning (Off-policy TD-control)
— Update the Q function by bootstrapping Be/llman Optimality Eq.

Q(S, 4)  Q(S, 4) + a| R + ymaxa Q(S", a) — Q(S, 4)]

— Choose the next A’ using Q, e.g., eps-greedy, or any other policy.

Remarks:

» These are proven to converge asymptotically.
» Much more data-efficient in practice, than MC. .
* Regret analysis is still active area of research.



Advantage of TD over Monte Carlo

* Given a trajectory, a roll-out, of T steps.
— MC updates the Q function only once

— TD updates the Q function (and the policy) T times!
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Advantage of TD over Monte Carlo

* Given a trajectory, a roll-out, of T steps.
— MC updates the Q function only once

— TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent
to Stochastic Gradient Descent (SGD).
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The problem of large state-space 1s still there

We need to represent and learn SA parameters in Q-
learning and SARSA.

* S is often large
— 9-puzzle, Tic-Tac-Toe: 9! =362,800, S*2=1.3*10"11
— PACMAN with 20 by 20 grid. S =0(27400), S*2 = 0O(27800)

* O(S) 1s not acceptable in some cases.

« Need to think of ways to “generalize”/share information
across states.

40



Example: Pacman

Let’s say we discover
through experience
that this state is bad:

*
*
*
*
*
*
*
*
®

(From Dan Klein and Pieter Abbeel)
41.1



Example: Pacman

Let’s say we discover In naive g-learning,
through experience we know nothing
that this state is bad: about this state:

*
*

*

s s s s s s s + @
»

*
*
*
*
*
*
*
*
o

*
*

(From Dan Klein and Pieter Abbeel)
41.2



Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

*
*

*
*

s s s s s s s + @
»

* *
* *
* *
* *
* *
* *
* *
* *
® °

*
*
*

(From Dan Klein and Pieter Abbeel)
413



Video of Demo Q-Learning Pacman — Tiny —
Watch All
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Video of Demo Q-Learning Pacman — Tiny —
Silent Train
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Video of Demo Q-Learning Pacman — Tricky —
Watch All
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Why not use an evaluation function?
A Feature-Based Representations

* Solution: describe a state using a
vector of features (properties)

— Features are functions from states to real
numbers (often 0/1) that capture
important properties of the state

— Example features:

» Distance to closest ghost
» Distance to closest dot
Number of ghosts
1 / (dist to dot)?
» Is Pacman in a tunnel? (0/1)
° ... etc.
 Is it the exact state on this slide?

— Can also describe a g-state (s, a) with

features (e.g. action moves closer to
food)

45



[Linear Value Functions

Using a feature representation, we can write a q function (or
value function) for any state using a few weights:

— Vy(s) = witi(s) + woty(s) + ... + wyiy(s)

o QW(Saa) — Wlfl(saa) + W2f2(saa) . F ann(saa)

Advantage: our experience 1s summed up 1n a few powerful
numbers

Disadvantage: states may share features but actually be very
different in value! 46



Updating a linear value function

47.1



Updating a linear value function

* Origial Q learning rule tries to reduce prediction error at s, a:

Q(s.a) o Q(s,a) + a-[R(s,a,87) +ymax, Q(s”,a") - Q(s,a) ]
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Updating a linear value function

* Origial Q learning rule tries to reduce prediction error at s, a:
Q(s,a) o Q(s,a) + o~ [R(s,a,87) +ymax, Q(s’.a) - Q(s,a) ]

« Instead, we update the weights to try to reduce the error at s, a:
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Updating a linear value function

* Origial Q learning rule tries to reduce prediction error at s, a:
Q(s,a) o Q(s,a) + o~ [R(s,a,87) +ymax, Q(s’.a) - Q(s,a) ]

« Instead, we update the weights to try to reduce the error at s, a:

w; Ll w;+ o - [R(s,a,8") +ymax, Q(s’,a’) - Q(s,a) | HQy(s,a)/ow;
= w;t a-[R(s,a,s7) +ymax, Q(s’,a") - Q(s,a) ]£i(s,a)
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Updating a linear value function

* Origimal Q learning rule tries to reduce prediction error at s, a:
Q(s,a) € Q(s,a) + o - [R(s,a,87) +ymax, Q(s’.a’) - Q(s,a) ]

« Instead, we update the weights to try to reduce the error at s, a:
w; € wit - [R(s,a,87) +ymax, Q(s%,a7) - Q(s,a) ] 0Qy(s,a)/0w;
= w;t a-[R(s,a,s7) +ymax, Q(s’,a") - Q(s,a) ]£i(s,a)

* Qualitative justification:

— Pleasant surprise: increase weights on positive features, decrease on
negative ones

— Unpleasant surprise: decrease weights on positive features, increase
on negative ones
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Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

49.1



Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:
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Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
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Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + ~ max Q(s, a/)] — Q(s,a)
a
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Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r 4+ vy maxQ(s, a/)] — Q(s,a)
CL,
Q(s,a) «— Q(s,a) + « [difference] Exact Q’s
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Q-Learning with function approximation

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r 4+ vy maxQ(s, a/)] — Q(s,a)
CL,
Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Q’s
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Q-Learning with function approximation

v/‘ >\Y

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

;\_ ) J

* (Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + v max Q(s, a/)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + o [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Q’s

* Intuitive interpretation:
— Adjust weights of active features

— E.g., if something unexpectedly bad happens, blame the
features that were on: disprefer all states with that state’s
features
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Q-Learning with function approximation

v/‘ >\v

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

_ Y,

* (Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + v max Q(s, a/)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Q’s

* Intuitive interpretation:
— Adjust weights of active features
— E.g., if something unexpectedly bad happens, blame the

features that were on: disprefer all states with that state’s
features

» Formal justification: online least squares (Read the textbook!)
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PACMAN Q-Learning (Linear function approx.)

50



So far, in RL algorithms

Model-based approaches
— Estimate the MDP parameters.

— Then use policy-iterations, value iterations.

Monte Carlo methods:

— estimating the rewards by empirical averages

Temporal Difference methods:

— Combine Monte Carlo methods with Dynamic Programming

Linear function approximation in Q-learning
— Similar to SGD

— Learning heuristic function
51.1



So far, in RL algorithms

Model-based approaches
— Estimate the MDP parameters.

— Then use policy-iterations, value iterations.

Monte Carlo methods:

— estimating the rewards by empirical averages

Temporal Difference methods:

— Combine Monte Carlo methods with Dynamic Programming

Linear function approximation in Q-learning
— Similar to SGD

— Learning heuristic function

51.2
*Question: What is the policy class I1 of interest in these methods?



Next lecture

 Wrap up RL lectures
— Policy gradients methods

« Start logic agents / knowledge representation
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