Artificial Intelligence

CS 165A
Nov 19, 2020

Instructor: Prof. Yu-Xiang Wang

S B

& — Contextual Bandits

»
- : :

— Reinforcement Learning
= |

A
-
-4

w7

Recap: Multi-arm bandits: Problem setup

. No state. k-actions a € A = {1, 2, cens k‘}

* You decide which arm to pull in every iteration

A17 A27 "t AT

* You collect a cumulative payoff of Z Ry
t=1

* The goal of the agent 1s to maximize the expected payoff.
— For future payoffs?

— For the expected cumulative payoff?

Recap: How do we measure the performance
of an online learning agent?
e The notion of “Regret™:

— I wish I have done things differently.

— Comparing to the best actions in the hindsight, how much worse
did I do.

 For MAB, the regret is defined as follow

T
TmaXER la] ZEQNW |R¢|al]
t=1

a€lk]

Recap: MAB Algorithms

e Idea: Plug-in estimate of the reward value
e Greedy: Regret=O(T)

« Explore-first: Regret =O(T?/3)

e epsilon-greedy: Regret=O(T?/3)

« Upper Confidence Bound: Regret=0(T1/?)

— Optimal in the sense that no algorithm can do better

Recap: Upper Confidence Bound algorithm
(UCB)

o At time t, choose the action

Ay < argmax {Qt(a) + c\/lO%\([j(;L))

« Idea: Be optimistic

— Choose an option that maximizes the upper confidence bound.
E[Regret] = O(VTk)

« The proof is out of the scope of this course. For those who
are interested, please look up. It's not difficult.

Idea of the analysis of UCB

e Design principle: Optimistic in the face of uncertainty

e Idea why UCB improves over random exploration:

— When you follow the UCB approach, the maximum regret that you
can incur in each iteration 1s the confidence interval of the arm you
pick. (why is that?)

— Exploration will be restricted to those arms that are not
"eliminated” yet.

* In other words, UCB explore and exploit at the same time!

Intuitively why is the O(T''/?) regret optimal?

e Consider a 2-arm bandit problem and two parallel worlds:
— Arm 1 has expected reward 0.5, Arm 2 has 0.5 + eps
— Arm 1 has expected reward 0.5+eps, Arm 2 has 0.5

— Reward distribution 1s Bernoulli distribution.

e Set eps = O(1/V/T). Recall that you need to pull Arm 1 and
Arm 2 both for U(T) times in order to 1dentify which one

is better. Thus the regret needs to be Q(T X %).

* To say it differently: If any algorithm 1s able to achieve
better regret, then i1t implies an estimator that estimates the
p of a biased coin with fewer samples than required. Thus
a contradiction.

A 10-armed bandits benchmark

3
2
«(3)
1 ! q*(5)
‘I*(g)
Reward g.(1) e
. . . - - = - - - - - - - _ = _— —*—7) _—] —_—— .
distribution q W0
Q*(2)
-1 .(8)
qx (6)
-2
-3

Action

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value g.(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g.(a) unit variance
normal distribution, as suggested by these gray distributions.

Comparing the different algorithms

15 _
e=0.1
e=0.01
1 — -‘” ML ‘MH'MN
=0 (greed
Average b dnrs
reward
0.5 _

0 | I I I

! 250 500 750 1000

Steps

UCB vs. e-Greedy

15F

Average
reward

05+

d

UCB c=2

WMMWWWWMWW

e-greedy € =0.1

250

500

Steps

750

1000

10

Variants of Bandits problems

Online Learning from Expert Advice

— Adversarial chooses the outcome Remark: In all

— You observe outcome of other arms as well these problems,
— Compare against the best arm in the hindsight thgre are
algorithms with
provably low-
e Adversarial k-Armed Bandits regret.

— Same as above. But you observe only your arm.

« Nonstationary Bandits
— Stochastic but the reward distribution changes over time.

— Compare against the best arm for each time.

Contextual bandits: you have a state in each time point. ;

Do I have to try, if I have features?

Features:
Features: . : : : :
[Burger, Fries, Onion Ring, Fried Chicken]

959,

AND
Srenne!

gER

\j

[Noodles, Tom Yum Soup, Poor service]

it

1

(lllustration from Dan Klein and Pieter Abbeel’s course in UC Berkeley)

We know how to use with features, don’t we?

e C(lassifier agent

— Take features of a restaurant as input
— OQutput a prediction of “will I like the food?”

* Train with supervised learning
— Using the my previous visits to the restaurants

— Using Yelp reviews

Why can’t we just use that?
How to explore?

13

Contextual Bandits: Problem Setup

* Foreachroundt=1,2,3,...,T:

— A context x,~ unknown distribution 1.1.d.
— Agent picks an action a, = 1,2,3,...K
— Reward r, ~D(.|x, a)

e Agent’s goals: A finite family of policies
— Learn the best policy out of many policies T[]

— Minimize the cumulative regret

A
T - Hleal%i ET(‘ [Tt (CEt, a't)] — IEE*Agelrlt’s policy E Tt 5Ct7 at
0

?
Reward collected by the Agent

Reward from the best policy

14

Applications of Contextual Bandits

Personalized news? Health advice?

o

Repeatedly: % = E - Repeatedly:

1. Observe features of user+articles 1. Observe features of user+advice

2. Choose a news article. 2. Choose an advice.

3. Observe click-or-not 3. Observe steps walked

Goal: Maximize fraction of clicks Goal: Healthy behaviors (e.g. step count)
Recommendations

amaZzon

buy or not buy

15

Exploration vs. Exploitation in Contextual
Bandits.

« (Challenging because:
— Infinite state space, never see the same context again.
— Exponentially large policy space

* Ideas:
— ExploreFirst, e-Greedy O(TQ/ 3)

— UCB? But how do we construct Confidence Interval for an
exponentially large set of policies?

e Optimal regret:

O(v/ KT log II)

16

Remainder of the lecture today

* Reinforcement learning for MDPs
— Model-based vs model-free algorithms
— Online policy iterations

— Temporal difference learning

e Readings:
— AIMA Ch. 21.1-21.3 (Ch 22.1- 22.3 in 4th Edition)
— Sutton and Barto: Ch 4-6
— Maybe: Sutton and Barto: Ch 6, Ch 13

17

Let us tackle different aspects of the RL
problem one at a time

e Markov Decision Processes:

— Dynamics are given no need to learn

« Bandits: Explore-Exploit in simple settings
— RL without dynamics

* Full Reinforcement Learning
— Learning MDPs

18

Recap: Tabular MDP

* Discrete State, Discrete Action, Reward and Observation

S;eS Are A R, e R 6H67+<6—

« Policy:
— When the state is observable: T . S —> .A
——Crreir eSS tateisTetehservanie —
O AR L A

» Learn the best policy that maximizes the expected reward

T
— Finite horizon (episodic) RL: 7" = arg lglgﬁ(E[Z Rt] T: horizon
t=1

N —
— Infinite horizon RL: 7 = arg max E[Z W’t_lRt]

y: discount factor

Recap: Policy Iterations and Value Iterations

What are these algorithms for?

— Algorithms of computing the V* and Q* functions from MDP
parameters

* Policy Iterations

7T0—>EV7TO—>I7T1—>EV7T1 —>I...—>I7T*—>EV*

Value 1terations

Vier1(s) + mgxz P(s'|s,a)[r(s,a,s") +yVi(s")]

» How do we make sense of them?

— Recursively applying the Bellman equations until convergence.

*These methods are called “Dynamic Programming” approaches in Chap 4
of Sutton and Barto.

Revisit the dynamic programming approach

* Policy Evaluation

Vi (s) < Y mlals)) P Mtsrans) + Vi (s')]

* Policy improvement

7' (s) = arg max Q" (s,a)
= argmax) PT8sra)[tsrans]) + V) (s)

 Value iterations

Vit1(s) mgxz P54l [Tsrersl) + 7 Vie(s)]

*We do not have the MDP parameters in RL! 21

Example: Robot in a room.

Action 1, Action 2, Action 3, Action 4

actions —gPDOWN;EFT, RIGHT—

START

move RIGH

e what’s the strategy to achieve max reward?

22

Instead, reinforcement learning agents have
“online” access to an environment

« State, Action, Reward
 Unknown reward function, unknown state-transitions.

« Agents can “act” and “experiment”, rather than only doing
offline planning.

state reward
\Y

Environment

Idea 1: Model-based Reinforcement Learning

* Model-based idea

— Let’s approximate the model based on experiences

— Then solve for the values as if the learned model were correct

« Step 1: Get data by running the agent to explore

— Many data points of the form:
{(51: ai, Sz, Tl); Ly (SN' an, SN+1, rN)}

« Step 2: Estimate the model parameters

- P(s'|s,a) --- again this is a CPT we need to observe the transition
many times for each s, a

- 7(s’,a, s) --- this is an estimate of the empirical rewards.

24

Then we can plug in these estimates and then
use dynamic programming for policy

evaluation / improvements.

Via(s) < D _mlals) Y |P(s']s,a)[7(s, a, 8" +~Vi ()]

3/

7' < arg max g P(s'|s,a)[f(s,a,s")
a
S/

+ Vi (s')]

Vier1(s) < max > | P(s'|s, a)[(s, a, s")H YVi(s))]

* Note the “hat”. Usually it indicates empirical estimates.

* These iterations will produce 7* and Q* functions, and then #*

25

Example: Model-Based RL (2 min exercise)

Input Policy &t

En
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

AY4

B, east, C, -1
C, east, D, -1

D, exit, x, +10)

N
B, east, C, -1

C, east, D, -1

Learned Model

P(s']s,a)

D, exit, x,+10

Episode 3

Episode 4

C,east, D, -1

E, north, C, -1\ 4

D, exit, x,+10)

E, north, C, -1
C, east, A, -1

T(B, east, C) =
T(C, east, D) =
T(C, east, A) =

w

r(s,a,s’)

-

_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

R(B, east, C) =
R(C, east, D) =
R(D, exit, x) =

L

26

Example: Model-Based RL (2 min exercise)

Input Policy &t

mn
ﬂ

Assume:y=1

Observed Episodes (Training)

Episode 1

Episode 2

AY4

B, east, C, -1
C, east, D, -1

D, exit, x, +10)

N
B, east, C, -1

C, east, D, -1

Learned Model

-

D, exit, x,+10

Episode 3

Episode 4

C,east, D, -1

E, north, C, -1\ 4

D, exit, x,+10)

E, north, C, -1
C, east, A, -1

-

_ A, exit, X, -10 y,

Slide credits: Pat and Stephanie

Y
P(s'|s,a)
\
T(B, east, C) = 1.00
T(C, east, D) =0.75
T(C, east, A) =0.25
k ces)
A /
r(s,a,s)
\
R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10
k cen)

27

This 1s simply the “Exploration-First”
strategy! But there are complications.

e In bandits problems
— Uniformly sample the actions for N rounds.

— Quarantees that each choice is explored O(N/k) times.

e For MDPs

— Often we need to take a carefully chosen sequence of actions to
reach a state

— The chance of randomly running into a state can be exponentially
small.

— Question: What is an example of this?

*Need to somehow update the “exploration policy” on the fly!
28

More caveats

« The fitted model is just an approximation of the
environment.

» How does the error in the fitted MDP translate into the
error 1n the estimated value functions V* and Q*?

 How does the error in the estimated Q* function affect the
suboptimality of the policy that maximizes Q*?

* Answered by “Simulation Lemma” (Kearns and Singh, 2002)

— Resurgence of research on this more recently: Yin and W. (2020),
Yin, Bai and W. (2020)

29

Even more caveats

 How many free parameters are there to represent an MDP?
— Ans: O(5"2A)

* S is often large
— 9-puzzle, Tic-Tac-Toe: 9! =362,800, S*2=1.3*10"11

— PACMAN with 20 by 20 grid. S =0(27400), S*2 =0(27800)

« In practice, we often have to use an approximate model.

30

Idea 2: Model-free Reinforcement Learning

* Do we need the model? Can we learn the Q function
directly?

— How many free parameters are there to represent the Q-
function?

— Ans: SA << O(S"2A)

e Recall: Policy iterations

7T0—>EV7TO—>I7T1—>EV7T1 _>I.”_>I7_‘_>|<_>EV>|<

— Maybe we can do policy evaluation without estimating the model?

31

Sg @
Sg @
So @
Sg @
So @

Monte Carlo Policy Evaluation (Prediction)

e want to estimate V™(s)
= expected return starting from s and following

— estimate as average of observed returns in state s

 We can execute the policy
e first-visit MC

— average returns following the first visit to state s

S S

Sog O—o—0—o—0@ :10 0_20 .O @ :10 0_30 o+ | Gq(s) = +2
e —l— —— —— —— —— —— ——
—O0—0—0——0—0—0——0—0—0——0—0—1ll Gy(s) = +1
—o——0—0—0—0—0—0—0—0—0——0—0—1 Gs(s) = -5
— —— —— —— —— —— —— —0—
—0——0—0—0—0—0——0—0—0——0——1 Gy(s) = +4

Vr(s) = (2+1-5+4)/4=035

Monte Carlo Policy Optimization (Control)

* V7™ not enough for policy improvement
— need exact model of environment

estimate Q7(s,a)
7'(s) = arg max Q" (s, a)

e MC control
70 _>EQ7TO _>I7-(-1 —>EQ7T1 _>I..._>I7T* —>EQ*

— update after each episode

Two problems

— greedy policy won’t explore all actions eps-greedy!

— Requires many independent episodes for the estimated value
function to be accurate.

33

Improved Monte-Carlo Q-function estimate
using Bellman equations

e Recall:

Q"(s,a) = Y P(s'|s,a)[r(s,a,8') +~) m(a'|s)Q7(s',a")]

QW(Sa CL) — rﬁ(sa CL) =+ /VES’NP(SWS,GJ) [VW(S/)]
 We can use the empirical (Monte Carlo) estimate.

Q™ (s,a) = 77(8,a) + YE g p(sr)s.a) [V (5)]

*No need to estimate P(s’ | s,a) or r(s,a,s’) as intermediate steps.
*Require only O(SA) space, rather than O(S"2A)

34

Online averaging representation of MC

Sg O—o—0—o : : ® ° : .O ® 0+ ® 0_3 ® o+5l G4(s) = +2
So O——0——0——0—0—0—0—0—0— 0001
S O——@——0—0—0—0—0—0—0—0—0 o011 Gy(s) = +1
So O—o—0——0——0—0—0—0—0—0—0—o— 01 G3(s) = -5
So O——0——0—0—0—0—0—0—0—0—0—o— 01
Sg O——0——0—0—0——0—0—0—0—0—0—0—0—1i G4(s) = +4

Vr(s) = (2+1-5+4)/4=0.5

« Alternative, online averaging update

V(S,) « V(Sy) +oz[Gt _ V(st)}, where oo = 1/Ng,

35

DP + MC = Temporal Difference Learning

 Monte Carlo
V(S,) « V(S)) + [Gt _

v(s)),

Issue: G; can only be obtained after the entire episode!

 The 1dea of TD learning:

Ex|Gt] = Ex[R¢|S¢] + V™ (Si41)

We only need one step before we can plug-

« TD-Policy evaluation

V(Si) < V(S) +a|Repr + 7V (

in :fnd estimate the RHS!

Bootstrapping!

1
Si1) = V(SH)]

36

Bootstrap’s origin

* “The Surprising Adventures of Baron Miinchausen”
— Rudolf Erich Raspe, 1785

ot Pulling' PULL
/ o/ YOURSELF
UP BY

THE
BOOT
STRAPS!!!

 In statistics: Brad Efron’s resampling methods
* In computing: Booting...
 In RL: It simply means TD learning

37

TD policy optimization (TD-control)

 SARSA (On-Policy TD-control)
— Update the Q function by bootstrapping Bellman Equation

Q(S,A) « Q(S, A) + a|R+Q(S", A") — Q(S, A)]
— Choose the next A’ using Q, e.g., eps-greedy.

* (Q-Learning (Off-policy TD-control)
— Update the Q function by bootstrapping Bellman Optimality Eq.

Q(S, A) « Q(S, A) + a|R + ymax, Q(S', a) — Q(S, A)]

— Choose the next A’ using Q, e.g., eps-greedy, or any other policy.

Remarks:

» These are proven to converge asymptotically.
» Much more data-efficient in practice, than MC. .
* Regret analysis is still active area of research.

Advantage of TD over Monte Carlo

* Given a trajectory, a roll-out, of T steps.
— MC updates the Q function only once

— TD updates the Q function (and the policy) T times!

Remark: This is the same kind of improvement from Gradient Descent
to Stochastic Gradient Descent (SGD).

39

The problem of large state-space 1s still there

We need to represent and learn SA parameters in Q-
learning and SARSA.

* S is often large
— 9-puzzle, Tic-Tac-Toe: 9! =362,800, S*2=1.3*10"11
— PACMAN with 20 by 20 grid. S =0(27400), S*2 = 0O(27800)

* O(S) 1s not acceptable in some cases.

« Need to think of ways to “generalize”/share information
across states.

40

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

*
*

*
*

s s s s s s s + @
»

* *
* *
* *
* *
* *
* *
* *
* *
® °

*
*
*

(From Dan Klein and Pieter Abbeel)
41

Video of Demo Q-Learning Pacman — Tiny —
Watch All

42

Video of Demo Q-Learning Pacman — Tiny —
Silent Train

43

Video of Demo Q-Learning Pacman — Tricky —
Watch All

44

Why not use an evaluation function?
A Feature-Based Representations

* Solution: describe a state using a
vector of features (properties)

— Features are functions from states to real
numbers (often 0/1) that capture
important properties of the state

— Example features:

» Distance to closest ghost
» Distance to closest dot
Number of ghosts
1 / (dist to dot)?
» Is Pacman in a tunnel? (0/1)
° ... etc.
 Is it the exact state on this slide?

— Can also describe a g-state (s, a) with

features (e.g. action moves closer to
food)

45

[Linear Value Functions

Using a feature representation, we can write a q function (or
value function) for any state using a few weights:

— Vy(s) = witi(s) + woty(s) + ... + wyiy(s)

o QW(Saa) — Wlfl(saa) + W2f2(saa) . F ann(saa)

Advantage: our experience 1s summed up 1n a few powerful
numbers

Disadvantage: states may share features but actually be very
different in value! 46

Updating a linear value function

* Origial Q learning rule tries to reduce prediction error at s, a:
Q(s,a) « Q(s,a) + o - [R(s,a,8") +ymax, Q(s’,2°) - Q(s,a)]

« Instead, we update the weights to try to reduce the error at s, a:

w; <— w;+ o - [R(s,a,8’) + ymax, Q(s’,a’) - Q(s,a)] 0Qy(s,a)/0w;
= w;t a-[R(s,a,8’) +ymax, Q(s’,a’) - Q(s,a)] fi(s,a)

47

Updating a linear value function

* Origimal Q learning rule tries to reduce prediction error at s, a:
Q(s,a) « Q(s,a) + o - [R(s,a,8") +ymax, Q(s’,a°) - Q(s,a)]

« Instead, we update the weights to try to reduce the error at s, a:
Wi <= Wt o [R(s,a,87) T ymax, Q(s’,a7) - Q(s,a)] 0Qy(s,a)/0w;
= w;t a-[R(s,a,s7) +ymax, Q(s’,a") - Q(s,a)]£i(s,a)

* Qualitative justification:

— Pleasant surprise: increase weights on positive features, decrease on
negative ones

— Unpleasant surprise: decrease weights on positive features, increase
on negative ones

48

Q-Learning with function approximation

v/‘ >\v

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

_ Y,

* (Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + v max Q(s, a/)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Q’s

* Intuitive interpretation:
— Adjust weights of active features
— E.g., if something unexpectedly bad happens, blame the

features that were on: disprefer all states with that state’s
features

» Formal justification: online least squares (Read the textbook!)

49

PACMAN Q-Learning (Linear function approx.)

50

So far, in RL algorithms

Model-based approaches
— Estimate the MDP parameters.

— Then use policy-iterations, value iterations.

Monte Carlo methods:

— estimating the rewards by empirical averages

Temporal Difference methods:

— Combine Monte Carlo methods with Dynamic Programming

Linear function approximation in Q-learning
— Similar to SGD

— Learning heuristic function

*Question: What is the policy class I1 of interest in these methods?

51

Next lecture

 Wrap up RL lectures
— Policy gradients methods

« Start logic agents / knowledge representation

52

