## Artificial Intelligence

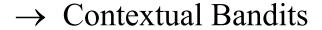
CS 165A

Nov 19, 2020

Instructor: Prof. Yu-Xiang Wang









→ Reinforcement Learning





## Recap: Multi-arm bandits: Problem setup

- No state. k-actions  $a \in \mathcal{A} = \{1, 2, ..., k\}$
- You decide which arm to pull in every iteration

$$A_1, A_2, ..., A_T$$

- You collect a cumulative payoff of  $\sum_{t=1}^{T} R_t$
- The goal of the agent is to maximize the expected payoff.
  - For future payoffs?
  - For the expected cumulative payoff?

# Recap: How do we measure the performance of an **online learning agent**?

- The notion of "Regret":
  - I wish I have done things differently.
  - Comparing to the best actions in the hindsight, how much worse did I do.

• For MAB, the regret is defined as follow

$$T \max_{a \in [k]} \mathbb{E}[R_t|a] - \sum_{t=1}^T \mathbb{E}_{a \sim \pi} \left[ \mathbb{E}[R_t|a] \right]$$

## Recap: MAB Algorithms

- Idea: Plug-in estimate of the reward value
- Greedy: Regret = O(T)
- Explore-first: Regret =  $O(T^{2/3})$
- epsilon-greedy: Regret =  $O(T^{2/3})$
- Upper Confidence Bound: Regret =  $O(T^{1/2})$ 
  - Optimal in the sense that no algorithm can do better

# Recap: Upper Confidence Bound algorithm (UCB)

• At time t, choose the action

$$A_t \leftarrow \operatorname*{argmax}_{a} \left[ Q_t(a) + c \sqrt{\frac{\log(1+t)}{N_t(a)}} \right]$$

- Idea: Be optimistic
  - Choose an option that maximizes the upper confidence bound.

$$\mathbb{E}[\text{Regret}] = O(\sqrt{Tk})$$

The proof is out of the scope of this course. For those who are interested, please look up. It's not difficult.

## Idea of the analysis of UCB

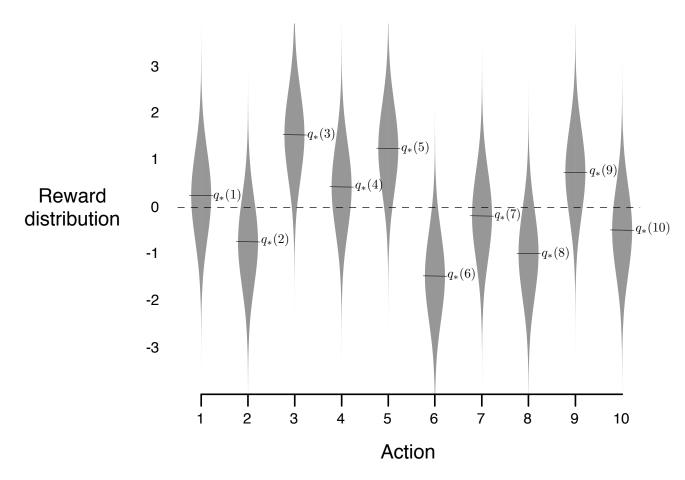
- Design principle: Optimistic in the face of uncertainty
- Idea why UCB improves over random exploration:
  - When you follow the UCB approach, the maximum regret that you can incur in each iteration is the confidence interval of the arm you pick. (why is that?)
  - Exploration will be restricted to those arms that are not "eliminated" yet.

In other words, UCB explore and exploit at the same time!

## Intuitively why is the $O(T^{1/2})$ regret optimal?

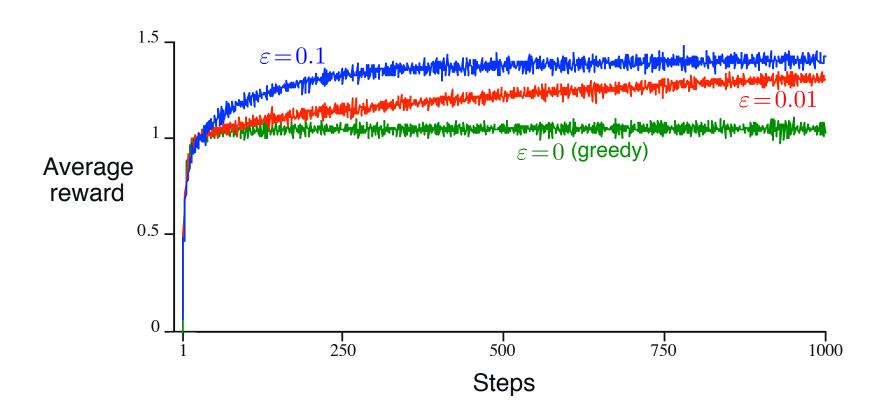
- Consider a 2-arm bandit problem and two parallel worlds:
  - Arm 1 has expected reward 0.5, Arm 2 has 0.5 + eps
  - Arm 1 has expected reward 0.5+eps, Arm 2 has 0.5
  - Reward distribution is Bernoulli distribution.
- Set eps =  $O(1/\sqrt{T})$ . Recall that you need to pull Arm 1 and Arm 2 both for  $\Omega(T)$  times in order to identify which one is better. Thus the regret needs to be  $\Omega(T \times \frac{1}{\sqrt{T}})$ .
- To say it differently: If any algorithm is able to achieve better regret, then it implies an estimator that estimates the p of a biased coin with fewer samples than required. Thus a contradiction.

### A 10-armed bandits benchmark

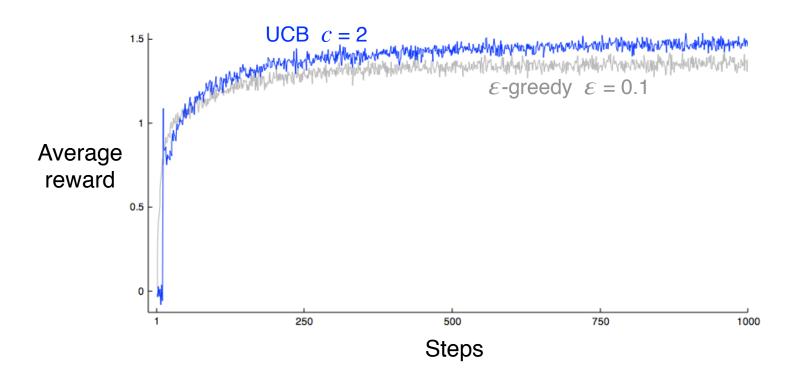


**Figure 2.1:** An example bandit problem from the 10-armed testbed. The true value  $q_*(a)$  of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean  $q_*(a)$  unit variance normal distribution, as suggested by these gray distributions.

## Comparing the different algorithms



## UCB vs. ε-Greedy



## Variants of Bandits problems

- Online Learning from Expert Advice
  - Adversarial chooses the outcome
  - You observe outcome of other arms as well
  - Compare against the best arm in the hindsight

Remark: In all these problems, there are algorithms with provably low-regret.

- Adversarial k-Armed Bandits
  - Same as above. But you observe only your arm.
- Nonstationary Bandits
  - Stochastic but the reward distribution changes over time.
  - Compare against the best arm for each time.
- Contextual bandits: you have a state in each time point.

## Do I have to try, if I have features?

Features: Features: [Burger, Fries, Onion Ring, Fried Chicken] [Noodles, Tom Yum Soup, Poor service] GRAND

## We know how to use with features, don't we?

- Classifier agent
  - Take features of a restaurant as input
  - Output a prediction of "will I like the food?"
- Train with supervised learning
  - Using the my previous visits to the restaurants
  - Using Yelp reviews

Why can't we just use that?

How to explore?

## Contextual Bandits: Problem Setup

- For each round t = 1, 2, 3, ..., T:
  - A context  $x_t \sim unknown distribution i.i.d.$
  - Agent picks an action  $a_t = 1,2,3,...,K$
  - Reward  $r_t \sim D(.|x_t, a_t)$
- Agent's goals:

A finite family of policies

- Learn the best policy out of many policies  $\square$
- Minimize the cumulative regret

$$T \cdot \max_{\pi \in \Pi} \mathbb{E}_{\pi}[r_t(x_t, a_t)] - \mathbb{E}_{\text{Agent's policy}} \left[ \sum_{t=1}^{T} r_t(x_t, a_t) \right]$$

Reward from the best policy

## **Applications of Contextual Bandits**

Personalized news?



#### Health advice?



#### Repeatedly:

- 1. Observe features of user+articles
- 2. Choose a news article.
- 3. Observe click-or-not

**Goal: Maximize fraction of clicks** 

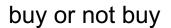
#### Repeatedly:

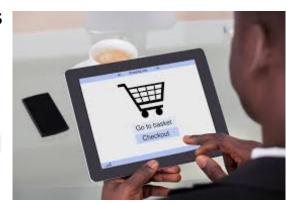
- 1. Observe features of user+advice
- 2. Choose an advice.
- 3. Observe steps walked

**Goal: Healthy behaviors (e.g. step count)** 



Recommendations





## Exploration vs. Exploitation in Contextual Bandits.

- Challenging because:
  - Infinite state space, never see the same context again.
  - Exponentially large policy space
- Ideas:
  - ExploreFirst,  $\varepsilon$ -Greedy  $O(T^{2/3})$
  - UCB? But how do we construct Confidence Interval for an exponentially large set of policies?
- Optimal regret:

$$O(\sqrt{KT\log|\Pi|})$$

## Remainder of the lecture today

- Reinforcement learning for MDPs
  - Model-based vs model-free algorithms
  - Online policy iterations
  - Temporal difference learning

### • Readings:

- AIMA Ch. 21.1-21.3 (Ch 22.1- 22.3 in 4th Edition)
- Sutton and Barto: Ch 4-6
- Maybe: Sutton and Barto: Ch 6, Ch 13

# Let us tackle different aspects of the RL problem one at a time

- Markov Decision Processes:
  - Dynamics are given no need to learn
- Bandits: Explore-Exploit in simple settings
  - RL without dynamics
- Full Reinforcement Learning
  - Learning MDPs

## Recap: Tabular MDP

• Discrete State, Discrete Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
  - When the state is observable:  $\pi:\mathcal{S} o\mathcal{A}$
  - Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

Learn the best policy that maximizes the expected reward

– Finite horizon (episodic) RL: 
$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{-} R_t]$$
 T: horizon

- Infinite horizon RL: 
$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} R_t]$$
 
$$\gamma: \text{ discount factor}$$

## Recap: Policy Iterations and Value Iterations

- What are these algorithms for?
  - Algorithms of computing the V\* and Q\* functions from MDP parameters
- Policy Iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \ldots \to^I \pi^* \to^E V^*$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k(s')]$$

- How do we make sense of them?
  - Recursively applying the Bellman equations until convergence.

\*These methods are called "Dynamic Programming" approaches in Chap 4 of Sutton and Barto.

## Revisit the dynamic programming approach

Policy Evaluation

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

Policy improvement

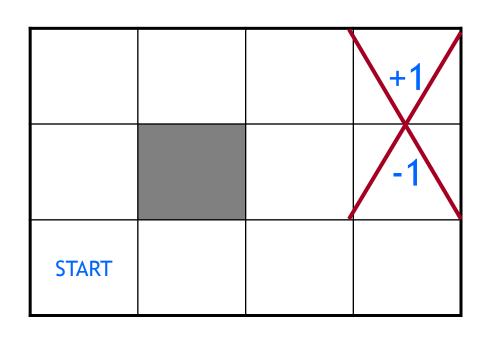
$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k^{\pi}(s')]$$

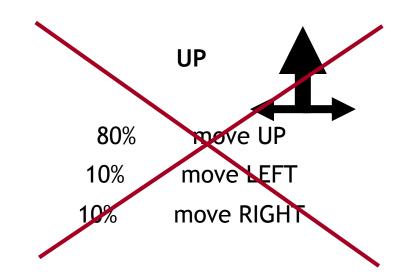
Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k(s')]$$

## Example: Robot in a room.



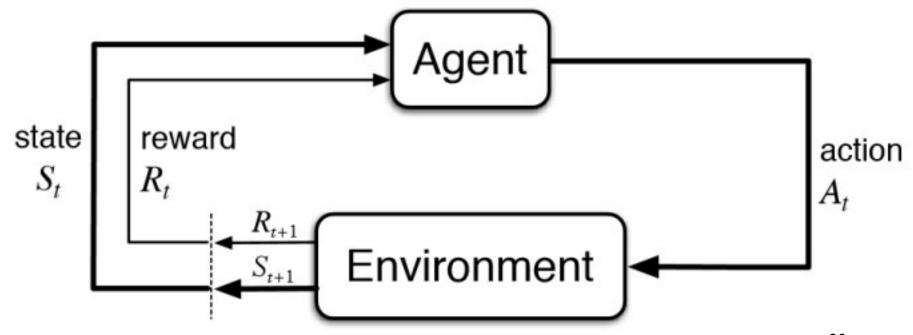
Action 1, Action 2, Action 3, Action 4 actions: UP, DOWN, LEFT, RIGHT



- Teward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step
- what's the strategy to achieve max reward?

## Instead, reinforcement learning agents have "online" access to an environment

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents can "act" and "experiment", rather than only doing offline planning.



## Idea 1: Model-based Reinforcement Learning

- Model-based idea
  - Let's approximate the model based on experiences
  - Then solve for the values as if the learned model were correct
- Step 1: Get data by running the agent to explore
  - Many data points of the form:  $\{(s_1, a_1, s_2, r_1), ..., (s_N, a_N, s_{N+1}, r_N)\}$
- Step 2: Estimate the model parameters
  - $\hat{P}(s'|s,a)$  --- again this is a CPT we need to observe the transition many times for each s,a
  - $\hat{r}(s', a, s)$  --- this is an estimate of the empirical rewards.

Then we can plug in these estimates and then use dynamic programming for policy evaluation / improvements.

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

$$\pi' \leftarrow \arg\max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}^{\pi}(s')]$$

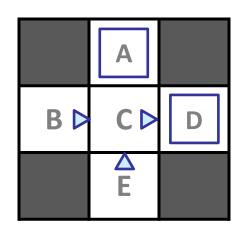
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} \hat{P}(s'|s,a) [\hat{r}(s,a,s') + \gamma V_{k}(s')]$$

<sup>\*</sup> Note the "hat". Usually it indicates empirical estimates.

<sup>\*</sup> These iterations will produce  $\widehat{V}^*$  and  $\widehat{Q}^*$  functions, and then  $\widehat{\pi}^*$ 

## Example: Model-Based RL (2 min exercise)

#### Input Policy $\pi$



Assume:  $\gamma = 1$ 

#### Observed Episodes (Training)

#### Episode 1

B, east, C, -1

C, east, D, -1

D, exit, x, +10

#### Episode 3

E, north, C, -1

C, east, D, -1

D, exit, x, +10

### Episode 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

#### Episode 4

E, north, C, -1

C, east, A, -1

A, exit, x, -10

#### **Learned Model**

$$\hat{P}(s'|s,a)$$

T(B, east, C) =

T(C, east, D) =

T(C, east, A) =

...

$$\hat{r}(s, a, s')$$

R(B, east, C) =

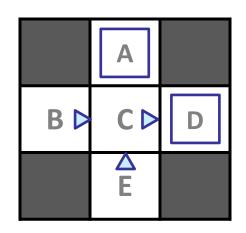
R(C, east, D) =

R(D, exit, x) =

•••

## Example: Model-Based RL (2 min exercise)

#### Input Policy $\pi$



Assume:  $\gamma = 1$ 

#### Observed Episodes (Training)

#### Episode 1

B, east, C, -1

C, east, D, -1

D, exit, x, +10

#### Episode 3

E, north, C, -1

C, east, D, -1

D, exit, x, +10

### Episode 2

B, east, C, -1

C, east, D, -1

D, exit, x, +10

#### Episode 4

E, north, C, -1

C, east, A, -1

A, exit, x, -10

#### **Learned Model**

$$\hat{P}(s'|s,a)$$

T(B, east, C) = 1.00

T(C, east, D) = 0.75

T(C, east, A) = 0.25

••

$$\hat{r}(s, a, s')$$

R(B, east, C) = -1

R(C, east, D) = -1

R(D, exit, x) = +10

...

# This is simply the "Exploration-First" strategy! But there are complications.

- In bandits problems
  - Uniformly sample the actions for N rounds.
  - Guarantees that each choice is explored O(N/k) times.

#### For MDPs

- Often we need to take a carefully chosen sequence of actions to reach a state
- The chance of randomly running into a state can be exponentially small.
- Question: What is an example of this?

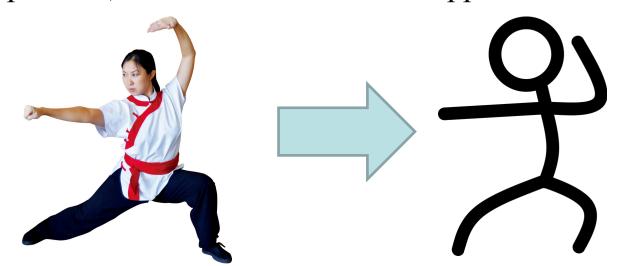
<sup>\*</sup>Need to somehow update the "exploration policy" on the fly!

### More caveats

- The fitted model is just an approximation of the environment.
- How does the error in the fitted MDP translate into the error in the estimated value functions V\* and Q\*?
- How does the error in the estimated Q\* function affect the suboptimality of the policy that maximizes  $\hat{Q}^*$ ?
- Answered by "Simulation Lemma" (Kearns and Singh, 2002)
  - Resurgence of research on this more recently: Yin and W. (2020),
     Yin, Bai and W. (2020)

### Even more caveats

- How many free parameters are there to represent an MDP?
  - Ans:  $O(S^2A)$
- S is often large
  - 9-puzzle, Tic-Tac-Toe: 9! = 362,800,  $S^2 = 1.3*10^11$
  - PACMAN with 20 by 20 grid.  $S = O(2^400)$ ,  $S^2 = O(2^800)$
- In practice, we often have to use an approximate model.



## Idea 2: Model-free Reinforcement Learning

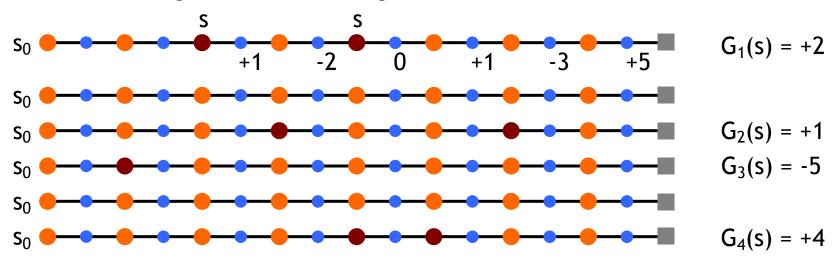
- Do we need the model? Can we learn the Q function directly?
  - How many free parameters are there to represent the Q-function?
  - Ans:  $SA \ll O(S^2A)$
- Recall: Policy iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

– Maybe we can do policy evaluation without estimating the model?

## Monte Carlo Policy Evaluation (Prediction)

- want to estimate  $V^{\pi}(s)$ 
  - = expected return starting from s and following  $\pi$
  - estimate as average of observed returns in state s
- We can execute the policy  $\pi$
- first-visit MC
  - average returns following the first visit to state s

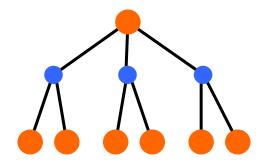


$$V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.35$$

## Monte Carlo Policy Optimization (Control)

- $V^{\pi}$  not enough for policy improvement
  - need exact model of environment
- estimate  $Q^{\pi}(s,a)$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$



MC control

$$\pi_0 \to^E Q^{\pi_0} \to^I \pi_1 \to^E Q^{\pi_1} \to^I \dots \to^I \pi^* \to^E Q^*$$

- update after each episode
- Two problems
  - greedy policy won't explore all actions eps-greedy!
  - Requires many independent episodes for the estimated value function to be accurate.

# Improved Monte-Carlo Q-function estimate using Bellman equations

• Recall:

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s', a')]$$

$$Q^{\pi}(s, a) = r^{\pi}(s, a) + \gamma \mathbb{E}_{s' \sim P(s'|s, a)}[V^{\pi}(s')]$$

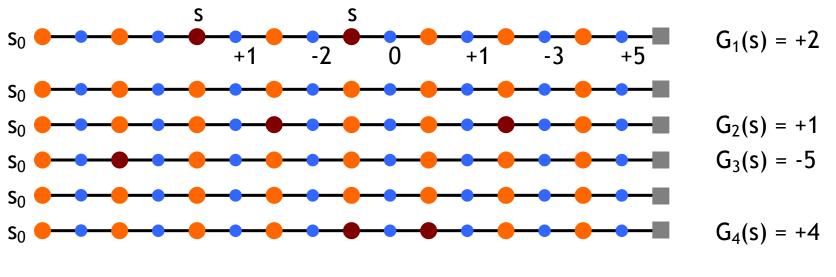
• We can use the empirical (Monte Carlo) estimate.

$$\widehat{Q}^{\pi}(s,a) = \widehat{r}^{\pi}(s,a) + \gamma \widehat{\mathbb{E}}_{s' \sim P(s'|s,a)} [\widehat{V}^{\pi}(s')]$$

\*No need to estimate P(s' | s,a) or r(s,a,s') as intermediate steps.

\*Require only O(SA) space, rather than O(S^2A)

## Online averaging representation of MC



$$V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.5$$

• Alternative, online averaging update

$$V(S_t) \leftarrow V(S_t) + \alpha \left[ G_t - V(S_t) \right], \text{ where } \alpha = 1/N_{S_t}$$

## DP + MC = Temporal Difference Learning

Monte Carlo

$$V(S_t) \leftarrow V(S_t) + \alpha \left| G_t - V(S_t) \right|,$$

Issue: G<sub>t</sub> can only be obtained after the entire episode!

The idea of TD learning:

$$\mathbb{E}_{\pi}[G_t] = \mathbb{E}_{\pi}[R_t|S_t] + \gamma V^{\pi}(S_{t+1})$$

We only need one step before we can plug-in and estimate the RHS!

TD-Policy evaluation

ED-Policy evaluation Bootstrapping! 
$$V(S_t) \leftarrow V(S_t) + \alpha \left[ R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

### Bootstrap's origin

- "The Surprising Adventures of Baron Münchausen"
  - Rudolf Erich Raspe, 1785

Start Pulling! PULL YOURSELF UP BY THE BOOT STRAPS!!!



- In statistics: Brad Efron's resampling methods
- In computing: Booting...
- In RL: It simply means TD learning

### TD policy optimization (TD-control)

- SARSA (On-Policy TD-control)
  - Update the Q function by bootstrapping Bellman Equation

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[ R + \gamma Q(S',A') - Q(S,A) \right]$$

- Choose the next A' using Q, e.g., eps-greedy.
- Q-Learning (Off-policy TD-control)
  - Update the Q function by bootstrapping Bellman Optimality Eq.

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[ R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$$

Choose the next A' using Q, e.g., eps-greedy, or any other policy.

#### Remarks:

- These are proven to converge asymptotically.
- Much more data-efficient in practice, than MC.
- Regret analysis is still active area of research.

### Advantage of TD over Monte Carlo

- Given a trajectory, a roll-out, of T steps.
  - MC updates the Q function only once
  - TD updates the Q function (and the policy) T times!

**Remark:** This is the same kind of improvement from Gradient Descent to Stochastic Gradient Descent (SGD).

### The problem of large state-space is still there

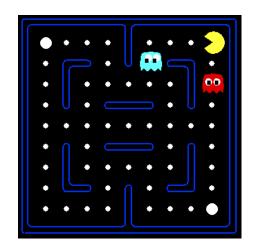
- We need to represent and learn SA parameters in Q-learning and SARSA.
- S is often large
  - 9-puzzle, Tic-Tac-Toe: 9! = 362,800,  $S^2 = 1.3*10^11$
  - PACMAN with 20 by 20 grid.  $S = O(2^400)$ ,  $S^2 = O(2^800)$
- O(S) is not acceptable in some cases.
- Need to think of ways to "generalize"/share information across states.

### Example: Pacman

Let's say we discover through experience that this state is bad: In naïve q-learning, we know nothing about this state:

Or even this one!







# Video of Demo Q-Learning Pacman – Tiny – Watch All



# Video of Demo Q-Learning Pacman – Tiny – Silent Train

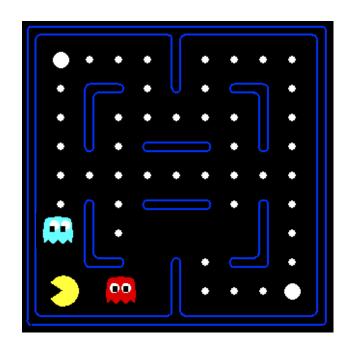


# Video of Demo Q-Learning Pacman – Tricky – Watch All



# Why not use an evaluation function? A Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
  - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
  - Example features:
    - Distance to closest ghost
    - Distance to closest dot
    - Number of ghosts
    - $1 / (dist to dot)^2$
    - Is Pacman in a tunnel? (0/1)
    - ..... etc.
    - Is it the exact state on this slide?
  - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)



### Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

- 
$$V_{\mathbf{w}}(s) = w_1 f_1(s) + w_2 f_2(s) + ... + w_n f_n(s)$$

$$- Q_{\mathbf{w}}(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

### Updating a linear value function

• Original Q learning rule tries to reduce prediction error at s, a:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

• Instead, we update the weights to try to reduce the error at s, a:

$$w_{i} \leftarrow w_{i} + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] \partial Q_{w}(s,a) / \partial w_{i}$$

$$= w_{i} + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] f_{i}(s,a)$$

### Updating a linear value function

• Original Q learning rule tries to reduce prediction error at s, a:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

• Instead, we update the weights to try to reduce the error at s, a:

$$w_{i} \leftarrow w_{i} + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] \partial Q_{w}(s,a) / \partial w_{i}$$

$$= w_{i} + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)] f_{i}(s,a)$$

- Qualitative justification:
  - Pleasant surprise: increase weights on positive features, decrease on negative ones
  - Unpleasant surprise: decrease weights on positive features, increase on negative ones

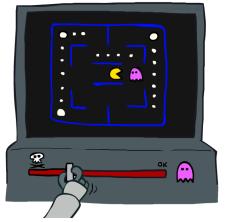
### Q-Learning with function approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions:

transition 
$$= (s, a, r, s')$$
  
difference  $= \left[ r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a)$   
 $Q(s, a) \leftarrow Q(s, a) + \alpha$  [difference] Exact Q's  
 $w_i \leftarrow w_i + \alpha$  [difference]  $f_i(s, a)$  Approximate Q's

- Intuitive interpretation:
  - Adjust weights of active features
  - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares (Read the textbook!)



### PACMAN Q-Learning (Linear function approx.)



### So far, in RL algorithms

- Model-based approaches
  - Estimate the MDP parameters.
  - Then use policy-iterations, value iterations.
- Monte Carlo methods:
  - estimating the rewards by empirical averages
- Temporal Difference methods:
  - Combine Monte Carlo methods with Dynamic Programming
- Linear function approximation in Q-learning
  - Similar to SGD
  - Learning heuristic function

### Next lecture

- Wrap up RL lectures
  - Policy gradients methods
- Start logic agents / knowledge representation