Artificial Intelligence

CS 165A

Nov 17, 2020

Instructor: Prof. Yu-Xiang Wang

→ Bandits and exploration

A few logistic notes

- Finishing grading
 - Individual midterm results posted on Gradescope
- HW3 due Tuesday next week
 - Discussion class this Wednesday will help you with MDPs
- HW3 solutions won't be discussed on Wednesday discussion class.
 - So please try submitting on time if possible
- HW4 will be released on Thursday

Recap: Tabular MDP

Discrete State, Discrete Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
 - $\pi:\mathcal{S} o\mathcal{A}$ – When the state is observable:
 - Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

- Learn the best policy that maximizes the expected reward
 - Finite horizon (episodic) RL: $\pi^* = \arg \max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} R_t]$
 - $\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1} \gamma^{t-1} R_t]$ γ : discount factor – Infinite horizon RL:

Question from Piazza: Is this an infinite horizon or finite-horizon MDP?

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

State-transitions with action **UP**:

80%	move up
10%	move left
10%	move right

*If you bump into a wall, you stay where you are.

Recap: Reward function and Value functions

- Immediate reward function r(s,a,s')
 - expected immediate reward

$$r(s, a, s') = \mathbb{E}[R_1 | S_1 = s, A_1 = a, S_2 = s']$$

 $r^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1 | S_1 = s]$

- state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s]$$

- state-action value function: $Q^{\pi}(s,a)$
 - expected long-term return when starting in s, performing a, and following π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s, A_1 = a]$$

Recap: Bellman equations – the fundamental equations of MDP and RL

- An alternative, recursive and more useful way of defining the V-function and Q function
 - V^{π} function Bellman equation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')]$$

- Q^{π} function Bellman equation

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s', a')]$$

V* function Bellman (optimality) equation

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

Q* function Bellman (optimality) equation

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \max_{a'} Q^*(s', a')]$$

Recap: Policy Iterations and Value Iterations

- What are these algorithms for?
 - Algorithms of computing the V* and Q* functions from MDP parameters
- Policy Iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k(s')]$$

- How do we make sense of them?
 - Recursively applying the Bellman equations until convergence.

Recap: Matrix-form of Bellman Equations and Policy Evaluation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V^{\pi}(s')]$$

$$V^{\pi} = r^{\pi} + \gamma P_{\pi}^{T} V^{\pi}$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

$$V_{k+1}^{\pi} \leftarrow r^{\pi} + \gamma P_{\pi}^{T} V_{k}^{\pi}$$

A reasonable question for the final: Matrix-form Bellman equation with Q^{π}

Matrix-form of Bellman Optimality Equation

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^*(s')]$$

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k(s')]$$

Today's topic

• Exploration in the (multi-armed) Bandits problem

- Bandits algorithms
 - Explore-first
 - epsilon-greedy
 - Upper confidence bound

Solving MDP with VI or PI is offline planning

- The agent is given how the environment works
- The agent works out the optimal policy in its mind.
- The agent never really starts to play at all.
- No learning is happening.

State-space diagram representation of an MDP: An example with 3 states and 2 actions.

What happens if you do not know the rewards / transition probabilities?

Then you have to learn by interacting with the unknown environment.

You cannot use only offline planning!

Exploration: Try unknown actions to see what happens.

Exploitation: Maximize utility using what we know.

Let us tackle different aspects of the RL problem one at a time

- Markov Decision Processes:
 - Dynamics are given no need to learn
- Bandits: Explore-Exploit in simple settings
 - RL without dynamics
- Full Reinforcement Learning
 - Learning MDPs

Slot machines and Multi-arm bandits

Multi-arm bandits: Problem setup

- No state. k-actions $a \in \mathcal{A} = \{1, 2, ..., k\}$
- You decide which arm to pull in every iteration

$$A_1, A_2, ..., A_T$$

- You collect a cumulative payoff of $\sum_{t=1}^{\infty} R_t$
- The goal of the agent is to maximize the expected payoff.
 - For future payoffs?
 - For the expected cumulative payoff?

Key differences from MDPs

• Simplified:

No state-transitions

• But:

- We are not given the expected reward r(s, a, s')
- We need to learn the optimal policy by trials-and-errors.

A 10-armed bandits example

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$ unit variance normal distribution, as suggested by these gray distributions.

How do we measure the performance of an **online learning agent**?

- The notion of "Regret":
 - I wish I have done things differently.
 - Comparing to the best actions in the hindsight, how much worse did I do.

• For MAB, the regret is defined as follow

$$T \max_{a \in [k]} \mathbb{E}[R_t|a] - \sum_{t=1}^{T} \mathbb{E}_{a \sim \pi} \left[\mathbb{E}[R_t|a] \right]$$

Greedy strategy

Expected reward

$$q_*(a) \doteq \mathbb{E}[R_t \mid A_t = a]$$
.

• Estimate the expected reward

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t}$$
$$= \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i=a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i=a}}$$

• Choose $A_t \doteq \operatorname*{arg\,max}_a Q_t(a),$

Exploration vs. Exploitation

(Illustration from Dan Klein and Pieter Abbeel's course in UC Berkeley)

Exploration first strategy

- Let's spend the first N step exploring.
 - Play each action for N/k times.

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{1}_{A_i = a}}{\sum_{i=1}^{t-1} \mathbb{1}_{A_i = a}}$$

• For t = N + 1, N + 2, ..., T:

$$A_t \doteq \operatorname*{arg\,max}_a Q_t(a),$$

All (you need to know) about Statistics in one slide, two theorems.

- Statistics is about using **samples** from a distribution to infer the properties of the distribution itself (**population**)
 - $-X_1, X_2, X_3, ..., X_n \sim P$

- Law of large number
 - Average ---> Mean

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i \to \mathbb{E}[X_1]$$

- Central limit theorem

- The rate is
$$\operatorname{sqrt}(1/n)$$
 $\sqrt{n} \cdot \left(\frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X_1]\right) \to N(0, \operatorname{Var}(X_1))$

Random variables are difficult to work with, but with statistics, a lot of the properties are more-or-less deterministic, thanks to LLN.

• Statistics is about using **samples** from a distribution to infer the properties of the distribution itself (**population**)

$$-X_1, X_2, X_3, ..., X_n \sim P$$

- (Simplified version of the) Hoeffding's Inequality:
 - with high probability,

$$\left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mathbb{E}[X_1] \right| = O(1/\sqrt{n})$$

*If you try each arm multiple times, then you have a good idea what the expected reward is.

How does Exploration-First work?

- Assume: 0 < reward < 1
- After N rounds, with high probability $Q_t(a) \approx q_*(a) \pm C \sqrt{\frac{k}{N}}$

Hoeffding's inequality!

- Do this for all k arms.
- (w.h.p.) The regret is smaller than

$$N + C(T - N)\sqrt{k/N}$$

How does Exploration-First work?

• (High probability) Regret bound:

$$N + C(T - N)\sqrt{k/N}$$

• Choose N to minimize the regret

$$N = O(T^{2/3}k^{1/3})$$

• Final regret bound:

$$O(T^{2/3}k^{1/3})$$

ε-Greedy strategy: one way to balance exploration and exploitation

• You choose with probability 1- ε

$$A_t \doteq \operatorname*{arg\,max}_a Q_t(a),$$

- With probability ε, choose an action uniformly at random!
 - Including the argmax.

Carefully choose ε parameter.

Let's analyze ε-Greedy!

- By Hoeffding's inequality, at every t
 - w.h.p. each arm is chosen at least $0.5 \varepsilon t / k$ times.
 - w.h.p.,

$$Q_t(a) \approx q_*(a) \pm C\sqrt{k/\epsilon t}$$

• Regret bound is T

$$\epsilon T + \sum_{t=1}^{T} C \sqrt{\frac{k}{\epsilon t}}$$

Convergent and divergent series

$$1 + 1/2^2 + 1/3^2 + \dots + 1/T^2 = ?$$

$$1 + 1/2 + 1/3 + ... + 1/T = ?$$

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{T}} = ?$$

Let's analyze ε-Greedy!

Regret bound

$$\epsilon T + \sum_{t=1}^{T} C \sqrt{\frac{k}{\epsilon t}} \le \epsilon T + O\left(\sqrt{\frac{Tk}{\epsilon}}\right)$$

- Choose the optimal ε to minimize the bound?
- Work it out yourself that you get T^{2/3} just like in Explore-First.

Upper Confidence Bound algorithm (UCB)

• At time t, choose the action

$$A_t \leftarrow \operatorname*{argmax}_{a} \left[Q_t(a) + c \sqrt{\frac{\log(1+t)}{N_t(a)}} \right]$$

- Idea: Be optimistic
 - Choose an option that maximizes the upper confidence bound.

$$\mathbb{E}[\text{Regret}] = O(\sqrt{Tk})$$

 The proof is out of the scope of this course. For those who are interested, please look up. It's not difficult.

Example: Two-Armed Bandits

• k=2. Expected reward r(a = 1) = 0.8, r(a = 2) = 0.5

- Question: what is the Q-function for this problem?
 - If episodical with horizon T=1.
 - − If discounted with $0 \le \gamma < 1$

• What is the optimal policy?

Example: UCB on a Two Armed Bandit

- A run of UCB algorithm with c = 2.
 - 1. Initialize $Q_1(a) = \infty, \forall a \in \{1,2\}. \text{ UCB: } \overline{Q}_1(a) = \infty.$
 - 2. Pick action $A_1 = 1$. (break ties arbitrarily), receive a reward of 0.
 - a. Update $N_2(a) \leftarrow N_1(a) + 1(A_1 = a)$
 - b. Update $Q_2(1) = 0/1 = 0$, $Q_2(2) = \infty$

c. Update
$$\bar{Q}_2(1) \leftarrow Q_2(1) + 2\sqrt{\frac{\log 2}{1}} \approx 0 + 1.67, \bar{Q}_2(2) = \infty$$

- 3. Pick action a = 2 (because of what?), receive a reward of 1.
 - a. Update $N_3(2) \leftarrow N_2(2) + 1$, $Q_3(2) \leftarrow 1$
 - b. Update $\bar{Q}_3(2) \leftarrow Q_3(2) + 2\sqrt{\frac{\log 2}{1}} \approx 1 + 1.67$
 - c. Keep $N_3(1)$, $Q_3(1)$, $\bar{Q}_3(1)$ unchanged.
- 4. Which action to pick at next?
- 5. ...

A 10-armed bandits benchmark

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$ unit variance normal distribution, as suggested by these gray distributions.

Comparing the different algorithms

UCB vs. ε-Greedy

Live Demo of an Agent Solving Multi-Armed Bandits

Credit Mark Reid: http://mark.reid.name/code/bandits/

Variants of Bandits problems

- Online Learning from Expert Advice
 - Adversarial chooses the outcome
 - You observe outcome of other arms as well
 - Compare against the best arm in the hindsight

Remark: In all these problems, there are algorithms with provably low-regret.

- Adversarial k-Armed Bandits
 - Same as above. But you observe only your arm.
- Nonstationary Bandits
 - Stochastic but the reward distribution changes over time.
 - Compare against the best arm for each time.
- Contextual bandits: you have a state in each time point.

Do I have to try, if I have features?

Features: Features: [Burger, Fries, Onion Ring, Fried Chicken] [Noodles, Tom Yum Soup, Poor service] GRAND

We know how to use with features, don't we?

- Classifier agent
 - Take features of a restaurant as input
 - Output a prediction of "will I like the food?"
- Train with supervised learning
 - Using the my previous visits to the restaurants
 - Using Yelp reviews

Why can't we just use that?

How to explore?

Contextual Bandits: Problem Setup

- For each round t = 1, 2, 3, ..., T:
 - A context $x_t \sim unknown distribution i.i.d.$
 - Agent picks an action $a_t = 1,2,3,...,K$
 - Reward $r_t \sim D(.|x_t, a_t)$
- Agent's goals:

A finite family of policies

- Learn the best policy out of many policies \square
- Minimize the cumulative regret

$$T \cdot \max_{\pi \in \Pi} \mathbb{E}_{\pi}[r_t(x_t, a_t)] - \mathbb{E}_{\text{Agent's policy}} \left[\sum_{t=1}^{T} r_t(x_t, a_t) \right]$$

Reward from the best policy

Reward collected by the Agent

Applications of Contextual Bandits

Personalized news?

Health advice?

Repeatedly:

- 1. Observe features of user+articles
- 2. Choose a news article.
- 3. Observe click-or-not

Goal: Maximize fraction of clicks

Repeatedly:

- 1. Observe features of user+advice
- 2. Choose an advice.
- 3. Observe steps walked

Goal: Healthy behaviors (e.g. step count)

Recommendations

Exploration vs. Exploitation in Contextual Bandits.

- Challenging because:
 - Infinite state space, never see the same context again.
 - Exponentially large policy space
- Ideas:
 - ExploreFirst, ε -Greedy $O(T^{2/3})$
 - UCB? But how do we construct Confidence Interval for an exponentially large set of policies?
- Optimal regret:

$$O(\sqrt{KT\log|\Pi|})$$

Next lecture

- Reinforcement learning for MDPs
 - Model-based vs model-free algorithms
 - Online policy iterations
 - Temporal difference learning
- Readings:
 - AIMA Ch. 21.1-21.3 (Ch 22.1- 22.3 in 4th Edition)
 - Sutton and Barto: Ch 4-6
 - Maybe: Sutton and Barto: Ch 6, Ch 13