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CS 165A
Dec 10, 2020

Instructor: Prof. Yu-Xiang Wang

— Final Review




Logistic notes

 ESCI Survey: Please go and submit your feedback!

Deadline 1s approaching. This is my final reminder.

 Final: Next Tuesday 9:00 am - Wednesday 11:59 pm.

277 hours 1n total; for an exam that will take roughly 3 hours max.

Submit your take home final on gradescope.

Open book. NO collaboration allowed. We will check for
similarities. Your questions might be subtly different from your
peers.

Covers topics up to First Order Logic (but before FOL inference)

About 80% will be on topics after the midterm, 20% on earlier
topics. (Note that you might be asked to apply ML or PGM on
topics in the second half of the lecture!)

There



Tips for studying for the final

 Focus on the Lectures and HWs

» For any concepts that you are confused, check the textbook
(Again, books are random access, you don’t have to read
chapters from the beginning to the end)

— Stick to AIMA book for Search and Logic
— Stick to the Sutton and Barto book for RL.



We’ve come a long way...

Week Topic
1 Course Overview & Intelligent Agents
) Machine Learning
Machine Learning Machine Learning
) Machine Learning
Probabilistic Graphical Models o _
3 Probabilistic Graphical Models } Probabilistic Reasoning

Search: Problem solving with search

4 Search: Search algorithms Search

Search: Minimax search and game playing
Midterm Review

. Midterm (take-home)
6 RL: Intro / Markov Decision Processes -
RL: Solving MDPs
7 RL: Bandits and Exploration — Reinforcement Learning
RL: Reinforcement Learning Algorithms
2 RL: Reinforcement Learning Algorithms -
Logic: Propositional Logic :
9 Thanksgiving break [ Logic
Logic: First Order Logic —
10 Responsible Al } Responsible A:J

Final Review
11 Final Exam (take-home)



Lecture 1: AI Overview

» Al for problem solving

« Rational agents

« Examples of Al in the real world

* Modelling-Inference-Learning Paradigm



Modeling-Inference-Learning

4 )
Modeling
- J
4
Inference Learning




Structure of the course

Probabilistic Graphical Models / Deep Neural Networks

Classification / Regression Search Markov Decision Processes Logic, knowledge base
Bandits game playing Reinforcement Learning Probabilistic inference
Reflex Agents Planning Agents Reasoning agents
| >
Low-level intelligence High-level intelligence

Machine Learning

Potential question in the final: what type of agents are suitable to a given probl7em ?



Our view of Al

* So this course 1s about designing rational agents

— Constructing f

— For a given class of environments and tasks, we seek the agent (or
class of agents) with the “best” performance

— Note: Computational limitations make complete rationality
unachievable in most cases

» In practice, we will focus on problem-solving techniques
(ways of constructing f'), not agents per se




Different Ways of Looking at the Al

« Agent types / level of intelligence
— Low-level: Reflex agents
— Mid-level: Goal-based / Utility-based agents: planning agents
— High-level: Knowledge-based: Logic agents

e Optimization view

— Everything is an optimization problem

» Theoretical aspects
— Time/space complexity
— Algorithms and data structures

— Statistical properties: # of free parameters / how easily can we
learn them with data



Optimization perspective of Al

+ Arationalagent ~ max Utility(aq, ..., ap)
ai,...,arT

— Modelling tools: Features / Hypothesis, PGM, State-space
abstraction, agent categorization

— Constraints: Computation, Data, Storage

e Discrete optimization min Distance (p )
pEPaths

— Algorithmic tool: Search / Dynamic programming

 Continuous optimization eﬂlil”clz TrainingError(H )
cR

— Algorithmic tool: Gradient descent / Stochastic gradient descent
10



Different objectives to optimize in Al (first
half of the course)

« PGM:
— MLE: Maximize the log-likelithood function

— Classifier / decision: max the posterior distribution

* Search and planning:

— Find valid solutions with smallest path cost.

— Minimax search / games: Maximize your worst-case pay-off
(assuming your opponent plays optimally)

* Machine Learning Qng}g}l o Z 60, (x5,y:)) + Ar(0)

— (Regularized) Empirical Risk Minimization (ERM):

— But the goal is to minimize the (unseen) expected loss.

11



Different objectives to optimize in Al
(second half of the course)

» Markov Decision Processes / RLL

— Maximize the cumulative expected reward of “decision policy”
— Balance Exploration and Exploitation.

* Logic/ Knowledge based agent:

— Solve a feasibility problem, find a “proof”.
— Determining “Valid, Satisfiable, Unsatisfiable”

12



A lot of these problems are computationally /
statistically hard, but so what?

* Get help from human:
— Use a model
— Use abstractions at the right level

— Use features
— Use heuristic functions

e Get help from mathematics and computer science theory:
— Solve an approx. solution
— Approximate inference of a PGM
— More iterations with less accuracy per SGD
— A* Search
— TD learning and Bootstrapping



Lecture 2-4: Machine Learning

Machine learning

— Types of machine learning models

— Focus on Supervised Learning ---- classifier agents.

What 1s a feature vector?

— Feature engineering, feature extraction

» Hypothesis class and free parameters
— How many are there? How to evaluate a classifier?
— Error? On training data or on new data?

— Overfitting, underfitting?

How to learn (optimize)?

— Surrogate losses, Gradient Descent, SGD

14



Example of a feature vector of dimension 4

Contains hyperlinks

Proportion of misspelled words

1 0

0.0375 80

|

Whether the contact list

Email ADMIN January 1, 2020 at 10:35
(cs.ucsb.edu) APPLICATION -Storage Full Notes- Last -... Details N
To: Yu-X

Reply-To:

Dear yuxiangw@cs.ucsb.edu,

Your email has used up the storage limit of 99.9 gigabytes as defined by your
Administrator. You will be blocked from sending and receiving messages if not re-
validated within 48hrs.

Kindly click on your email below for quick re-validation and additional storage will
be updated automatically

yuxiangw@cs.ucsb.edu

Regards,
E-mail Support 2020.

|

Length of the message

Step 1 in Modelling
Feature extractor:
Converting the object of interest
to a vector of numerical values.



Example: Linear classifiers

e Score(x) = wy+ w;* 1(hyperlinks) + w, * 1(contact list)
+ w; * misspelling + w, * length

* A linear classifier: h(x) =1 if Score(x) > 0 and 0
otherwise.

e Question: What are the “free-parameters™ in a linear
classifier?

— If we redefine y — {—1, 1}

— A compact representation:

h(z) = sign(w’ [1; z])

16



Just “relax”

easlier one

min Error(w) =

wERA

: relaxing a hard problem into an

% Z 1(sign(w’ ;) # y;)

1=1

min —Zé w?! Ti,Yi).

wERI M, 4

17



[Mlustration of GD vs SGD
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0, 0,

Batch Gradient Descent Stochastic Gradient Descent

Observation: With the time gradient descent taking one step.

SGD would have already moved many steps.
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One natural stochastic gradient to consider in
machine learning

e Recall that
min — 000, (x;,
min - Z i)

» Pick a single data point 1 uniformly at random

_ Use VQK(H, (xia y’b))

— Show that this 1s an unbiased estimator!
— Know which part of the expression is random!

— Know how to apply the definition of expectation.

19



Lecture 5-6: Probabilities and BayesNet

Modelling the world with a joint probability distribution

— Number of parameters?

CPTs

— Count number of independent numbers to represent a CPT

Conditional, Marginal, Probabilistic Inference with Bayes
Rule

Read off conditional independences from the graph
— d-separation
— Bayes ball algorithm

— Markov Blanket 20



Tradeoffs in our model choices
Fully Independent
P(X4, Xo, ..., XN)

O(N) O(e™)

< |

Expressiveness

Fully general
P(X4, Xo, ..., XN)

Idea:
1.Independent groups of variables?

2.Conditional independences? 21



What are the CPTs? What are their dimensions?

0
(a0l
1

Question: How to fill values into these CPTs?

22
Ans: Specify by hands. Learn from data (e.g., MLE).



Big question: Is there a general way that we

can answer questions about conditional

independences by just inspecting the graphs?

Turns out the answer 1s “Yes!”

Direct Acyclic
Graph

\_

The set of Conditional
Independences that
holds for all CPTs

J

By definition

\_

Factorization of Joint
Distribution

J

23



What are the probabilistic graphical models
for topics we learned 1n the second half?

« Expectimax

 MDP
 Bandits / Contextual Bandits

« Reinforcement Learning

24



Lecture 7-10: Search

* Problem solving by search
— Abstraction, problem formulation
— State-space diagram

— Count the number of states, number of actions.

Uniformed Search algorithms

— Four evaluation criteria

Informed (heuristic) search
— Admissible / consistent heuristics

— Tree-search vs graph search

 Minimax Search and Game playing
— Know how to do minimax / expectimax by hand!

— Pruning

25



Problem Formulation and Search

 Problem formulation

— State-space description < {S}, Sy, {Sg}, {O}, {g} >
* S: Possible states

So: Initial state of the agent
Sq: Goal state(s)
— Or equivalently, a goal test G(S)
O: Operators O: {S} => {S}
— Describes the possible actions of the agent

 g: Path cost function, assigns a cost to a path/action

« At any given time, which possible action O; is best?

— Depends on the goal, the path cost function, the future sequence of actions....

« Agent’s strategy: Formulate, Search, and Execute
— This 1s offline problem solving

26



State-Space Diagrams

« State-space description can be represented by a state-
space diagram, which shows
— States (incl. initial and goal)

— Operators/actions (state transitions)

_p--®
(@__ —-®<—®
o} ~o

27



State Space vs. Search Tree (cont.)

Search tree (partially expanded)

&
(B> (C
(A D ® @ ©
B © ® ©F
D ® G
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Minimax example

Which move to choose?

MAX

MIN

The minimax decision i1s move A,

29



Alpha pruning

MAX
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MAX

10 25 15 5
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Beta pruning

o
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Expectimax

* Your opponent behave
randomly with a given
probability distribution,

Your move mm /\ * If you move left, your

AVERAGE 15 9 opponent will select

actions with probability
Opponent’s g ../ \ e\
random = / \ / \ [0.5,0.5]
move 8 [f you move right, your

opponent will select
actions with [0.6,0.4]

32



Lecture 11-16 Reinforcement Learning

e Markov Decision Processes

— New concepts: reward, value function, policy, transition
dynamics

— Bellman equations

— Iterative algorithms for finding the optimal policy

 Bandits / Contextual bandits

— The notion of regret
— Explore-exploit

« Reinforcement Learning
— Model-based learning
— Model-free learning

— Bootstrapping with Temporal Difference Learning

33



Reinforcement learning problem setup

« State, Action, Reward

 Unknown reward function, unknown state-transitions.
* Agents might not even observe the state

state reward
\Y

Environment

34



Reinforcement learning problem setup

o State, Action, Reward and Observation

S; €S AtEA R, € R O, €0

« Policy:
— When the state is observable: T . S —> .A

— Or when the state 1s not observable

T (Ox AxR)I™ = A

» Learn the best policy that maximizes the expected reward

T
— Finite horizon (episodic) RL: 7" = arg lglgﬁ( E[Z Rt] T: horizon
t=1

N —
— Infinite horizon RL: 7 = arg max E[Z W’t_lRt]

v: discount factor



Reinforcement learning 1s, arguably, the most

general Al framework.

« RL: State, Action, Reward, Nothing 1s known.

« Simplified RL models:
— 1id state = Contextual bandits
— No state, tabular action = Multi-arm bandits
— 1id state, no reward = Supervised Learning

— Known dynamics / reward = Markov Decision Processes
(Control/Cybernetics)

— No reward / Unknown dynamics = System Identification

36



Let us tackle different aspects of the RL
problem one at a time

e Markov Decision Processes:

— Dynamics are given no need to learn

« Bandits: Explore-Exploit in simple settings
— RL without dynamics

* Full Reinforcement Learning
— Learning MDPs

37



Tabular MDP

* Discrete State, Discrete Action, Reward and Observation

S;eS Are A R, e R 6H67+<6—

« Policy:
— When the state is observable: T . S —> .A
——Crreir eSS tateisTetehservanie —
O AR L A

» Learn the best policy that maximizes the expected reward

T
— Finite horizon (episodic) MDP: 7* = arg 12’163% E[Z Ry| T horizon
t=1

oo
— Infinite horizon MDP: .« _ arg max E[Z 7' T Ry)

y: discount factor



Reward function and Value functions

» Immediate reward function r(s,a,s’)

— expected immediate reward
r(s,a,s") =E[R1|S1 =s,A1 =a, S = §]
1" (5) = Egon(als) F21]51 = 8]

 state value function: V*(s)

— expected long-term return when starting in s and following ©t

VT(s) =Er[Ri +YRa+ ... + ¥ 'Ry + ...|S1 = 4]

 state-action value function: Q%(s,a)

— expected long-term return when starting in s, performing a, and following ©
Q" (s,a) =E;|[Ry +vRs + ... + VIR, + ..|S1 =s,A1 = a

39



Bellman equations — the fundamental
equations of MDP and RL

* An alternative, recursive and more useful way of defining
the V-function and Q function

— V7 function Bellman equation
=Y (als) Y- P(sIs,a)lr(s.a,5') + V()
a s’

— QT function Bellman equation

Q™ (s,a) ZP "Is,a)[r(s,a,s") —I—’VZW(CL/|S/)Q7T(S,,CL/)]

— V* function Bellman (optimality) equation

— mc?x Z P(S"S, CL) [T(S, a, S,) +~V* (S/)]

— Q* function Bellman (optimality) equation

= > P(s/ls,a)lr(s,a,8") +ymaxQ"(s,a)] 4



Let’s work out the Value function for a
specific policy

actions: UP, DOWN, LEFT, RIGHT

=

f @ - 1 80% move UP
10% move LEFT

f 10% move RIGHT
« reward +1 at [4,3], -1 at [4,2]

e reward -0.04 for each step

- Zw(a\s)ZP(S’\S,&)[T(S,&,S ) +yV (s Zﬂ' als)Q™ (s, a)

1.0 +
0.1 * (-0.04 + V7([3,2]))

* 0.1+ (-0.04 + V([3,3])) 41



Inference problem: given an MDP, how to
compute its optimal policy?

[t suffices to compute i1ts Q* function, because:
7*(s) = arg max Q*(s,a)

[t suffices to compute i1ts V* function, because:

Q*(s,a) =) P(s'ls,a)[r(s,a,s") +7V*(s")]

42



MDP inference problem: Policy Evaluation
(prediction) vs Policy Optimization (control)

e Policy Evaluation (prediction):

— Simulate Bellman equation w.r.t. policy \pi until it converges

e Policy Optimization (control):
— Policy evaluation, policy improvement, PE, PI, ...

— Value iterations: simulate Bellman optimality equation

43



How to calculate value functions given MDP
parameters? Policy Iterations and Value Iterations

* What are these algorithms for?

— Algorithms of computing the V* and Q* functions from MDP
parameters

* Policy Iterations

0 _>Ev7TO _>I7_‘_1 _ B V71 _>I“._>I7_‘_>|< —>EV*
 Value iterations

Vii1(s) < mgxz P(s'|s,a)[r(s,a,s") +vVi(s')]

» How do we make sense of them?

— Recursively applying the Bellman equations until convergence.
44



Multi-arm bandits: Problem setup

. No state. k-actions a € A = {1, 2, cens k‘}

* You decide which arm to pull in every iteration

A17 A27 "t AT

* You collect a cumulative payoff of Z Ry
t=1

* The goal of the agent 1s to maximize the expected payoff.
— For future payoffs?

— For the expected cumulative payoff?

45



How do we measure the performance of an
online learning agent?
e The notion of “Regret™:

— I wish I have done things differently.

— Comparing to the best actions in the hindsight, how much worse
did I do.

 For MAB, the regret is defined as follow

T
TmaXER I ZEQNW |R:|al]
t=1

a€lk]

46



Regret of different MAB algorithms
* Greedy O(T)

* ExploreFirst

O(T2/3k1/3)

* eps-Greedy

O (T2/3 L 1/3 )
e Upper Confidence Bound:

O(T1/2k1/2>

47



RL algorithms

* Model-based approach (plug-in an empirically estimated
MDP, run VI / PI)

e Model-free approach:

— Monte Carlo (average converges to mean) e.g., First visit Monte
Carlo

— Combining Monte Carlo with Dynamic Programming (e.g., VI)
— Temporal difference learning

48



Revisit the dynamic programming approach

* Policy Evaluation

Vi (s) < Y mlals) ) P Mtsrans) + Vi (s')]

* Policy improvement

7' (s) = arg max Q" (s,a)
= argmax )  PT8sra)[tsrans]) + V) (s)

 Value iterations

Vit1(s) mgxz P54l [Tsrersl) + 7 Vie(s)]

*We do not have the MDP parameters in RL! 49



Reinforcement learning agents have “online™
access to an environment

« State, Action, Reward
 Unknown reward function, unknown state-transitions.

« Agents can “act” and “experiment”, rather than only doing
offline planning.

state reward
\Y

Environment




TD policy optimization (TD-control )

 SARSA (On-Policy TD-control)
— Update the Q function by bootstrapping Bellman Equation

Q(S, A) + Q(S, A) + a|R+vQ(S", A") — Q(S, A)]
— Choose the next A’ using Q, e.g., eps-greedy.

* (Q-Learning (Off-policy TD-control)
— Update the Q function by bootstrapping Bellman Optimality Eq.

Q(S, A) « Q(S, A) + a|R + ymax, Q(S', a) — Q(S, A)]

— Choose the next A’ using Q, e.g., eps-greedy, or any other policy.

51



Q-Learning with function approximation

v/‘ >\v

Q(s,a) = w1 f1(s,a)Fwafo(s,a)+...Fwnfn(s,a)

_ )

* (Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + v max Q(s, a/)] — Q(s,a)
a

Q(s,a) «— Q(s,a) + « [difference] Exact Q’s

w; «— w; + « [difference] f;(s,a) Approximate Q’s

* Intuitive interpretation:
— Adjust weights of active features
— E.g., if something unexpectedly bad happens, blame the

features that were on: disprefer all states with that state’s
features

» Formal justification: online least squares (Read the textbook!)

52



Policy gradient

« Let’s not worry about states, dynamics, Q function.
— We might not even observe the true state.

— Let’s specify a class of parametrized policy and hope to compare
to the best within this class

Objective function to maximize: J(0) = vry(s0),

/\

Do SGD: Ht_|_1 = 0; + CVVJ(Ht)a

* Policy gradient theorem:

VJ(0) =) d"(s)> Q"(s,a)Ven(als,0)

*Note how this theorem is non-trivial... The first two terms
depends on r, but we did not take the gradient w.r.t. them.

53



Special case of policy gradient theorem 1n

contextual bandits?

e Gradient of the IPS-estimator (or Importance Sampling
estimator that you’ve seen) w.r.t. the parameter 6 of the

1
policy @ o

T 1 7T(CLZ'
Uips = —

n i pla;

* Connections to the policy gradient?

QEZ')T?:

54



Most important concepts in MDP / RL

e Make sure you understand
— Problem setup, evaluation criteria

— Definition of the policy, state, action, immediate reward, value,
value function ...

Bellman equations

Policy / Value iterations
— Finding fixed points of Bellman equations

— Finding eigenvector of a matrix

SARSA, Q-Learning

— SGD-style Stochastic simulation of Bellman equations

55



Lecture 16-17: Logic

« Logic agent

— Know how to play, e.g., Minesweeper and know how to explain
your reasons.

Knowledge Base
— Tell operation

— Ask operation

« Components of a formal mathematical logic system

— Syntax, Semantics

Inference Algorithms.

56



KB Agents

True sentences

............... | \

TELL —>i Knowledge Base Domain specific content;

ASK «——1 Inference engine Domain independent algorithms; can
| deduce new facts from the KB

B e e e e e e e e

* Need a formal logic system to work

« Need a data structure to represent known facts

* Need an algorithm to answer ASK questions

57



Syntax and semantics

 Two components of a logic system

* Syntax --- How to construct sentences

— The symbols
— The operators that connect symbols together

— A precedence ordering

* Semantics --- Rules the assignment of sentences to truth
— For every possible worlds (or “models™ in logic jargon)

— The truth table 1s a semantics

58



Entailment

Sentences » Sentence
ENTAILS

Representation

World

Facts Fact

v

FoLLOWS

Ais entailed by B, if Ais true in all possible worlds consistent with B
under the semantics.

59



Inference procedure

e Inference procedure

— Rules (algorithms) that we apply (often recursively) to derive truth
from other truth.

— Could be specific to a particular set of semantics, a particular
realization of the world.

* Soundness and completeness of an inference procedure
— Soundness: All truth discovered are valid.
— Completeness: All truth that are entailed can be discovered.

60



Propositional Logic

e Syntax:

— True, false, propositional symbols

— (), = (not), A (and), v (or), = (implies), < (equivalent)

* Semantics:
— Five rules (the following truth table)

P 8] —-P PAQO PvVvOQO P =0 P & O
False False True False False True True
False True True False True True False

True False False False True False False
True True False True True True True

e Inference rules:

— Modus Pronens etc.

Most important: Resolution

61




Propositional logic agent

« Representation: Conjunctive Normal Forms
— Represent them in a data structure: a list, a heap, a tree?
— Efficient TELL operation

» Inference: Solve ASK question
— Use “Resolution” only on CNFs is Sound and Complete.

— Equivalent to SAT, NP-complete, but good heuristics / practical
algorithms exist

 Possible answers to ASK:
— Valid, Satisfiable, Unsatisfiable

62



First order logic

More expressive language
— Relations and functions of objects.

— Quantifiers such as, All, Exists.

Easier to construct a KB.

— Need much smaller number of sentences to capture a domain.

Follow the same structure: Symbols, Semantics

Dedicated inference algorithms

(FOL inference 1s not covered in the Final)

63



Potential types of questions in FOL

« Translate FOL sentence to natural language or the other
way round.

* Translate the rule of a sitmple game to FOL.

64



Lecture 18: Responsible Al

* What are the typical pitfalls in Al applications

Privacy: Data sharing, data use, data ownership

Fairness of Al Decision making: Recidivism prediction,
Admission / Recruiting

Polarizing effects of recommendation systems
Fake news / fake videos
Social impacts: unemployment / rich gets richer

Robustness and Safety: adversarial examples, self-driving cars

* What are your thoughts on overcoming them?

Potentially a case / short essay question.

* Your thoughts on Weak Al vs Strong Al

And artificial general Intelligence... 65



Thank you and stay in touch!

It’s a challenging quarter for everyone of us.
It’s my pleasure to work with you!
I hope the course 1s / will be useful.

Al Research at UCSB

Machine Learning Lab

Natural Language Processing Lab

Center for Responsible Machine Learning

Center for Information Technology and Society

The Mellichamp Initiative in Mind & Machine Intelligence

Data Science Initiative
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