Artificial Intelligence

CS 165A Dec 10, 2020

Instructor: Prof. Yu-Xiang Wang

→ Final Review

Logistic notes

- ESCI Survey: Please go and submit your feedback!
 - Deadline is approaching. This is my final reminder.
- Final: Next Tuesday 9:00 am Wednesday 11:59 pm.
 - 27 hours in total; for an exam that will take roughly 3 hours max.
 - Submit your take home final on gradescope.
 - Open book. NO collaboration allowed. We will check for similarities. Your questions might be subtly different from your peers.
 - Covers topics up to First Order Logic (but before FOL inference)
 - About 80% will be on topics after the midterm, 20% on earlier topics. (Note that you might be asked to apply ML or PGM on topics in the second half of the lecture!)
 - There

Tips for studying for the final

- Focus on the Lectures and HWs
- For any concepts that you are confused, check the textbook (Again, books are random access, you don't have to read chapters from the beginning to the end)
 - Stick to AIMA book for Search and Logic
 - Stick to the Sutton and Barto book for RL.

We've come a long way...

Lecture 1: AI Overview

- AI for problem solving
- Rational agents
- Examples of AI in the real world
- Modelling-Inference-Learning Paradigm

Modeling-Inference-Learning

Modeling

Inference

Learning

Structure of the course

Probabilistic Graphical Models / Deep Neural Networks

Classification / Regression Bandits

Search game playing

Markov Decision Processes Reinforcement Learning Logic, knowledge base Probabilistic inference

Reflex Agents

Planning Agents

Reasoning agents

Low-level intelligence

High-level intelligence

Machine Learning

Potential question in the final: what type of agents are suitable to a given problem?

7

Our view of AI

- So this course is about <u>designing rational agents</u>
 - Constructing f
 - For a given class of environments and tasks, we seek the agent (or class of agents) with the "best" performance
 - Note: Computational limitations make complete rationality unachievable in most cases
- In practice, we will focus on problem-solving techniques (ways of constructing f), not agents per se

Different Ways of Looking at the AI

- Agent types / level of intelligence
 - Low-level: Reflex agents
 - Mid-level: Goal-based / Utility-based agents: planning agents
 - High-level: Knowledge-based: Logic agents
- Optimization view
 - Everything is an optimization problem
- Theoretical aspects
 - Time/space complexity
 - Algorithms and data structures
 - Statistical properties: # of free parameters / how easily can we learn them with data

Optimization perspective of AI

- A rational agent $\max_{a_1,...,a_T} \text{Utility}(a_1,...,a_T)$
 - Modelling tools: Features / Hypothesis, PGM, State-space abstraction, agent categorization
 - Constraints: Computation, Data, Storage
- Discrete optimization $\min_{p \in \text{Paths}} \text{Distance}(p)$
 - Algorithmic tool: Search / Dynamic programming
- Continuous optimization $\min_{\theta \in \mathbb{R}^d} \mathrm{TrainingError}(\theta)$
 - Algorithmic tool: Gradient descent / Stochastic gradient descent

Different objectives to optimize in AI (first half of the course)

• PGM:

- MLE: Maximize the log-likelihood function
- Classifier / decision: max the posterior distribution
- Search and planning:
 - Find valid solutions with smallest path cost.
 - Minimax search / games: Maximize your worst-case pay-off (assuming your opponent plays optimally)
- Machine Learning $\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\theta, (x_i, y_i)) + \lambda r(\theta)$
 - (Regularized) Empirical Risk Minimization (ERM):
 - But the goal is to minimize the (unseen) expected loss.

Different objectives to optimize in AI (second half of the course)

- Markov Decision Processes / RL
 - Maximize the cumulative expected reward of "decision policy"
 - Balance Exploration and Exploitation.
- Logic / Knowledge based agent:
 - Solve a feasibility problem, find a "proof".
 - Determining "Valid, Satisfiable, Unsatisfiable"

A lot of these problems are computationally / statistically hard, but so what?

- Get help from human:
 - Use a model
 - Use abstractions at the right level
 - Use features
 - Use heuristic functions
- Get help from mathematics and computer science theory:
 - Solve an approx. solution
 - Approximate inference of a PGM
 - More iterations with less accuracy per SGD
 - A* Search
 - TD learning and Bootstrapping

Lecture 2-4: Machine Learning

- Machine learning
 - Types of machine learning models
 - Focus on Supervised Learning ---- classifier agents.
- What is a feature vector?
 - Feature engineering, feature extraction
- Hypothesis class and free parameters
 - How many are there? How to evaluate a classifier?
 - Error? On training data or on new data?
 - Overfitting, underfitting?
- How to learn (optimize)?
 - Surrogate losses, Gradient Descent, SGD

Example of a feature vector of dimension 4

Step 1 in Modelling Feature extractor:

to a vector of numerical values.

yuxiangw@cs.ucsb.edu

Regards, E-mail Support 2020.

Example: Linear classifiers

- Score(x) = $w_0 + w_1 * 1$ (hyperlinks) + $w_2 * 1$ (contact list) + $w_3 *$ misspelling + $w_4 *$ length
- A linear classifier: h(x) = 1 if Score(x) > 0 and 0 otherwise.
- Question: What are the "free-parameters" in a linear classifier?
 - If we redefine $\mathcal{Y} = \{-1,1\}$
 - A compact representation:

$$h(x) = \operatorname{sign}(w^T[1;x])$$

Just "relax": relaxing a hard problem into an easier one

$$\min_{w \in \mathbb{R}^d} \text{Error}(w) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(\text{sign}(w^T x_i) \neq y_i)$$

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(w^T x_i, y_i).$$

Illustration of GD vs SGD

Observation: With the time gradient descent taking one step. SGD would have already moved many steps.

One natural stochastic gradient to consider in machine learning

Recall that

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \ell(\theta, (x_i, y_i))$$

• Pick a single data point i uniformly at random

– Use
$$abla_{ heta}\ell(heta,(x_i,y_i))$$

- Show that this is an unbiased estimator!
- Know which part of the expression is random!
- Know how to apply the definition of expectation.

Lecture 5-6: Probabilities and BayesNet

- Modelling the world with a joint probability distribution
 - Number of parameters?
- CPTs
 - Count number of independent numbers to represent a CPT
- Conditional, Marginal, Probabilistic Inference with Bayes Rule
- Read off conditional independences from the graph
 - d-separation
 - Bayes ball algorithm
 - Markov Blanket

Tradeoffs in our model choices

Idea:

1.Independent groups of variables?

2. Conditional independences?

What are the CPTs? What are their dimensions?

Question: How to fill values into these CPTs?

Ans: Specify by hands. Learn from data (e.g., MLE).

Big question: Is there a general way that we can answer questions about conditional independences by just inspecting the graphs?

• Turns out the answer is "Yes!"

What are the probabilistic graphical models for topics we learned in the second half?

- Expectimax
- MDP
- Bandits / Contextual Bandits
- Reinforcement Learning

Lecture 7-10: Search

- Problem solving by search
 - Abstraction, problem formulation
 - State-space diagram
 - Count the number of states, number of actions.
- Uniformed Search algorithms
 - Four evaluation criteria
- Informed (heuristic) search
 - Admissible / consistent heuristics
 - Tree-search vs graph search
- Minimax Search and Game playing
 - Know how to do minimax / expectimax by hand!
 - Pruning

Problem Formulation and Search

- Problem formulation
 - State-space description $\langle \{S\}, S_0, \{S_G\}, \{O\}, \{g\} \rangle$
 - S: Possible states
 - S_0 : Initial state of the agent
 - S_G : Goal state(s)
 - Or equivalently, a goal test **G(S)**
 - **O**: Operators O: $\{S\} \Rightarrow \{S\}$
 - Describes the possible actions of the agent
 - g: Path cost function, assigns a cost to a path/action
- At any given time, which possible action O_i is best?
 - Depends on the goal, the path cost function, the future sequence of actions....
- Agent's strategy: Formulate, Search, and Execute
 - This is *offline* problem solving

State-Space Diagrams

- State-space description can be represented by a statespace diagram, which shows
 - States (incl. initial and goal)
 - Operators/actions (state transitions)
 - Path costs

State Space vs. Search Tree (cont.)

Search tree (partially expanded)

Minimax example

Which move to choose?

The minimax decision is move A_1

Alpha pruning

Beta pruning

Expectimax

- Your opponent behave randomly with a given probability distribution,
- If you move left, your opponent will select actions with probability [0.5,0.5]
- If you move right, your opponent will select actions with [0.6,0.4]

Lecture 11-16 Reinforcement Learning

Markov Decision Processes

- New concepts: reward, value function, policy, transition dynamics
- Bellman equations
- Iterative algorithms for finding the optimal policy

Bandits / Contextual bandits

- The notion of regret
- Explore-exploit

Reinforcement Learning

- Model-based learning
- Model-free learning
- Bootstrapping with Temporal Difference Learning

Reinforcement learning problem setup

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents might not even observe the state

Reinforcement learning problem setup

State, Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
 - $\pi:\mathcal{S} o\mathcal{A}$ - When the state is observable:
 - Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

Learn the best policy that maximizes the expected reward

– Finite horizon (episodic) RL:
$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{-} R_t]$$
 T: horizon

- Infinite horizon RL:
$$\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^{\infty} \gamma^{t-1} R_t]$$
 γ : discount factor

35

Reinforcement learning is, arguably, the most general AI framework.

- RL: State, Action, Reward, Nothing is known.
- Simplified RL models:
 - iid state \rightarrow Contextual bandits
 - No state, tabular action → Multi-arm bandits
 - iid state, no reward → Supervised Learning
 - Known dynamics / reward → Markov Decision Processes (Control/Cybernetics)
 - No reward / Unknown dynamics → System Identification

Let us tackle different aspects of the RL problem one at a time

- Markov Decision Processes:
 - Dynamics are given no need to learn
- Bandits: Explore-Exploit in simple settings
 - RL without dynamics
- Full Reinforcement Learning
 - Learning MDPs

Tabular MDP

• Discrete State, Discrete Action, Reward and Observation

$$S_t \in \mathcal{S} \quad A_t \in \mathcal{A} \quad R_t \in \mathbb{R} \quad O_t \in \mathcal{O}$$

- Policy:
 - $\pi:\mathcal{S} o\mathcal{A}$ — When the state is observable:
 - Or when the state is not observable

$$\pi_t: (\mathcal{O} \times \mathcal{A} \times \mathbb{R})^{t-1} \to \mathcal{A}$$

- Learn the best policy that maximizes the expected reward
 - Finite horizon (episodic) MDP: $\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum R_t]$ T: horizon
 - Infinite horizon MDP: $\pi^* = \arg\max_{\pi \in \Pi} \mathbb{E}[\sum_{t=1}^n \gamma^{t-1} R_t]$ γ : discount factor

Reward function and Value functions

- Immediate reward function r(s,a,s')
 - expected immediate reward

$$r(s, a, s') = \mathbb{E}[R_1 | S_1 = s, A_1 = a, S_2 = s']$$

 $r^{\pi}(s) = \mathbb{E}_{a \sim \pi(a|s)}[R_1 | S_1 = s]$

- state value function: $V^{\pi}(s)$
 - expected long-term return when starting in s and following π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s]$$

- state-action value function: $Q^{\pi}(s,a)$
 - expected **long-term** return when starting in s, performing a, and following π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[R_1 + \gamma R_2 + \dots + \gamma^{t-1} R_t + \dots | S_1 = s, A_1 = a]$$

Bellman equations – the fundamental equations of MDP and RL

- An alternative, recursive and more useful way of defining the V-function and Q function
 - V^{π} function Bellman equation

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^{\pi}(s')]$$

- Q^{π} function Bellman equation

$$Q^{\pi}(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \sum_{a'} \pi(a'|s') Q^{\pi}(s', a')]$$

V* function Bellman (optimality) equation

$$V^*(s) = \max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V^*(s')]$$

Q* function Bellman (optimality) equation

$$Q^*(s, a) = \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma \max_{a'} Q^*(s', a')]$$
₄₀

Let's work out the Value function for a specific policy

actions: UP, DOWN, LEFT, RIGHT

UP

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

$$V^{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V^{\pi}(s')] = \sum_{a} \pi(a|s)Q^{\pi}(s,a)$$

$$1.0 + \frac{0.8 * (+1-0.04 + 0)}{0.1 * (-0.04 + V^{\pi}([3,2]))}$$

$$+ 0.1 * (-0.04 + V^{\pi}([3,3]))$$

$$41$$

Inference problem: given an MDP, how to compute its optimal policy?

• It suffices to compute its Q* function, because:

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$

• It suffices to compute its V* function, because:

$$Q^*(s, a) = \sum_{s'} P(s'|s, a)[r(s, a, s') + \gamma V^*(s')]$$

MDP inference problem: Policy Evaluation (prediction) vs Policy Optimization (control)

- Policy Evaluation (prediction):
 - Simulate Bellman equation w.r.t. policy \pi until it converges
- Policy Optimization (control):
 - Policy evaluation, policy improvement, PE, PI, ...
 - Value iterations: simulate Bellman optimality equation

How to calculate value functions given MDP parameters? Policy Iterations and Value Iterations

- What are these algorithms for?
 - Algorithms of computing the V* and Q* functions from MDP parameters
- Policy Iterations

$$\pi_0 \to^E V^{\pi_0} \to^I \pi_1 \to^E V^{\pi_1} \to^I \dots \to^I \pi^* \to^E V^*$$

• Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a)[r(s,a,s') + \gamma V_k(s')]$$

- How do we make sense of them?
 - Recursively applying the Bellman equations until convergence.

Multi-arm bandits: Problem setup

- No state. k-actions $a \in \mathcal{A} = \{1, 2, ..., k\}$
- You decide which arm to pull in every iteration

$$A_1, A_2, ..., A_T$$

- You collect a cumulative payoff of $\sum_{t=1}^{T} R_t$
- The goal of the agent is to maximize the expected payoff.
 - For future payoffs?
 - For the expected cumulative payoff?

How do we measure the performance of an **online learning agent**?

- The notion of "Regret":
 - I wish I have done things differently.
 - Comparing to the best actions in the hindsight, how much worse did I do.

For MAB, the regret is defined as follow

$$T \max_{a \in [k]} \mathbb{E}[R_t|a] - \sum_{t=1}^T \mathbb{E}_{a \sim \pi} \left[\mathbb{E}[R_t|a] \right]$$

Regret of different MAB algorithms

- Greedy O(T)
- ExploreFirst $O(T^{2/3}k^{1/3})$
- eps-Greedy $O(T^{2/3}k^{1/3})$
- Upper Confidence Bound:

$$O(T^{1/2}k^{1/2})$$

RL algorithms

 Model-based approach (plug-in an empirically estimated MDP, run VI / PI)

- Model-free approach:
 - Monte Carlo (average converges to mean) e.g., First visit Monte Carlo
 - Combining Monte Carlo with Dynamic Programming (e.g., VI)
 - Temporal difference learning

Revisit the dynamic programming approach

Policy Evaluation

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k^{\pi}(s')]$$

Policy improvement

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

$$= \arg\max_{a} \sum_{s'} P(s'|s, a) [r(s, a, s') + \gamma V_k^{\pi}(s')]$$

Value iterations

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} P(s'|s,a) [r(s,a,s') + \gamma V_k(s')]$$

Reinforcement learning agents have "online" access to an environment

- State, Action, Reward
- Unknown reward function, unknown state-transitions.
- Agents can "act" and "experiment", rather than only doing offline planning.

TD policy optimization (TD-control)

- SARSA (On-Policy TD-control)
 - Update the Q function by bootstrapping Bellman Equation

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

- Choose the next A' using Q, e.g., eps-greedy.
- Q-Learning (Off-policy TD-control)
 - Update the Q function by bootstrapping Bellman Optimality Eq.

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_{a} Q(S',a) - Q(S,A) \right]$$

Choose the next A' using Q, e.g., eps-greedy, or any other policy.

Q-Learning with function approximation

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

• Q-learning with linear Q-functions:

transition
$$= (s, a, r, s')$$

difference $= \left[r + \gamma \max_{a'} Q(s', a') \right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact Q's
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approximate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares (Read the textbook!)

Policy gradient

- Let's not worry about states, dynamics, Q function.
 - We might not even observe the true state.
 - Let's specify a class of parametrized policy and hope to compare to the best within this class
- Objective function to maximize: $J(\boldsymbol{\theta}) \doteq v_{\pi_{\boldsymbol{\theta}}}(s_0),$

• Do SGD:
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \alpha \widehat{\nabla J(\boldsymbol{\theta}_t)},$$

• Policy gradient theorem:

$$\nabla J(\boldsymbol{\theta}) = \sum_{s} d^{\pi}(s) \sum_{a} Q^{\pi}(s, a) \nabla_{\boldsymbol{\theta}} \pi(a|s, \boldsymbol{\theta})$$

*Note how this theorem is non-trivial... The first two terms depends on π , but we did not take the gradient w.r.t. them.

Special case of policy gradient theorem in contextual bandits?

• Gradient of the IPS-estimator (or Importance Sampling estimator that you've seen) w.r.t. the parameter θ of the policy π

$$\hat{v}_{\text{IPS}}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(a_i|x_i)}{\mu(a_i|x_i)} r_i$$

Connections to the policy gradient?

Most important concepts in MDP / RL

- Make sure you understand
 - Problem setup, evaluation criteria
 - Definition of the policy, state, action, immediate reward, value,
 value function ...
- Bellman equations
- Policy / Value iterations
 - Finding fixed points of Bellman equations
 - Finding eigenvector of a matrix
- SARSA, Q-Learning
 - SGD-style Stochastic simulation of Bellman equations

Lecture 16-17: Logic

- Logic agent
 - Know how to play, e.g., Minesweeper and know how to explain your reasons.
- Knowledge Base
 - Tell operation
 - Ask operation
- Components of a formal mathematical logic system
 - Syntax, Semantics
- Inference Algorithms.

KB Agents

- Need a formal logic system to work
- Need a data structure to represent known facts
- Need an algorithm to answer ASK questions

Syntax and semantics

- Two components of a logic system
- Syntax --- How to construct sentences
 - The symbols
 - The operators that connect symbols together
 - A precedence ordering
- Semantics --- Rules the assignment of sentences to truth
 - For every possible worlds (or "models" in logic jargon)
 - The truth table is a semantics

Entailment

A is entailed by B, if A is true in all possible worlds consistent with B under the semantics.

Inference procedure

- Inference procedure
 - Rules (algorithms) that we apply (often recursively) to derive truth from other truth.
 - Could be specific to a particular set of semantics, a particular realization of the world.
- Soundness and completeness of an inference procedure
 - Soundness: All truth discovered are valid.
 - Completeness: All truth that are entailed can be discovered.

Propositional Logic

• Syntax:

- True, false, propositional symbols
- (), \neg (not), \land (and), \lor (or), \Rightarrow (implies), \Leftrightarrow (equivalent)

Semantics:

Five rules (the following truth table)

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Inference rules:

Modus Pronens etc. Most important: Resolution

Propositional logic agent

- Representation: Conjunctive Normal Forms
 - Represent them in a data structure: a list, a heap, a tree?
 - Efficient TELL operation
- Inference: Solve ASK question
 - Use "Resolution" only on CNFs is Sound and Complete.
 - Equivalent to SAT, NP-complete, but good heuristics / practical algorithms exist
- Possible answers to ASK:
 - Valid, Satisfiable, Unsatisfiable

First order logic

- More expressive language
 - Relations and functions of objects.
 - Quantifiers such as, All, Exists.
- Easier to construct a KB.
 - Need much smaller number of sentences to capture a domain.
- Follow the same structure: Symbols, Semantics
- Dedicated inference algorithms
- (FOL inference is not covered in the Final)

Potential types of questions in FOL

• Translate FOL sentence to natural language or the other way round.

• Translate the rule of a simple game to FOL.

Lecture 18: Responsible AI

- What are the typical pitfalls in AI applications
 - Privacy: Data sharing, data use, data ownership
 - Fairness of AI Decision making: Recidivism prediction,
 Admission / Recruiting
 - Polarizing effects of recommendation systems
 - Fake news / fake videos
 - Social impacts: unemployment / rich gets richer
 - Robustness and Safety: adversarial examples, self-driving cars
- What are your thoughts on overcoming them?
 - Potentially a case / short essay question.
- Your thoughts on Weak AI vs Strong AI.
 - And artificial general Intelligence...

Thank you and stay in touch!

- It's a challenging quarter for everyone of us.
- It's my pleasure to work with you!
- I hope the course is / will be useful.
- AI Research at UCSB
 - Machine Learning Lab
 - Natural Language Processing Lab
 - Center for Responsible Machine Learning
 - Center for Information Technology and Society
 - The Mellichamp Initiative in Mind & Machine Intelligence
 - Data Science Initiative