
Artificial Intelligence
CS 165A

Oct 22, 2020

Instructor: Prof. Yu-Xiang Wang

® Problem Solving by Search
® Search algorithms
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Student Feedback (from past two weeks)

• “Your handwriting is sometimes not legible. ”
– Will do.

• “Sharing annotated lecture slides”
– Will do.

• “computer engineering peers and I are struggling a lot with the 
gradient/multivariable concepts”
– Don’t be scared. The concept of gradient is natural. Try visualize in 2D,

3D and work with examples, such as f(x,y) = x^2 + xy to build intuition.

• “I feel that I am not doing well in HW1. Am I gonna fail?”
– Probably no. Evaluation is quite lenient this quarter (late days, partial

credits). Everyone can keep up.
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Recap of the last lecture

• Three steps in modelling with Bayesian networks

• Inference with Bayesian networks using only CPTs

• Three equivalent ways of describing structures of a joint
distribution
– Factorization ó DAG ó the set of conditional independences

• Prove conditional independence by definition.
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Recap of the last lecture

• Reading conditional independences from the DAG itself.

• d-separation
– Three canonical graphs

• Bayes ball algorithm for determining whether X ⟂ Z | Y
– Bounce the ball from any node in X by following the ten rules
– If any ball reaches any node in Z, then return “False”
– Otherwise, return “True”
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The Ten Rules of Bayes Ball Algorithm
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Structure of the course
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Low-level intelligence High-level intelligence

(Again this idea is adapted from Percy Liang’s teachings)

Reflex Agents Planning Agents Reasoning agents

Classification / Regression
Bandits

Search
game playing

Logic,  knowledge base
Probabilistic inference 

Machine Learning

Probabilistic Graphical Models / Deep Neural Networks

Markov Decision Processes
Reinforcement Learning



Reflex Agents vs. Planning agent

• Reflex agents act based on immediate observation /
memory; often optimizes immediate reward.

• Planning agent looks further into the future and “try out”
different sequences of actions --- in its mind --- before
taking an action; optimizes long-term reward. 7

(illustration credit: Dan Klein)



Modeling-Learning-Inference Paradigm

Modeling Learning Inference

Classifier agent
(Spam filter)

Feature engineering
Hypothesis class Minimize Error rate trivial

Probabilistic
Inference agent

(Sherlock)

Joint distribution
Draw edges in BN

Conditional
independences

Fitting the CPTs
with MLE

Marginalization
(conceptually easy)

Search agents State-Space-
diagram

Environment given
(learn edge weights)

Nontrivial
search algorithms
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Search sequence of lectures

• Today:  Finish Graphical models. Start “Search”
• Oct 27: Search algorithms
• Oct 29: Minimax search and game playing
• Nov 3: Finish “search” + Midterm review.  HW2 Due.

• Recommended readings on search:  
– AIMA Ch 3, Ch 5.1-5.3.
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Remaining time today

• Formulating problems as search problems

• Basic algorithms for search
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Example: Romania

You’re in Arad, Romania, and you need to get to Bucharest as 
quickly as possible to catch your flight.

• Formulate problem
– States: Various cities
– Operators: Drive between cities

• Formulate goal
– Be in Bucharest before flight leaves

• Find solution
– Actual sequence of cities from Arad to Bucharest
– Minimize driving distance/time
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Romania (cont.)
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Romania (cont.)
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Romania (cont.)

Problem description <{S}, S0, {SG}, {O}, {g}>
• {S} – cities (ci)
• S0 – Arad
• SG – Bucharest

– G(S) – Is the current state (S) Bucharest?

• {O}: { ci ® cj, for some i and j }
• gij

– Driving distance between ci and cj?
– Time to drive from ci to cj?
– 1?
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Possible paths

Sibiu

Oradea

Zerind

Bucharest

PitestiBucharest

Fagaras R. Vilcea

Sibiu

Dobreta

Mehadia

Lugoj

Timisoara

Arad

Which is best?
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Should we consider cycles? 
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Should we consider cycles? 

Bucharest

PitestiBucharest

Fagaras R. Vilcea

Sibiu

Dobreta

Mehadia

Lugoj

Timisoara

Arad

Redundant Paths should be eliminated!

Arad

Sibiu
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Branching Factor and Depth

• If there are b possible choices at each state, then the 
branching factor is b

• If it takes d steps (state transitions) to get to the goal state, 
then it may be the case that O(bd) states have to be checked
– b = 3, d = 5 ® bd = 243
– b = 5, d = 10 ® bd = 9,765,625
– b = 8, d = 15 ® bd = 35,184,372,088,832

• Ouch…. Combinatorial explosion!
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Abstraction

• The real world is highly complex!
– The state space must be abstracted for problem-solving

• Simplify and aggregate
– Can’t represent all the details

• Choosing a good abstraction
– Keep only those relevant for the problem
– Remove as much detail as possible while retaining validity
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Problem Solving Agents

• Task: Find a sequence of actions that leads to desirable 
(goal) states
– Must define problem and solution

• Finding a solution is typically a search process in the 
problem space
– Solution = A path through the state space from the initial state to a 

goal state
– Optimal search find the least-cost solution

• Search algorithm
– Input: Problem statement (incl. goal)
– Output: Sequence of actions that leads to a solution

• Formulate, search, execute (action)
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Problem Formulation and Search

• Problem formulation
– State-space description < {S}, S0, {SG}, {O}, {g} >

• S: Possible states
• S0: Initial state of the agent
• SG: Goal state(s)

– Or equivalently, a goal test G(S)
• O: Operators  O: {S} => {S}

– Describes the possible actions of the agent
• g: Path cost function, assigns a cost to a path/action

• At any given time, which possible action Oi is best?
– Depends on the goal, the path cost function, the future sequence of actions….

• Agent’s strategy:  Formulate, Search, and Execute
– This is offline problem solving



20

State-Space Diagrams

• State-space description can be represented by a state-
space diagram, which shows
– States (incl. initial and goal)
– Operators/actions (state transitions)
– Path costs
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State-Space Diagrams

• State-space description can be represented by a state-
space diagram, which shows
– States (incl. initial and goal)
– Operators/actions (state transitions)
– Path costs
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Typical assumptions

• Environment is observable
• Environment is static
• Environment is discrete
• Environment is deterministic
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Example: The Vacuum World
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The Vacuum World

• Simplified world: 2 grids
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The Vacuum World

• Simplified world: 2 grids

States: Location of vacuum, dirt in grids
Operators: Move left, move right, suck dirt
Goal test: Grids free of dirt
Path cost: Each action costs 1
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The Vacuum World

• Simplified world: 2 grids

States: Location of vacuum, dirt in grids
Operators: Move left, move right, suck dirt
Goal test: Grids free of dirt
Path cost: Each action costs 1

How many states 
for n grids?
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Example Problem: 8-Puzzle
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Example Problem: 8-Puzzle

States: Various configurations of the puzzle
Operators: Movements of the blank
Goal test: Goal configuration
Path cost: Each move costs 1
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Example Problem: 8-Puzzle

States: Various configurations of the puzzle
Operators: Movements of the blank
Goal test: Goal configuration
Path cost: Each move costs 1

How many states 
are there?

9! = 362,880
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8-Puzzle is hard (by definition)!

• Optimal solution of the N-puzzle family of problems is 
NP-complete
– Likely exponential increase in computation with N 
– Uninformed search will do very poorly
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8-Puzzle is hard (by definition)!

• Optimal solution of the N-puzzle family of problems is 
NP-complete
– Likely exponential increase in computation with N 
– Uninformed search will do very poorly

• Ditto for the Traveling Salesman Problem (TSP)
– Start and end in Bucharest, visit every city at least once
– Find the shortest tour

• Ditto for lots of interesting problems!
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Example: Missionaries and Cannibals
(3 min discussion)
Problem: Three missionaries and three cannibals are on one 

side of a river, along with a boat that can hold one or two 
people.  Find a way to get everyone to the other side, 
without ever leaving a group of missionaries in one place 
outnumbered by the cannibals in that place

• States, operators, goal test, path cost?
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M&C (cont.)

• Initial state • Goal state
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M&C (cont.)

• Initial state • Goal state

MM M

CC C

MM M

CC C

(3  3  1) (0  0  0)(ML CL BL)
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M&C (cont.)
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C

C
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M&C (cont.)

M MM

C

C

C
(2  2  0)
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M&C (cont.)

• Problem description <{S}, S0, {SGj}, {Oi}, {gi}>
• {S} : { ({0,1,2,3} {0,1,2,3} {0,1}) }
• S0 : (3  3  1)
• SG : (0  0  0)
• g = 1
• {O} : { (x y b) ® (x’ y’ b’) }

• Safe state: (x y b) is safe iff
– x > 0 implies x ≥ y and 

x < 3 implies y ≥ x
– Can be restated as 

(x = 1 or x = 2) implies (x = y)

Operators:
(x y 1) ® (x-2 y 0)
(x y 1) ® (x-1 y-1 0)
(x y 1) ® (x y-2 0)
(x y 1) ® (x-1 y 0)
(x y 1) ® (x y-1 0)
(x y 0) ® (x+2 y 1)
(x y 0) ® (x+1 y+1 1)
(x y 0) ® (x y+2 1)
(x y 0) ® (x+1 y 1)
(x y 0) ® (x y+1 1)
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M&C (cont.)

• 11 steps
• 511 = 48 million states to 

explore

3 3 1

1 3 0 2 2 0 3 1 0 2 3 0 3 2 0
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M&C (cont.)

One solution path:
(3 3 1)
(2 2 0)
(3 2 1)
(3 0 0)
(3 1 1)
(1 1 0)
(2 2 1)
(0 2 0)
(0 3 1)
(0 1 0)
(0 2 1)
(0 0 0)

• 11 steps
• 511 = 48 million states to 

explore

3 3 1

1 3 0 2 2 0 3 1 0 2 3 0 3 2 0



More quizzes: PACMAN

• The goal of a simplified PACMAN is to get to the pellet as
quick as possible.
– For a grid of size 30*30. Everything static.
– What is a reasonable representation of the State, Operators, Goal

test and Path cost?

31



More quizzes: PACMAN with static ghosts

• The goal is to eat all pellets as quickly as possible while
staying alive. Eating the “Power pellet” will allow the
pacman to eat the ghost.

• Think about how to formulate this problem. We will revisit
it in the next lecture.
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Quick summary on problem formulation

• Formulate problems as a search problem
– Decide your level of abstraction. State, Action, Goal, Cost.
– Represented by a state-diagram
– Required solution: A sequence of actions
– Optimal solution: A sequence of actions with minimum cost.

• Caveats:
– Might not be a finite graph
– Might not have a solution
– Often takes exponential time to find the optimal solution

33
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Let’s try solving it anyways!
- Do we need an exact optimal solution?
- Are problems in practice worst case?



34

Searching for Solutions

• Finding a solution is done by searching through the state 
space
– While maintaining a set of partial solution sequences

• The search strategy determines which states should be 
expanded first
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Searching for Solutions

• Finding a solution is done by searching through the state 
space
– While maintaining a set of partial solution sequences

• The search strategy determines which states should be 
expanded first
– Expand a state = Applying the operators to the current state and 

thereby generating a new set of successor states
• Conceptually, the search process builds up a search tree

that is superimposed over the state space
– Root node of the tree « Initial state
– Leaves of the tree « States to be expanded (or expanded to null)
– At each step, the search algorithm chooses a leaf to expand
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State Space vs. Search Tree

• The state space and the search tree are not the same 
thing!
– A state represents a (possibly physical) configuration
– A search tree node is a data structure which includes:

• { parent, children, depth, path cost }
– States do not have parents, children, depths, path costs
– Number of states ¹ number of nodes in the search tree
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State Space vs. Search Tree (cont.)

State space: 8 states
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State Space vs. Search Tree (cont.)

B C CB F

D H G

A D GA D E

B C

A

Search tree (partially expanded)
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Search Strategies

• Uninformed (blind) search
– Can only distinguish goal state from non-goal state

• Informed (heuristic) search
– Can evaluate states
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Uninformed (“Blind”) Search Strategies

• No information is 
available other than
– The current state

• Its parent (perhaps 
complete path from 
initial state)

• Its operators (to 
produce successors)

– The goal test
– The current path cost (cost 

from start state to current 
state)
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Uninformed (“Blind”) Search Strategies

• No information is 
available other than
– The current state

• Its parent (perhaps 
complete path from 
initial state)

• Its operators (to 
produce successors)

– The goal test
– The current path cost (cost 

from start state to current 
state)

• Blind search strategies
– Breadth-first search
– Uniform cost search
– Depth-first search
– Depth-limited search
– Iterative deepening search
– Bidirectional search
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General Search Algorithm (Version 1)

• Various strategies are merely variations of the following 
function:
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General Search Algorithm (Version 1)

• Various strategies are merely variations of the following 
function:

function GENERAL-SEARCH(problem, strategy) returns a solution or failure

initialize the search tree using the initial state of problem
loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

(Called “Tree-Search” in the textbook)
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General Search Algorithm (Version 2)

• Uses a queue (a list) and a queuing function to 
implement a search strategy

– Queuing-Fn(queue, elements) inserts a set of elements into the 
queue and determines the order of node expansion
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General Search Algorithm (Version 2)

function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure

nodes ¬ MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
loop do

if nodes is empty then return failure
node ¬ REMOVE-FRONT(nodes)
if GOAL-TEST[problem] applied to STATE(node) succeeds then return node
nodes ¬ QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))

end

• Uses a queue (a list) and a queuing function to 
implement a search strategy

– Queuing-Fn(queue, elements) inserts a set of elements into the 
queue and determines the order of node expansion
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General Search Algorithm (Version 2)

function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure

nodes ¬ MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
loop do

if nodes is empty then return failure
node ¬ REMOVE-FRONT(nodes)
if GOAL-TEST[problem] applied to STATE(node) succeeds then return node
nodes ¬ QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))

end

• Uses a queue (a list) and a queuing function to 
implement a search strategy

– Queuing-Fn(queue, elements) inserts a set of elements into the 
queue and determines the order of node expansion

“Nodes” is also known as a “frontier” --- the set of states we haven’t yet explored/expanded.
“EXPAND” is known as the “successor function” --- the set of all states that you could expand on.
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• Primary criteria to evaluate search strategies
– Completeness

• Is it guaranteed to find a solution (if one exists)?
– Optimality

• Does it find the “best” solution (if there are more than one)?
– Time complexity

• Number of nodes generated/expanded
• (How long does it take to find a solution?)

– Space complexity
• How much memory does it require?
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How do we evaluate a search algorithm?

• Primary criteria to evaluate search strategies
– Completeness

• Is it guaranteed to find a solution (if one exists)?
– Optimality

• Does it find the “best” solution (if there are more than one)?
– Time complexity

• Number of nodes generated/expanded
• (How long does it take to find a solution?)

– Space complexity
• How much memory does it require?

• Some performance measures
– Best case
– Worst case
– Average case
– Real-world case

*Note that this is not saying it’s space/time complexity is optimal.
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How do we evaluate a search algorithm?

• Complexity analysis and O( ) notation (see Appendix A)
– b = Maximum branching factor of the search tree
– d = Depth of an optimal solution (may be more than one)
– m = maximum depth of the search tree (may be infinite)

• Examples
– O( b3d2 ) – polynomial time
– O( bd ) – exponential time

Search tree
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How do we evaluate a search algorithm?

• Complexity analysis and O( ) notation (see Appendix A)
– b = Maximum branching factor of the search tree
– d = Depth of an optimal solution (may be more than one)
– m = maximum depth of the search tree (may be infinite)

• Examples
– O( b3d2 ) – polynomial time
– O( bd ) – exponential time

b = 2,   d = 2,   m = 3For chess, bave= 35

Search tree
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Breadth-First Search

• All nodes at depth d in the search tree are expanded before 
any nodes at depth d+1
– First consider all paths of length N, then all paths of length N+1, 

etc.
• Doesn’t consider path cost – finds the solution with the 

shortest path
• Uses FIFO queue
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Breadth-First Search

• All nodes at depth d in the search tree are expanded before 
any nodes at depth d+1
– First consider all paths of length N, then all paths of length N+1, 

etc.
• Doesn’t consider path cost – finds the solution with the 

shortest path
• Uses FIFO queue

function BREADTH-FIRST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-AT-END)
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• Time complexity?

• Space complexity?

b = branching factor (require finite b)
d = depth of shallowest solution
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Breadth-First Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

Yes

If shallowest goal is optimal

Exponential: O( bd+1 )

Exponential: O( bd+1 )

In practice, the memory requirements are typically worse 
than the time requirements

b = branching factor (require finite b)
d = depth of shallowest solution
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Depth-First Search

• Always expands one of the nodes at the deepest level of 
the tree
– Low memory requirements
– Problem: depth could be infinite

• Uses a stack (LIFO)



47

Depth-First Search

• Always expands one of the nodes at the deepest level of 
the tree
– Low memory requirements
– Problem: depth could be infinite

• Uses a stack (LIFO)

function DEPTH-FIRST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT)
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Depth-First Search

• Complete?

• Optimal?

• Time complexity?

• Space complexity?

No

No

Exponential: O( bm )

Polynomial: O( bm )

m = maximum depth of the search tree 
(may be infinite)



What is the difference between the BFS / DFS
that you learned from the algorithm / data
structure course?
• Nothing, except:

– Now you are applying them to solve an AI problem
– The graph can be infinitely large
– The graph does not need to be known ahead of time (you only

need local information: Goal-state checker, Successor function)
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Next lecture

• Informed search

• Start game solving / minimax search

• You should:
– Read Chapter 3 of AIMA textbook
– Start working on HW2

51



------------------Supplementary slide-------------

• More examples

• More quiz questions
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Example: MU-Puzzle

• States: Strings comprising the letters M, I, and U
• Initial state: MI
• Goal state: MU
• Operators: (where x stands for any string, including the null string)

1. x I ® x IU “Append U”
2. M x ® M x x “Replicate x”
3. xI I Iy ® xUy “Replace III with U”
4. xUUy ® xy “Drop UU”

• Path cost: one per step
• Try it

– Can you draw the state-space diagram?
– Are you guaranteed a solution?

M I
® M I I
® M I I I I
® M U I
® M U I U
® M U I U U I U
® M U I U U I U U I U U I U
® …


