Artificial Intelligence

CS 165A
Oct 22, 2020

Instructor: Prof. Yu-Xiang Wang

& — Problem Solving by Search
— Search algorithms

Recap of the last lecture

« Three steps in modelling with Bayesian networks
« Inference with Bayesian networks using only CPTs

» Three equivalent ways of describing structures of a joint
distribution

— Factorization <~ DAG < the set of conditional independences

* Prove conditional independence by definition.

Recap of the last lecture

« Reading conditional independences from the DAG itself.

» d-separation

— Three canonical graphs

« Bayes ball algorithm for determining whether X L Z | Y
— Bounce the ball from any node in X by following the ten rules
— If any ball reaches any node in Z, then return “False”

— Otherwise, return “True”

The Ten Rules of Bayes Ball Algorithm

—|

Structure of the course

Probabilistic Graphical Models / Deep Neural Networks

Classification / Regression Search Markov Decision Processes Logic, knowledge base

Bandits game playing Reinforcement Learning Probabilistic inference

Reflex Agents Planning Agents Reasoning agents
Low-level intelligence High-level intelligence

Machine Learning

(Again this idea is adapted from Percy Liang’s teachings) 5

Reflex Agents vs. Planning agent

(illustration credit: Dan Klein)

» Reflex agents act based on immediate observation /
memory; often optimizes immediate reward.

* Planning agent looks further into the future and “try out”
different sequences of actions --- in its mind --- before
taking an action; optimizes long-term reward.

Modeling-Learning-Inference Paradigm

Modeling Learning Inference

Classifier agent Feature engineering Minimize Error rate

(Spam filter) Hypothesis class rivial
Probabilistic Joint distribution
Draw edges in BN Fitting the CPTs Marginalization
Inference agent . :
Conditional with MLE (conceptually easy)
(Sherlock) :
independences

Search agents State-Space- Environment given Nontrivial

& diagram (learn edge weights) search algorithms

Search sequence of lectures

 Today: Finish Graphical models. Start “Search”

e Oct 27: Search algorithms
* Oct 29: Minimax search and game playing
* Nov 3: Finish “search” + Midterm review. HW2 Due.

 Recommended readings on search:
— AIMA Ch 3, Ch 5.1-5.3.

Remaining time today

« Formulating problems as search problems

« Basic algorithms for search

Example: Romania

You’re in Arad, Romania, and you need to get to Bucharest as
quickly as possible to catch your flight.

* Formulate problem
— States: Various cities
— Operators: Drive between cities
 Formulate goal
— Be in Bucharest before flight leaves
* Find solution
— Actual sequence of cities from Arad to Bucharest

— Minimize driving distance/time

10

Romania (cont.)

Arad

™] Oradea

1)

Sibiu

Fagaras

Timisoara

] Lugoj

] Mehadia

Dobreta [

Rimnicu Vilcea

L Craiova

Pitesti
o

Neamt
O
] lasi
7] Vaslui
Hirsova
rziceni
O
' Bucharest
Eforie
] Giurgiu

11

Romania (cont.)

Problem description <{S}, Sy, {S¢g}, {0}, {g}>
{S} — cities (c;)
S, — Arad
S — Bucharest
— G(S) — Is the current state (S) Bucharest?
{O}: {¢i—> ¢, forsomeiand; }
* 8ij

— Driving distance between c; and c;?

— Time to drive from ¢; to ¢;?
- 1?

12

Possible paths

Sibiu
Which is best?

Should we consider cycles? =

Redundant Paths should be eliminated!

Branching Factor and Depth

« If there are b possible choices at each state, then the
branching factor 1s b

 If 1t takes d steps (state transitions) to get to the goal state,
then it may be the case that O(b9) states have to be checked
— b=3,d=5—>b?=243
— b=5,d=10— b?=9,765,625
— b=8,d=15—> b?=35,184,372,088,832

e Ouch.... Combinatorial explosion!

15

Abstraction

* The real world 1s highly complex!
— The state space must be abstracted for problem-solving
« Simplify and aggregate
— Can’t represent all the details

e Choosing a good abstraction

— Keep only those relevant for the problem
— Remove as much detail as possible while retaining validity

16

Problem Solving Agents

« Task: Find a sequence of actions that leads to desirable
(goal) states
— Must define problem and solution
* Finding a solution 1s typically a search process in the
problem space

— Solution = A path through the state space from the initial state to a
goal state

— Optimal search find the least-cost solution
* Search algorithm

— Input: Problem statement (incl. goal)

— OQOutput: Sequence of actions that leads to a solution

« Formulate, search, execute (action)

17

Problem Formulation and Search

 Problem formulation

— State-space description < {S}, Sy, {Sg}, {O}, {g} >
* S: Possible states

So: Initial state of the agent
Sq: Goal state(s)
— Or equivalently, a goal test G(S)
O: Operators O: {S} => {S}
— Describes the possible actions of the agent

 g: Path cost function, assigns a cost to a path/action

« At any given time, which possible action O; is best?

— Depends on the goal, the path cost function, the future sequence of actions....

« Agent’s strategy: Formulate, Search, and Execute
— This 1s offline problem solving

18

State-Space Diagrams

« State-space description can be represented by a state-
space diagram, which shows
— States (incl. initial and goal)

— Operators/actions (state transitions)

_p--®
(@__ —-®<—®
o} ~o

19

Typical assumptions

e Environment is observable
 Environment is static
 Environment is discrete

 Environment is deterministic

20

Example: The Vacuum World

21

The Vacuum World

e Simplified world: 2 grids

States: Location of vacuum, dirt in grids

Operators: Move left, move right, suck dirt

Goal test: Grids free of dirt
Path cost: Each action costs 1

C

LCAQ -

-

S
How many states

for n grids?

C

VRSO

22

Example Problem: 8-Puzzle

5 4 1 2 3

6 1 8 8 4

7 3 2 7 6 5
Start State Goal State

States: Various configurations of the puzzle
Operators: Movements of the blank

Goal test: Goal configuration

Path cost: Each move costs 1

How many states
are there?

91 =362,880

23

8-Puzzle 1s hard (by definition)!

e Optimal solution of the N-puzzle family of problems i1s
NP-complete
— Likely exponential increase in computation with N

— Uninformed search will do very poorly

« Diatto for the Traveling Salesman Problem (TSP)

— Start and end in Bucharest, visit every city at least once
— Find the shortest tour

« Diatto for lots of interesting problems!

24

Example: Missionaries and Cannibals
(3 min discussion)

Problem: Three missionaries and three cannibals are on one
side of a river, along with a boat that can hold one or two
people. Find a way to get everyone to the other side,
without ever leaving a group of missionaries in one place
outnumbered by the cannibals in that place

« States, operators, goal test, path cost?

25

M&C (cont.)

MM e
©©© CloC

3 3 1) M, C; B;)) (000) 2

M&C (cont.)

(M (9
©©

2 2 0)

27

M&C (cont.)

e Problem description <{S}, S, {SGj}, 10;}, {g.}>
« {S}:{({0,1,2,3} {0,1,2,3} {0,1})}

e S: (33 1) o
. perators:

3¢ (0.0 0) (xy 1) = (x-2y0)

* g=1 (xy 1) = (x-1y-10)
© {0} {(xyb) > (XY D)} (xy) > (x3-20)
xyl)—>(x-1y0)
« Safe state: (x y b) 1s safe 1ff (xy1)—> (xy-10)
— x>0 implies x >y and (xy0)—> (x+2y1)

x <3 implies y > x (xy0) > (x+1y+l 1)
— Can be restated as (xy0)—> (xyt+2 1)

xy0)—>x+lyl)
xy0)—>xy+ll)

(x=1orx=2)implies (x =y)

28

M&C (cont.) @
(1392201023020

« 5!1=48 million states to One solution path:
explore (331)
(220)
(321)
(3 00)
G11)
(110)
221)
(02 0)
031)
(010)
021)
(00 0)

11 steps

More quizzes: PACMAN

« The goal of a sitmplified PACMAN 1s to get to the pellet as
quick as possible.
— For a grid of size 30*30. Everything static.

— What is a reasonable representation of the State, Operators, Goal
test and Path cost?

30

More quizzes: PACMAN with static ghosts

« The goal 1s to eat all pellets as quickly as possible while
staying alive. Eating the “Power pellet” will allow the
pacman to eat the ghost.

e Think about how to formulate this problem. We will revisit

1t 1n the next lecture.
31

Quick summary on problem formulation

 Formulate problems as a search problem
— Decide your level of abstraction. State, Action, Goal, Cost.
— Represented by a state-diagram
— Required solution: A sequence of actions

— Optimal solution: A sequence of actions with minimum cost.

* Caveats:
— Might not be a finite graph
— Might not have a solution

— Often takes exponential time to find the optimal solution

Let’s try solving it anyways!
- Do we need an exact optimal solution?
- Are problems in practice worst case?
32

Searching for Solutions

* Finding a solution 1s done by searching through the state
space
— While maintaining a set of partial solution sequences
* The search strategy determines which states should be
expanded first

— Expand a state = Applying the operators to the current state and
thereby generating a new set of successor states

« Conceptually, the search process builds up a search tree
that 1s superimposed over the state space
— Root node of the tree <> Initial state
— Leaves of the tree <> States to be expanded (or expanded to null)

— At each step, the search algorithm chooses a leaf to expand

33

State Space vs. Search Tree

e The state space and the search tree are not the same
thing!
— A state represents a (possibly physical) configuration

— A search tree node 1s a data structure which includes:

* { parent, children, depth, path cost }
— States do not have parents, children, depths, path costs

— Number of states # number of nodes

parent
State || S 4 Node depth =6
g=6
6 1 8
= tale
71l 3l 2 > /N
children

State Space vs. Search Tree (cont.)

State space: 8 states

9@
& -®
Vommmand

35

State Space vs. Search Tree (cont.)

Search tree (partially expanded)
(A
(B (C
(A (D (B & @
® © B ©(E
D @ (G

36

Search Strategies

e Uninformed (blind) search

— Can only distinguish goal state from non-goal state

e Informed (heuristic) search

— (Can evaluate states

37

Uninformed (“Blind”) Search Strategies

 No information is
available other than
— The current state

e Its parent (perhaps
complete path from
initial state)

* Its operators (to
produce successors)

— The goal test

— The current path cost (cost
from start state to current
state)

« Blind search strategies
— Breadth-first search
— Uniform cost search
— Depth-first search
— Depth-limited search
— Iterative deepening search

— Bidirectional search

38

General Search Algorithm (Version 1)

» Various strategies are merely variations of the following
function:

function GENERAL-SEARCH(problem, strategy) returns a solution or failure

initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

(Called “Tree-Search” in the textbook)

39

General Search Algorithm (Version 2)

e Uses a queue (a list) and a queuing function to

implement a search strategy
— Queuing-Fn(queue, elements) inserts a set of elements into the
queue and determines the order of node expansion

function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure

nodes <— MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))
loop do
if nodes 1s empty then return failure
node <— REMOVE-FRONT(nodes)
if GOAL-TEST[problem] applied to STATE(node) succeeds then return node
nodes <— QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))
end

40

How do we evaluate a search algorithm?

* Primary criteria to evaluate search strategies
— Completeness
 Is it guaranteed to find a solution (if one exists)?
- Optimality *Note that this is not saying it's space/time complexity is optimal.
* Does it find the “best” solution (if there are more than one)?
— Time complexity
» Number of nodes generated/expanded
* (How long does it take to find a solution?)
— Space complexity
* How much memory does it require?

e Some performance measures
— Best case

— Worst case <=

— Average case
— Real-world case

41

How do we evaluate a search algorithm?

« Complexity analysis and O() notation (see Appendix A)
— b = Maximum branching factor of the search tree
— d = Depth of an optimal solution (may be more than one)

— m = maximum depth of the search tree (may be infinite)

« Examples Search tree
— O(b’d?) — polynomial time

— O(b?) — exponential time

For chess, b,,= 35 b=2, d=2, m=3

ave

42

Breadth-First Search

« All nodes at depth d in the search tree are expanded before
any nodes at depth d+/

— First consider all paths of length N, then all paths of length N+1,
etc.

« Doesn’t consider path cost — finds the solution with the
shortest path

e Uses FIFO queue

function BREADTH-FIRST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-AT-END)

43

Example

State space graph

Search tree

Queue

(A)

(B C)
(CD)
(DBDE)
(BDE)
(D ED)
(E D)

(D F)

(F)

() 44

Breadth-First Search

Complete? Yes

Optimal? If shallowest goal 1s optimal
o Time complexity? Exponential: O(b**")

. Space complexity? ~ Exponential: O(5**")

In practice, the memory requirements are typically worse
than the time requirements

b = branching factor (require finite b)
d = depth of shallowest solution

45

Depth-First Search

« Always expands one of the nodes at the deepest level of
the tree
— Low memory requirements

— Problem: depth could be infinite
« Uses a stack (LIFO)

function DEPTH-FIRST-SEARCH(problem) returns a solution or failure
return GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT)

46

Example

State space graph

Search tree

Queue

(A)

(B C)
(DC)
(©)
(BDE)
(DD E)
(D E)
(E)

(F)

47

Depth-First Search

« Complete? No
 Optimal? No
 Time complexity? Exponential: O(5™)

+ Space complexity? T olynomial: O(bm)

m = maximum depth of the search tree
(may be infinite)

48

Next lecture

* More on search algorithms

 Heuristic search

« Read Chapter 3 of AIMA textbook

49

 More examples

 More quiz questions

50

Example: MU-Puzzle

e States: Strings comprising the letters M, I, and U
« Initial state: MI

* Goal state: MU
e Operators: (where x stands for any string, including the null string)

1. xI—>xIU “Append U”
2. Mx—>Mxx “Replicate x” M I
3. xIIly—xUy “Replace III with U” —>MII
4. xUUy > xy “Drop UU” — MIITI
—->MUI
« Path cost: one per step - MUIU
] —-MUIUUIU
© Trynt —-»MUIUUIUUIUUIU
— Can you draw the state-space diagram? — ...

— Are you guaranteed a solution?

51

