Artificial Intelligence

CS 165A Oct 27, 2020

Instructor: Prof. Yu-Xiang Wang

Student feedback

- "I am really enjoying the course so far, but I didn't manage to solve all HW1 questions, will it affect my grade? Should I drop the course?"
 - Many people will make mistakes in HW questions, and that is perfectly fine!
 - I give at least 30% A and A- and that's even before adding bonus points...
 - Even if you missed HW1 entirely, you can get partial credits via late submission.
 - So I encourage you to stay on.
- Will the coding part of HW2 4 as difficult as that of HW1?
 - Coding part of HW1 is a substantial project.
 - Coding parts of HW2, HW3 and HW4 will build towards a learning PACMAN
 - They will be of less work (more similar to HW2, but you still need similar conceptual understanding)

Kaiqi will discuss the HW1 this week.

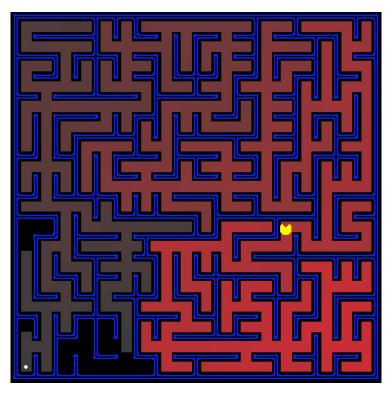
- Many of your have spent hours working on the coding part of HW1
- Now it's the time to get feedback.
- Please attend his discussion section
- Again: attending discussions / watching the TA's videos are very important parts of this course.
 - Feedback wanted on the asynchronous instruction in discussion classes.

Recap: Problem Formulation and Search

- Problem formulation
 - State-space description $\langle \{S\}, S_0, \{S_G\}, \{O\}, \{g\} \rangle$
 - S: Possible states
 - S_0 : Initial state of the agent
 - S_G : Goal state(s)
 - Or equivalently, a goal test **G(S)**
 - **O**: Operators O: {S} => {S}
 - Describes the possible actions of the agent
 - g: Path cost function, assigns a cost to a path/action
- At any given time, which possible action O_i is best?
 - Depends on the goal, the path cost function, the future sequence of actions....
- Agent's strategy: Formulate, Search, and Execute
 - This is *offline* problem solving

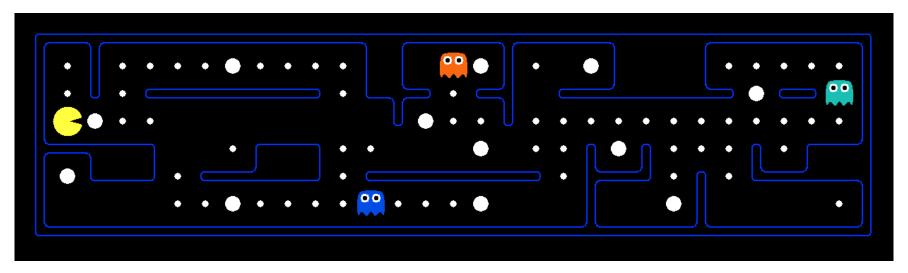
Recap: PACMAN

- The goal of a simplified PACMAN is to get to the pellet as quick as possible.
 - For a grid of size 30*30. Everything static.
 - What is a reasonable representation of the State, Operators, Goal test and Path cost?



Quiz: PACMAN with static ghosts

• The goal is to eat all pellets as quickly as possible while staying alive. Eating the "Power pellet" will allow the pacman to eat the ghost.



- State (how many?)
- Operators?
- Goal-Test?
- Path-Cost?

Recap: General Tree Search Algorithm

- Uses a queue (a list) and a **queuing function** to implement a *search strategy*
 - Queuing-Fn(queue, elements) inserts a set of elements into the queue and determines the order of node expansion

```
function GENERAL-SEARCH(problem, QUEUING-FN) returns a solution or failure

nodes ← Make-Queue(Make-Node(Initial-State[problem]))
loop do
  if nodes is empty then return failure
  node ← Remove-Front(nodes)
  if Goal-Test[problem] applied to State(node) succeeds then return node
  nodes ← Queuing-Fn(nodes, Expand(node, Operators[problem]))
end
```

Recap: Breadth-First Search

- All nodes at depth d in the search tree are expanded before any nodes at depth d+1
 - First consider all paths of length N, then all paths of length N+1,
 etc.
- Doesn't consider path cost finds the solution with the shortest path
- Uses FIFO queue

function Breadth-First-Search(*problem*) **returns** a solution or failure **return General-Search**(*problem*, **Enqueue-At-End**)

Recap: Breadth-First Search

• Complete? Yes

• Optimal? If shallowest goal is optimal

• Time complexity? Exponential: $O(b^{d+1})$

• Space complexity? Exponential: $O(b^{d+1})$

In practice, the memory requirements are typically worse than the time requirements

b = branching factor (require finite b)

d = depth of shallowest solution

This lecture: Search algorithms

- Uninformed search
 - DFS
 - Depth-limited search
 - Iterative Deepening search
 - Bidirectional search
 - Uniform cost search
- Tree search vs Graph search
- Informed Search
 - A*-Search

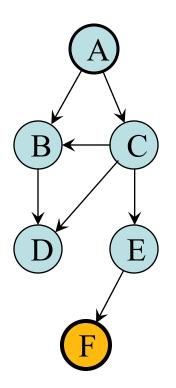
Depth-First Search

- Always expands one of the nodes at the deepest level of the tree
 - Low memory requirements
 - Problem: depth could be infinite
- Uses a stack (LIFO)

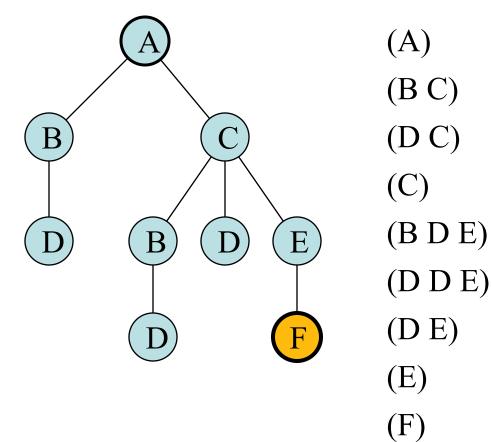
function DEPTH-FIRST-SEARCH(*problem*) **returns** a solution or failure **return GENERAL-SEARCH**(*problem*, **ENQUEUE-AT-FRONT**)

Example

State space graph



Search tree



Queue

Depth-First Search

• Complete? No

• Optimal?

• Time complexity? Exponential: $O(b^m)$

• Space complexity? Polynomial: O(bm)

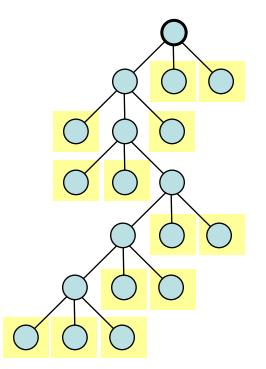
m = maximum depth of the search tree (may be infinite)

What is the difference between the BFS / DFS that you learned from the algorithm / data structure course?

- Nothing, except:
 - Now you are applying them to solve an AI problem
 - The graph can be infinitely large
 - The graph does not need to be known ahead of time (you only need local information: goal-state checker, successor function)

Space complexity of DFS

- Why is the *space* complexity (memory usage) of depth-first search O(*bm*)?
 - Remove expanded node when all descendents evaluated
 - At each of the *m* levels, you have to keep *b* nodes in memory



Example:

$$b = 3$$

$$m = 6$$

Nodes in memory: bm+1 = 19

Actually, (b-1)m + 1 = 13 nodes, the way we have been keeping our node list

Depth-Limited Search

- Like depth-first search, but uses a depth cutoff to avoid long (possibly infinite), unfruitful paths
 - Do depth-first search up to depth limit l
 - Depth-first is special case with limit = inf
- Problem: How to choose the depth limit *l*?
 - Some problem statements make it obvious (e.g., TSP), but others don't (e.g., MU-puzzle, from the supplementary slide last time)

function DEPTH-LIMITED-SEARCH(*problem, depth-limit*) **returns** a solution or failure

return GENERAL-SEARCH(problem, ENQUEUE-AT-FRONT-IF-UNDER-DEPTH-LIMIT)

Depth-Limited Search

l = depth limit

• Complete? No, unless $d \le l$

• Optimal?

• Time complexity? Exponential: $O(b^l)$

• Space complexity? Exponential: O(bl)

Iterative-Deepening Search

- Since the depth limit is difficult to choose in depth-limited search, use depth limits of l = 0, 1, 2, 3, ...
 - Do depth-limited search at each level

```
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution or
    failure
for depth ← 0 to ∞ do
    if DEPTH-LIMITED-SEARCH(problem, depth) succeeds then return result
end
return failure
```

Iterative-Deepening Search

- IDS has advantages of
 - Breadth-first search similar optimality and completeness guarantees
 - Depth-first search Modest memory requirements
- This is the preferred blind search method when the search space is *large* and the solution depth is *unknown*
- Many states are expanded multiple times
 - Is this terribly inefficient?
 - No... and it's great for memory (compared with breadth-first)
 - Why is it not particularly inefficient?

Iterative-Deepening Search: Efficiency

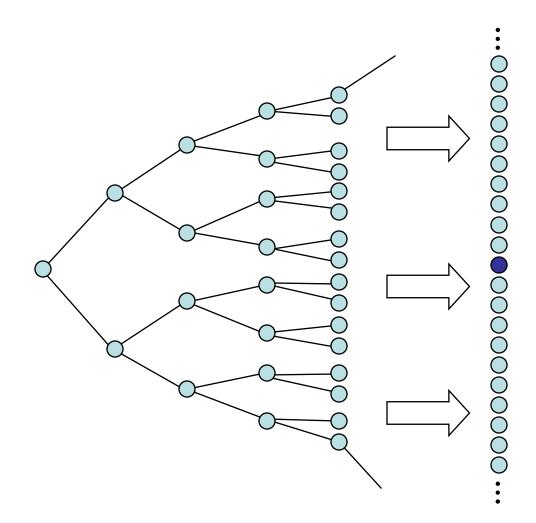
• Complete? Yes

• Optimal? Same as BFS

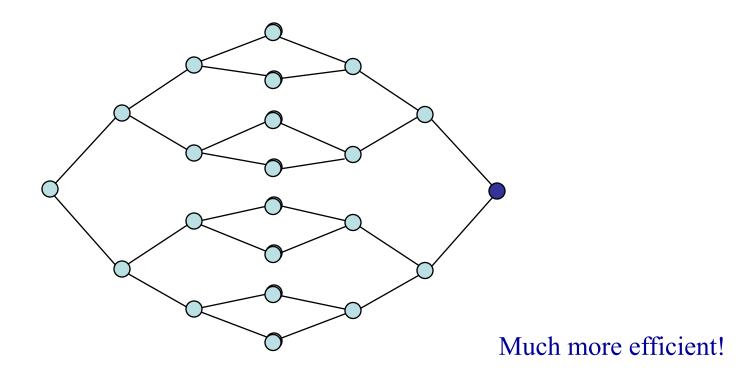
• Time complexity? Exponential: $O(b^d)$

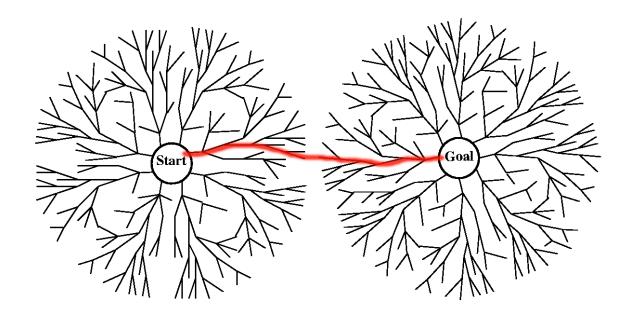
• Space complexity? Polynomial: O(bd)

Forward search only:



Simultaneously search forward from the initial state and backward from the goal state





Example: $4^{10} \approx 1,000,000$ $2*4^5 \approx 2,000$

- $O(b^{d/2})$ rather than $O(b^d)$ hopefully
- Both actions and predecessors (inverse actions) must be defined
- Must test for intersection between the two searches
 - Constant time for test?
- Really a search strategy, not a specific search method
 - Often not practical....

• Complete? Yes

• Optimal? Same as BFS

• Time complexity? Exponential: $O(b^{d/2})$

• Space complexity? Exponential: $O(b^{d/2})$

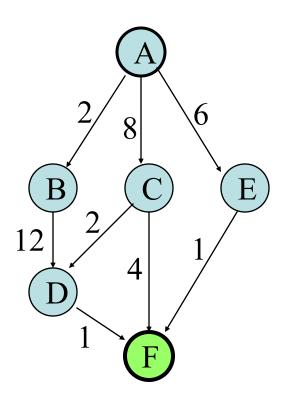
^{*} Assuming breadth-first search used from both ends

Uniform Cost Search

- Similar to breadth-first search, but always expands the lowest-cost node, as measured by the path cost function, g(n)
 - -g(n) is (actual) cost of getting to node n
 - Breadth-first search is actually a special case of uniform cost search, where g(n) = DEPTH(n)
 - If the path cost is monotonically increasing, uniform cost search will find the optimal solution

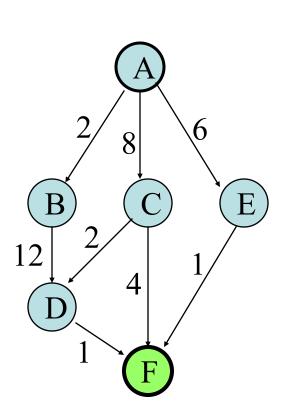
function Uniform-Cost-Search(*problem*) **returns** a solution or failure **return General-Search**(*problem*, Enqueue-In-Cost-Order)

Example (3 min work)



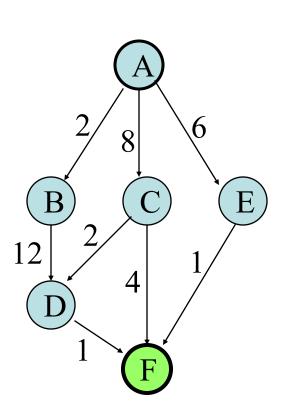
Try breadth-first and uniform cost

Example (3 min work): Breath-First Search



Node to expand: Frontier:

Example (3 min work): Uniform Cost Search



Node to expand: Frontier:

Uniform-Cost Search

C = optimal cost $\epsilon = minimum step cost$

- Complete? Yes, if $\varepsilon > 0$
- Optimal? Yes
- Time complexity? Exponential: $O(b^{\lfloor C/\epsilon \rfloor})$
- Space complexity? Exponential: $O(b^{\lfloor C/\varepsilon \rfloor})$

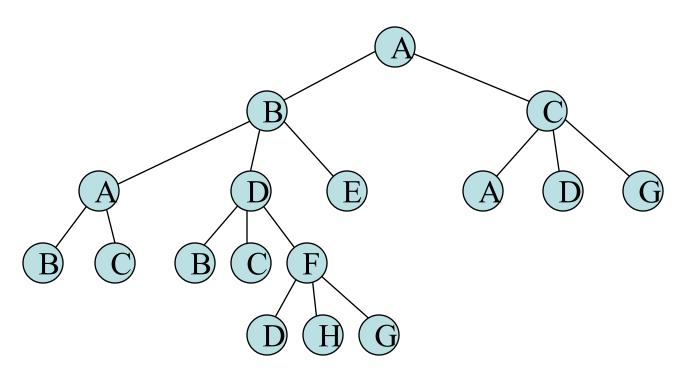
Same as breadth-first if all edge costs are equal

Can we do better than Tree Search?

- Sometimes.
- When the number of states are small
 - Dynamic programming (smart way of doing exhaustive search)

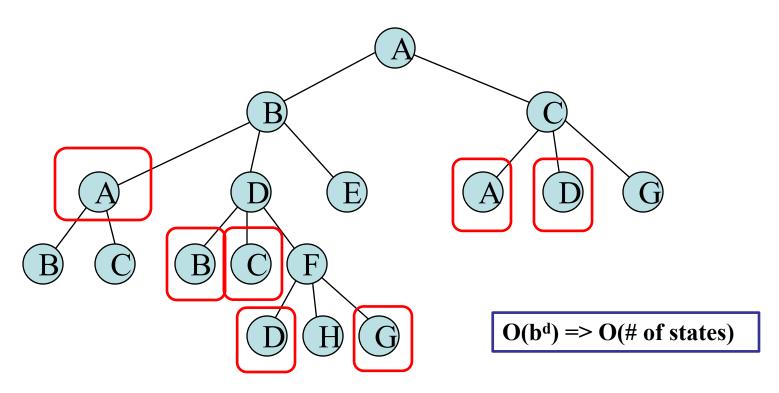
State Space vs. Search Tree (cont.)

Search tree (partially expanded)



Search Tree => Search Graph

Dynamic programming (with book keeping)



Graph Search vs Tree Search

- Tree Search
 - We might repeat some states
 - But we do not need to remember states
- Graph Search
 - We remember all the states that have been explored
 - But we do not repeat some states

Summary table of uninformed search

Criteria	BFS	Uniform-cost	DFS	Depth-limited	IDS	Bidirectional
Complete?	Yes#	Yes ^{#&}	No	No	Yes#	Yes#+
Time	$O(b^d)$	O(b ^{1+[C*/e]})	$O(b^m)$	O(b')	$O(b^d)$	O(<i>b</i> ^{d/2})
Space	O(b ^d)	O(b1+[C*/e])	O(bm)	O(bl)	O(bd)	O(<i>b</i> ^{d/2})
Optimal?	Yes ^{\$}	Yes	No	No	Yes ^{\$}	Yes ^{\$+}

b: Branching factor

d: Depth of the shallowest goal

I: Depth limit

m: Maximum depth of search tree

e: The lower bound of the step cost

(Section 3.4.7 in the AIMA book.)

#: Complete if b is finite

&: Complete if step cost >= e

\$: Optimal if all step costs are identical

+: If both direction use BFS

Practical note about search algorithms

- The computer can't "see" the search graph like we can
 - No "bird's eye view" make relevant information explicit!
- What information should you keep for a node in the search tree?
 - State
 - (1 2 0)
 - Parent node (or perhaps complete ancestry)
 - Node #3 (or, nodes 0, 2, 5, 11, 14)
 - Depth of the node
 - *d* = 4
 - Path cost up to (and including) the node
 - g(node) = 12
 - Operator that produced this node
 - Operator #1

Remainder of the lecture

- Informed search
- Some questions / desiderata
 - 1. Can we do better with some side information?
 - 2. We do not wish to make strong assumptions on the side information.
 - 3. If the side information is good, we hope to do better.
 - 4. If the side information is useless, we perform as well as an uninformed search method.

Best-First Search (with an Eval-Fn)

function BEST-FIRST-SEARCH(*problem*, EVAL-FN) **returns** a solution or failure

QUEUING-FN \leftarrow a function that orders nodes by EVAL-FN return GENERAL-SEARCH(problem, QUEUING-FN)

- Uses a heuristic function, h(n), as the EVAL-FN
- h(n) estimates the cost of the best path from state n to a goal state
 h(goal) = 0

Greedy Best-First Search

- Greedy search always expand the node that appears to be the closest to the goal (i.e., with the smallest h)
 - Instant gratification, hence "greedy"

function GREEDY-SEARCH(problem, h) returns a solution or failure return BEST-FIRST-SEARCH(problem, h)

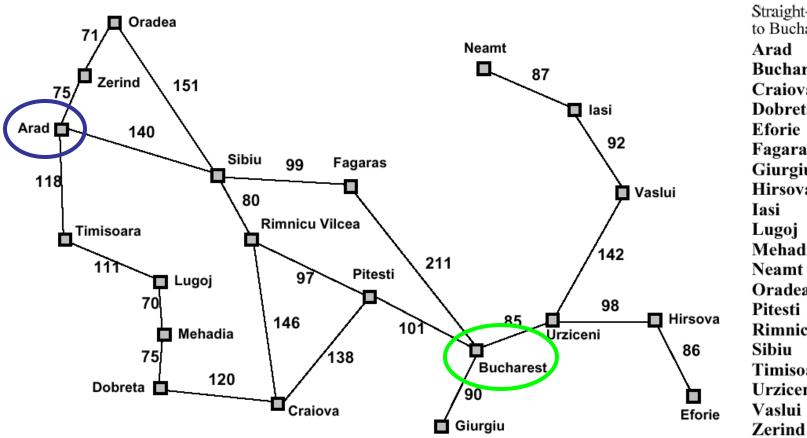
- Greedy search often performs well, but:
 - It doesn't always find the best solution / or any solution
 - It may get stuck
 - It performance completely depends on the particular h function

A* Search (Pronounced "A-Star")

- Uniform-cost search minimizes g(n) ("past" cost)
- Greedy search minimizes h(n) ("expected" or "future" cost)
- "A* Search" combines the two:
 - Minimize f(n) = g(n) + h(n)
 - Accounts for the "past" and the "future"
 - Estimates the cheapest solution (complete path) through node n

function A*-SEARCH(*problem*, *h*) **returns** a solution or failure **return BEST-FIRST-SEARCH**(*problem*, *f*)

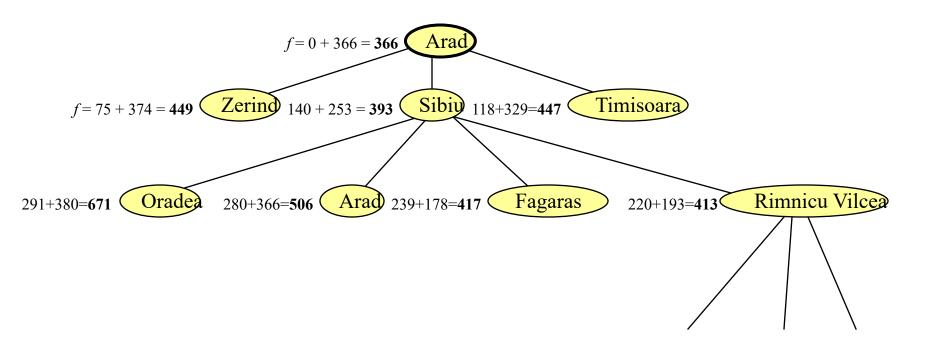
A* Example



straight–line distance o Bucharest	
366	
0	
160	
242	
161	
178	
77	
151	
226	
244	
241	
234	
380	
98	
193	
253	
329	
80	
199	
374	

$$f(n) = g(n) + h(n)$$

A* Example



When does A* search "work"?

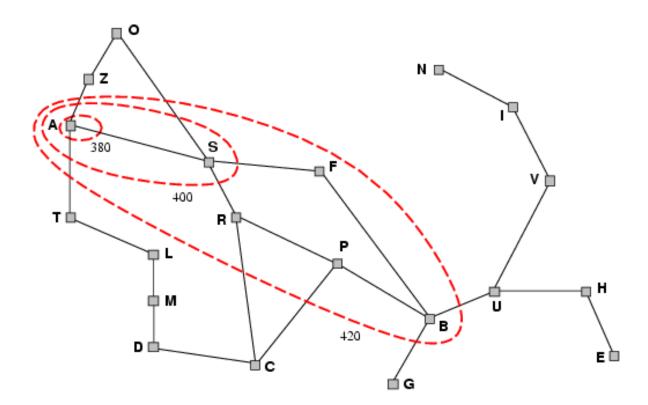
Focus on optimality (finding the optimal solution)

- "A* Search" is optimal if h is admissible
 - h is optimistic it never overestimates the cost to the goal
 - $h(n) \le \text{true cost to reach the goal}$
 - So f(n) never overestimates the actual cost of the best solution passing through node n

Visualizing A* search

- A^* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f=f_i$, where $f_i < f_{i+1}$

•



Optimality of A* with an Admissible h

- Let OPT be the optimal path cost.
 - All non-goal nodes on this path have f ≤ OPT.
 - Positive costs on edges
 - The goal node on this path has f = OPT.
- A* search does not stop until an f-value of OPT is reached.
 - All other goal nodes have an f cost higher than OPT.
- All non-goal nodes on the optimal path are eventually expanded.
 - The optimal goal node is eventually placed on the priority queue,
 and reaches the front of the queue.

Optimal Efficiency of A*

A* is <u>optimally efficient</u> for any particular h(n)That is, no other optimal algorithm is guaranteed to expand fewer nodes with the same h(n).

- Need to find a good and efficiently evaluable h(n).

A* Search with an Admissible h

• Optimal? Yes

• Complete? Yes

• Time complexity? Exponential; better under some conditions

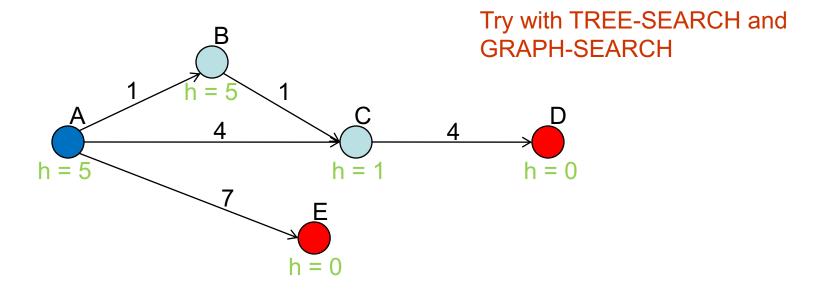
• Space complexity? Exponential; keeps all nodes in memory

Recall: Graph Search vs Tree Search

- Tree Search
 - We might repeat some states
 - But we do not need to remember states
- Graph Search
 - We remember all the states that have been explored
 - But we do not repeat some states

Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?



Graph Search

Step 1: Among B, C, E, Choose C

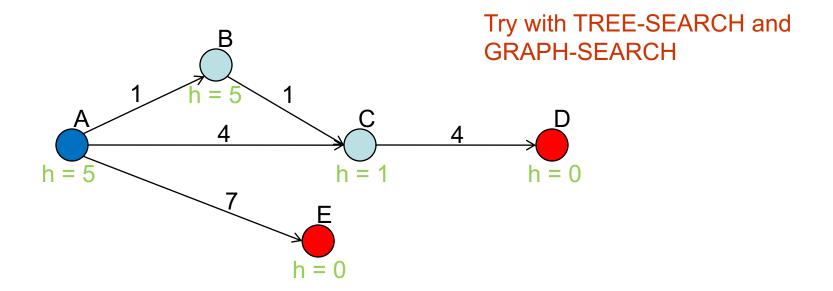
Step 2: Among B, E, D, Choose B

Step 3: Among D, E, Choose E. (you are not going to

select C again)

Avoiding Repeated States using A* Search

• Is GRAPH-SEARCH optimal with A*?

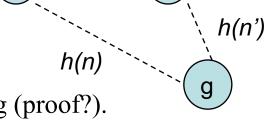


Solution 1: Remember all paths: Need extra bookkeeping

Solution 2: Ensure that the first path to a node is the best!

Consistency (Monotonicity) of heuristic h

- A heuristic is consistent (or monotonic) provided
 - for any node n, for any successor n' generated by action a with cost c(n,a,n')
 - $h(n) \leq c(n,a,n') + h(n')$
 - akin to triangle inequality.
 - guarantees admissibility (proof?).
 - values of f(n) along any path are non-decreasing (proof?).
 - Contours of constant f in the state space
- GRAPH-SEARCH using consistent f(n) is optimal.
- Note that h(n) = 0 is consistent and admissible.



Next lecture

- Examples
- Choosing heuristics
- Games and Minimax Search