Artificial Intelligence

CS 165A
Oct 29, 2020

Instructor: Prof. Yu-Xiang Wang

& — Examples of heuristics in A*-search
€

>
-
]

-
A
-
-4

— Games and Adversarial Search

w7

Recap: Search algorithms

« State-space diagram vs Search Tree

* Uninformed Search algorithms
— BFS/DFS
— Depth Limited Search
— Iterative Deepening Search.
— Uniform cost search.

e Informed Search (with an heuristic function h):
— @Greedy Best-First-Search. (not complete / optimal)
— A* Search (complete / optimal if h is admissible)

Recap: Summary table of uninformed search

Criteria BFS Uniform-cost DFS Depth-limited IDS Bidirectional
Complete? Yes® Yes#& No No Yes® Yes#**
Time O(b9) O(b™+c) O(b™) O(b") O(b) O(b9?)
Space O(b) O(b™+cl) O(bm) O(bl) O(bd) O(b9?)
Optimal? Yes?® Yes No No Yes?® Yes®*

b: Branching factod

d: Depth of the shallowest goal
I: Depth limit

m: Maximum depth of search tree
e: The lower bound of the step cost

#. Complete if b is finite

& Complete if step cost >=e
$: Optimal if all step costs are identical
*: If both direction use BFS

(Section 3.4.7 in the AIMA book.)

Recap: A* Search (Pronounced “A-Star”)

e Uniform-cost search minimizes g(n) (“past” cost)

e Greedy search minimizes h(n) (“expected” or “future” cost)

e “A¥ Search” combines the two:
— Minimize f(n) =g(n) + h(n)
— Accounts for the “past” and the “future”
— Estimates the cheapest solution (complete path) through node n

function A*-SEARCH(problem, h) returns a solution or failure
return BEST-FIRST-SEARCH(problem, f)

Recap: Avoiding Repeated States using A*
Search

* Is GRAPH-SEARCH optimal with A*?

Try with TREE-SEARCH and
GRAPH-SEARCH

Graph Search

Step 1: Among B, C, E, Choose C

Step 2: Among B, E, D, Choose B

Step 3: Among D, E, Choose E. (you are not going to
select C again)

Recap: Consistency (Monotonicity) of
heuristic h

* A heuristic 1s consistent (or monotonic) provided

— for any node n, for any successor n’ generated by action a with
cost ¢c(n,a,n’)

e h(n) <c(nan’) + h(n’) @ cnan) @
— akin to triangle inequality. h(n’)
— guarantees admissibility (proof?). h(n) @
— values of f(n) along any path are non-decreasing (proof?).

« Contours of constant f in the state space

« GRAPH-SEARCH using consistent f(n) 1s optimal.
e Note that h(n) = 0 1s consistent and admissible.

This lecture

« Example of heuristics / A* search

— Effective branching factor
 (Games

 Adversarial Search

Heuristics

 What’s a heuristic for
— Driving distance (or time) from city A to city B ?
— 8-puzzle problem ?
— M&C?
— Robot navigation ?

 Admissible heuristic

— Does not overestimate the cost to reach the goal
— “Optimistic”

Consistent heuristic:

— Satisfy a triangular inequality: ~(n) <c(n,a,n’) + h(n’)

Are the above heuristics admissible? Consistent?

Example: 8-Puzzle

5 4 1 2
6 1 8 8
7 3 2 7 6

Start State Goal State

Comparing and combining heuristics

* Heuristics generated by considering relaxed versions of a problem.
* Heuristic h, for 8-puzzle

— Number of out-of-order tiles
* Heuristic h, for 8-puzzle

— Sum of Manhattan distances of each tile
* h, dominates h; provided h,(n) > h,(n).

— h, will likely prune more than h;.
 max(h;h,, .. h)1s

— admissible if each h; 1s

— consistent if each h; is
« Cost of sub-problems and pattern databases

— Cost for 4 specific tiles
— Can these be added for disjoint sets of tiles?

Effective Branching Factor

* Though informed search methods may have poor worst-
case performance, they often do quite well if the heuristic
1s good

— Even if there 1s a huge branching factor

* One way to quantify the effectiveness of the heuristic: the
effective branching factor, b*
— N: total number of nodes expanded

— d: solution depth
-~ N=1+b"+(b")*+...+(b")

« For a good heuristic, b” is close to 1

11

Example: 8-puzzle problem

Averaged over 100 trials each at different solution lengths

Search Cost Effective Branching Factor
d IDS A*(hy) A*(hy) IDS A*(hy) A*(hy)
2 10 6 6 2.45 1.79 1.79
4 112 13 12 2.87 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 364404 227 73 2.78 1.42 1.24
14 3473941 539 113 2.83 1.44 1.23
16 - 1301 211 - 1.45 1.25
18 - 3056 363 - 1.46 1.26
20 - 7276 676 - 1.47 1.27
22 - 18094 1219 - 1.48 1.28
24 - 39135 1641 - 1.48 1.26
— —
I Ave. # of nodes expanded
Solution length

12

Memory Bounded Search

 Memory, not computation, 1s usually the limiting factor in
search problems

— Certainly true for A* search

 Why? What takes up memory in A* search?

* Solution: Memory-bounded A* search
— Iterative Deepening A* (IDA*)
— Simplified Memory-bounded A* (SMA¥*)
— (Read the textbook for more details.)

13

Summary of informed search

* How to use a heuristic function to improve search

— @Greedy Best-first search + Uniform-cost search = A* Search

 When i1s A* search optimal?
— his Admissible (optimistic) for Tree Search
— his Consistent for Graph Search

* (Choosing heuristic functions

— A good heuristic function can reduce time/space cost of search by
orders of magnitude.

— Good heuristic function may take longer to evaluate.

14

Games: problem setup

Minimax search

Alpha-beta pruning

15

[llustrative example of a simple game (1 min
discussion)

- @
You choose one of the three bins.

| choose a number from that bin.
Your goal is to maximize the chosen number.

- A M) a D
A B C
-50 50 1 3 -5 15
-) \ J - /)

(Example taken from Liang and Sadigh)

Game as a search problem

« S, The initial state
« PLAYER(s): Returns which player has the move
 ACTIONS(s): Returns the legal moves.

« RESULT(s, a): Output the state we transition to.

« TERMINAL-TEST(s): Returns True if the game 1s over.

« UTILITY(s,p): The payoff of player p at terminal state s.

17

Two-player, Turn-based, Perfect information,
Deterministic, Zero-Sum Game

Two-player: Tic-Tac-Toe, Chess, Go!

Turn-based: The players take turns in round-robin fashion.

Perfect information: The State 1s known to everyone
Deterministic: Nothing 1s random

Zero-sum: The total payoff for all players 1s a constant.

The 8-puzzle is a one-player, perfect info,
deterministic, zero-sum game.

» How about Rock-Paper-Scissors?

« How about Monopoly?

* How about Starcraft?

18

Tic-Tac-Toe

« The first player 1s X and the

second 1s O O O

e Object of game: get three of
your symbol 1n a horizontal,
vertical or diagonal row on a

3x3 game board
« X always goes first O O

« Players alternate placing Xs and Os on the game board

« Game ends when a player has three in a row (a wins) or all
nine squares are filled (a draw)

What's the state, action, transition, payoff for Tic-Tac-Toe?
19

Partial game tree for Tic-Tac-Toe

s

X X
X X X
O’sturn 5 =T% X|_| [OIX XIO| [XX
T X -
X|C X’s turn
x/

O'sturn [XIO
E X X’s turn
P

X
: XIO[X
O’s turn X0
XD o
X’'s wins 20

IO

Game trees

* A game tree 1s like a search tree in many ways ...
— nodes are search states, with full details about a position

* characterize the arrangement of game pieces on the
game board

— edges between nodes correspond to moves
— leaf nodes correspond to a set of goals

* { win, lose, draw }

 usually determined by a score for or against player
— at each node 1t is one or other player’s turn to move

* A game tree 1s not like a search tree because you have
an opponent!

21

Two players: MIN and MAX

* In a zero-sum game:
— payoff to Player 1 = - payoff to Player 2

* The goal of Player 1 1s to maximizing her payoff.

* The goal of Player 2 1s to maximizing her payoff as well

— Equivalent to minimizing Player 1’°s payoff.

22

Minimax search

* Assume that both players play perfectly

— do not assume player will miss good moves or make
mistakes

e Score(s): The score that MAX will get towards
the end 1f both player play perfectly from s
onwards.

* Consider MIN’s strategy

— MIN’s best strategy:

* choose the move that minimizes the score that will
result when MAX chooses the maximizing move

— MAX does the opposite

23

Minimaxing

* Your opponent will
choose smaller numbers

MAX 3
e If you move left, your
Your move = / \ opponent will choose 3
MIN 3 -8 * If you move right, your
Opponent's g ../ \oovoeeeeee o\ opponent will choose -8
move » Thus your choices are
7 3 8 50 only 3 or -8

Each move is called a “

* You should move left

ply”. One round is K-plies for a K-player game.
24

Minimax example

Which move to choose?

MAX

MIN

The minimax decision i1s move A,

25

Another example

* In the game, 1t’s your move. Which move will the
minimax algorithm choose — A, B, C, or D? What is the
minimax value of the root node and nodes A, B, C, and
D?

4 ‘ MAX

26

Minimax search

* The minimax decision maximizes the utility under the
assumption that the opponent seeks to minimize it (if 1t
uses the same evaluation function)

 (@enerate the tree of minimax values
— Then choose best (maximum) move

— Don’t need to keep all values around
* Good memory property

e Depth-first search 1s used to implement minimax

— Expand all the way down to leaf nodes

— Recursive implementation

27

Minimax properties

e Optimal?
 Complete?
 Time complexity?

e Space complexity?

Yes, against an optimal opponent, if

the tree 1s finite

Yes, if the tree 1s finite

Exponential: O(b™)

Polynomial: O(bm)

28

But this could take forever...
« Exact search 1s intractable
— Tic-Tac-Toe 1s 9! = 362,880
— For chess, b = 35 and m = 100 for “reasonable” games

— Gois 3611 ~107%

e Idea 1: Pruning

e Idea 2: Cut off early and use a heuristic function

29

Pruning

 What’s really needed 1s “smarter,” more efficient search

— Don’t expand “dead-end” nodes!

* Pruning — eliminating a branch of the search tree from
consideration

« Alpha-beta pruning, applied to a minimax tree, returns
the same “best” move, while pruning away unnecessary
branches

— Many fewer nodes might be expanded

— Hence, smaller effective branching factor
— ...and deeper search

— ...and better performance

« Remember, minimax is depth-first search

30

Alpha pruning

10 B

10 25 15

A%

AN

D

MIN

MAX

31

Beta pruning
<25 MIN

5 /o) /c B WX

VVVVV V.V VIV

Improvements via alpha/beta pruning

« Depends on the ordering of expansion

Perfect ordering () (bm/ 2)

Random ordering () (bSm/ 4)

« For specific games like Chess, you can get to almost
perfect ordering.

33

Heuristic (Evaluation function)

It 1s usually impossible to solve games completely

« Rather, cut the search off early and apply a heuristic
evaluation function to the leaves

— h(s) estimates the expected utility of the game from a given
position (node/state) s

— like depth bounded depth first, lose completeness
— Explore game tree using combination of evaluation function and
search
« The performance of a game-playing program depends on
the quality (and speed!) of its evaluation function

34

Heuristics (Evaluation function)

« Typical evaluation function for game: weighted linear
function

— h(s) = wfi(s) + wafas) + o T wafuls)
— weights * features [dot product]

* For example, 1n chess
- W={1,3,3,5,8}

— F = { # pawns advantage, # bishops advantage, # knights
advantage, # rooks advantage, # queens advantage }

— Is this what Deep Blue used?
— What are some problems with this?

* More complex evaluation functions may involve learning
— Adjusting weights based on outcomes
— Perhaps non-linear functions

— How to choose the features?

35

Tic-Tac-Toe revisited

/‘

a partial game tree
for Tic-Tac-Toe

36

Evaluation function for Tic-Tac-Toe

* A simple evaluation function for Tic-Tac-Toe
— count the number of rows where X can win

— subtract the number of rows where O can win

« Value of evaluation function at start of game is zero

— on an empty game board there are 8 possible winning rows for
both X and O

\“
<

<

<

<
/7

0

37

/ / 8-8

Evaluating Tic-Tac-Toe

evalX = (number of rows where X can win) -
(number of rows where O can win)

o After X moves 1n center, score for X 1s +4
o After O moves, score for X 1s +2
o After X’s next move, score for X 1s +4

X XO >2C§

8-8

0 8-4

1]
N

6-4

I
N

6-2 =4

38

Evaluating Tic-Tac-Toe

evalO = (number of rows where O can win) -
(number of rows where X can win)

o After X moves 1n center, score for O 1s -4
o After O moves, score for O 1s +2
o After X’s next move, score for O 1s -4

X XO >2C§

39

Search depth cutoff

Tic-Tac-Toe with
search depth 2

X

X1 X

6-5=1 5-5=0 6-5=1 5-5=1 4-5=-1

aiifs

5-6=-1 5-5=0 5-6=-1 6-6=0 4-6=-2

Evaluations shown for X

[\

5-4=1 6-4=2

40

Expectimax: Playing against a benign
opponent

e Sometimes your opponents are not clever.
— They behave randomly.

— You can take advantage of that by modeling your opponent.

« Example of game of chance:

— Slot machines
— Tetris

41

Expectimax example

* Your opponent behave
randomly with a given
probability distribution,

Your move mm /\ e If you move left, your

opponent will select

AVERAGE
-2 actions with probability
Opponent’s g ../ N ecccinee /e o 05.0.5
random [0.5,0.5]
move 8 [f you move right, your

opponent will select
actions with [0.6,0.4]

Note: pruning becomes tricky in expectimax... think about why.
42

Summary of game playing

e Minimax search

Game tree

Alpha-beta pruning

« Early stop with an evaluation function

« Expectimax

43

More reading / resources about game playing

* Required reading: AIMA 5.1-5.3

e Stochastic game / Expectiminimax: AIMA 5.5

— Backgammon. TD-Gammon
— Blackjack, Poker

 Famous game Al: Read AIMA Ch. 5.7 (or in the

“Historical notes” of the AIMA 4t Edition)
— Deep blue

— TD Gammon

e AlphaGo: https://www.nature.com/articles/nature 16961

44

https://www.nature.com/articles/nature16961

