Supplementary Material of
Stability of Matrix Factorization for Collaborative Filtering

Appendices

A. Proof of Theorem 2: Partial
Observation Theorem

In this appendix we prove Theorem 2. The proof in-
volves a covering number argument and a concentra-
tion inequality for sampling without replacement. The
two lemmas are stated below.

Lemma A.1 (Hoeflding Inequality for Sampling
without Replacement (Serfling, 1974)). Let X =
[X1, ..., Xn] be a set of samples taken without replace-
ment from a distribution {x1,..xn} of mean u and
variance 2. Denote a £ max; x; and b £ min; z;.
Then we have:

2nt? )
(125 (b—a)”
(A1)
Lemma A.2 (Covering number for low-rank matrices
of bounded size). Let S, = {X € R"*"2 : rank(X) <
r, || X||p < K}. Then there exists an e-net S, for the
Frobenius norm obeying
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> Xi—ul>t) < 2exp(—
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|5'T(e)| < (gK/E)(n1+nQ+1)l,«'

This Lemma is essentially the same as Lemma 2.3 of
(Candes & Plan, 2011), with the only difference being
the range of || X||r: instead of having || X||r = 1, we
have | X || < K. The proof is given in the next section
of Appendix.

Proof of Theorem 2. Fix X € S;. Define the following
to lighten notations

a(x) = ﬁnfmx — D)2 = (E(X)),

u(X) = X =V} = (LX)

Notice that {(XZ ;= ﬁj)Q} ~ form a distribution of nm
ij

elements, u is its mean, and 4 is the mean of || ran-

dom samples drawn without replacement. Hence, by

Lemma A.1:

. 2|Q|mnt?
Pr(a(X)—u(X)| > ) < 2exp( — 1)M2),
(A.2)
where M £ max;;(X;; — }71-]-)2 < 4Kk?. Apply union
bound over all X € S,(e), we have
Pr( sup |a(X) —u(X)| >1t)
XeS,(e)

< 215, (e)|exp (—

2| mnt?
(mn — Q|+ 1)M?

Equivalently, with probability at least 1 — 2exp (—n).

sup Ja(X) — u(X)]
XeS,(e)

M? _ 1 1 1
</ ZZ(n +1o0g |8, - .
_\/ 2 (n +log[Sr(€)]) (|Q| mn + mn|Q|)

Notice that | X||r < +/mnk. Hence substituting
Lemma A.2 into the equation, we get:

sup [@(X) — u(X)]

XeS.(e)
< [MTQ (n+ (m+n+ 1)rlog(9kyv/mn/e))
11 1 2
: (ﬁ “n mn|9|>}
= g(Q)v

where we define £(2) for convenience. Recall that
W(X) = (£(X))? and u(X) = (£(X))?. Notice that
for any non-negative a and b, a®+b*> < (a+b)?. Hence
the following inequalities hold for all X € S,.(e):

(L£(X))? < (£(X))* +€(9Q) < (L(X) + VEQ)?,
(L(X))? < (LX) +E(Q) < (LX) + VEDQ)?,

which implies

sup [£(X) - L(X)] < VEQ).

XeS,

To establish the theorem, we need to relate S, and
Sy(€). For any X € S,, there exists ¢(X) € S, (¢) such



Stability of Matrix Factorization

that:

X —e(X)lr <& [[Pa(X —c(X))llr <6

which implies,

£(X) ~ £(e(X))]
() =V le| < st

= [IX =Vl = e
£(X) — £(e(X)
1

Vil

Thus we have,

[I1Pa(X = D)l = IPafe(X) = V)1#| <

sup |£(X
X€ESy

) = L£(X))|

Substitute in the expression of £(Q2) and take e = 9k,
we have,

sup [£(X) - L(X)]
XeS,
2 i
<9_° (%2nrlog(9kn/e))
o\ 2 €2

<Ck (
jl

for some universal constant C'. This complete the
proof. O

B. Proof of Lemma A.2: Covering
number of low rank matrices

In this appendix, we prove the covering number lemma
used in Appendix A. As explained in the main text
of the paper, this is an extension of Lemma 2.1 in
Candes & Plan (2011).

Proof of Lemma A.2. This is a two-step proof. First
we prove for || X ||z < 1, then we scale it to || X||r < K.

Step 1: The first part is almost identical to that in
Page 14-15 of (Candes & Plan, 2011). We prove via
SVD and bound the €/3-covering number of U, ¥ and
V individually. U and V are bounded the same way.
So we only cover the part for of  x r diagonal singular
value matrix 3.

Now [|X]| < 1 instead of ||| = 1. diag(X) lying inside
a unit r-sphere (denoted by A). We want to cover this
r-sphere with smaller r-sphere of radius €/3 (denoted

by B). Then there is a lower bound and an upper
bound of the (e/3)-covering number N (A, B).
vol(A) - - B B
<N(AB)<N(A,B)=N(A,— — —
vis SNAB) < N(AB) = K45 - )
B, _wol(A+ B/2)
<MA )< — 7
< M( ’2) ~  wol(B/2)

where N(A, B) is the covering number from inside,

)
and M (A, B) is the number of separated points. Set
B

)
B = % — 5 because B is symmetrical (an n-sphere).

1, 1+¢€/6,,
(6/_3) SN(AaB)S( 6/6 )

We are only interested in the upper bound of covering
number:

N(A,B) < (146/e) < (6/e+ —=) = (9/e)"

The inequality is due to the fact that /3 < 1 (oth-
erwise covering set B > A). In fact, we may further
tighten the bound by using the fact that all singular
values are positive, then A is further constrained in
side the first orthant. This should reduce the covering
number to its 2%

Everything else follows exactly the same way as in
Candes & Plan (2011) (Page 14-15).

Step 2: By definition, if | X||p = 1, then a finite set of
(9/€)(m+n2+1r elements are sufficient to ensure that,
for every X € S, it exists an X € S, such that

X - X|r<e
Scale both side by K, we get:
|KX — KX||r < Ke

let 5 = Ke, then the S-net covering number of the set
of | X||Fp= K is:
|S‘T| < (9/6)(n1+n2+1)r _ (gK/ﬁ)(nl—i-ng—i-l)r

Revert the notation back to €, the proof is complete.
O
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C. Proof of Proposition 1: o,,;, bound

In this appendix, we develop proof for Proposition 1.
As is explained in main text of the paper, o,,;n can
be arbitrarily small in general', unless we make as-
sumptions about the structure of matrix. That is why
we need strong incoherence property(Candes & Tao,
2010) for the proof of Proposition 1, which is stated
below.

Strong incoherence property with parameter p,
implies that exist pi, pe < u, such that:

A1 There exists p1 > 0 such that for all pair of stan-
dard basis vector e; and e; (overloaded in both
column space and row space of different dimen-
sion), there is:

r
}<€z‘7PU€j> ——lisy

r
‘<€i;PV€j> - —11':;“ < m
n
A2 There exists po > 0 such that for all 7, j, the ”sign
matrix” E defined by E = UV satisfies:

NG

E; | =
| 4,]| N2W

To interpret Al, again let singular subspace U be de-
noted by a orthonormal basis matrix N, Py = NNT.
If i = j, we have

oo
m

T/
< lmall* = fIng1* < — ==
m

(C.1)

When ¢ # j, we have

LBV, VT
m

- m

Proof of Proposition 1. Instead of showing smallest
singular value of N; directly, we find the 0,,4.(N2)
or ||Nz||, and then use the fact that all oy, (N) =1
to bound i, (N1) with their difference.

Let Ny be of dimension k x r. || Na|| = ||N4]|, so the
maximum singular value equals to max, || N4 u|| with
u being a unit vector of dimension k. We may consider
k a coefficient with k = [c1, co, ...ci]T. Tt is easy to see

LConsider a matrix N with first 7 rows identity matrix
and the rest zero(verify that this is an orthonormal basis
matrix). If no observations are taken from first r-rows of
user y then all singular values of the N; will be zero and
(4) is degenerate.

that ¢f +...+¢c2 = 1.

N3 ul|* = u" NoNg u
:(clan + 02n2T + ...+ cknf)(clnl + cong + ... + cpnyg)
=(Anfny + ...+ cEnfng) + 2 Z cicjniTnJT
i<j
> (@)ymax|ni* + D 2leic;| maxnn;
i=1,....k ! i<j -

<max ni[* + D _(c] + ) maxniny
i<j ’

IN

=max||nil|* + (k1) Y (¢f)maxn]n
K] ’
i=1,...k

= max [|[n;||* + (k — 1) maxn] n;
[ ]

§T+M1\/7_”+(k_1)u1\/7_“_1+km\/7_”
m m m

The second inequality is by a® + b*> > 2ab and last
inequality is by the strong incoherence condition.
Similarly, using the min; |[n;||* and min; ; |[|n;|* we
have a lower bound of [N u[? > L — k:’“T\ﬁ But his
bound is not useful/trivial because it decreases with
the increase of k, which counters the intuition.

Now, we may express the bound of max singular value
sigma in terms of sample rate p of Ny (hence sample
rate of Ny is (1 —p))

P (N2) < (5 (1 pr )

The desired bound on minimum singular value of Ny
is hence 1 — 00 (N2) =1 — (L + (1 — p)ua/7) 2.
O

D. Proof of Proposition 2:0,,;, bound
for random matrix

Proof. Without loss of generality we can assume k > r
(otherwise the theorem holds trivially), and normal-
ize G such that E|G||% = r. Indeed, random matrix
theory (e.g., Rudelson & Vershynin, 2009; Silverstein,
1985; Davidson & Szarek, 2001) asserts that G is close
to an orthonomal matrix, as the following lemma,
adapted from Theorem I1.13 of Davidson & Szarek
(2001), shows:

Lemma D.1. With probability of at least 1 — 2+,

Sl e B
< Omax(G) <1+ \/ng \/@.
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Now let G = < gl ) such that (7 is of dimension k x
2

r. Notice that by Lemma D.1, we conclude that there
exists an absolute constant such that with probability
1— O'm—10

)

1
IG1 = Ni|| < |G = N < /= 4 '/ 222
m m

To see this, take compact SVD of G = USVT, U is
m xr, S and V are both r x r. In particular, U is or-
thonormal and V is a rotation matrix. Let N = UV T,
then N is an orthonormal basis of G. Furthermore,
G- N=USVT —UVT = U(S — Lx,)VT implies
|G = N = [omae(G) —1].

Then using the fact that 1 is again Gaussian random
matrix, we apply Lemma D.1 on G; to obtain

Pr (Umin(Gl) < \/ ﬁ 4/ L — C/\/ bﬂ) < C/milo.
m m m

This implies that with probability 1 — 2C"m =10

Umzn(Nl) > Umzn Gl - ||G1 NIH

E T

E. Proof of Proposition 4: Weak
Robustness for Mass Attack

Proof of Proposition 4. First observe ||(E9”dL)HF <
ky/mn.. Note by assumption, sample rate in F block

is capped at 3p/2, thus || Po(Em )| p < ky/ ZZmne.
Apply Theorem 1, we obtained Frobenious norm error:

1 1 €1

[Alr < —=[Pa(BT ) ||r + (BT || r + ()]
/D

>i

Simplify the equation by absorbing small terms into
constant, we get:

(\/7+1)k,/ ne + Cky/m(n +ne) (nrll(;i

[AlF < Ck
p

N (ng(”))j
By Theorem 3:
HPgnd PN H < \/_HAH

and ¢ is greater than o, — o1 (EgndL).

With condition number x:

Y2 o [Vlle _ /mnE[Yi;[?

op = > = (E.1)

K - I{,\/’[_“ /{\/’]_"
o VBN Poy (B /nB[Y Poy(B)

KT B || g kkn/T\/Tre
nd* nED/Z ] |2
AL L ©2)
Substitute n. into (E.2), we get o, > n'/*o (EgndL)

or rather oy (E9"4") < o, /n'/4. Together with (E.1),

(1 —1/n'/*)/mnE]Y; ;2
NG

§>(1—1/n"Ye, =

It follows that

o [+ (2 oy

_Al=
0 T (1—1/nYY)/mnE[Y; ;2
1 kk r3 10g(n)>i
<(C + E.3
= nl/4 /E|Y;',j|2 ( n (E.3)
3 1/4
< Ckk (7“ log(n)) . (E.4)
VE[Yi;[? pn

To reach (E.3), we substitute n, with its maximum
value, which cancels out the E|Y; ;|2 x, /7 in ¢ and k
as well. (1 —1/n'/*) is absorbed into the constant C.
In the second term in the square brackets, n3/4 is can-
celed out by (mn)'/? with the ratio y/n/m absorbed
i __k

into constant term. Also note that JEVE > 1,
3 log(s

k> 1, %jg(”) > 1, so the second term is larger than
n1—1/4 and we may reach (E.4).

Apply Theorem 4:

1/4
o =yt < R (IR
" Omin E|Yi,j|2 pn
gL 1/4 gL
le* — e < 2Cks|es™ | (rglog(n)) n [[e9™d” |
B min\/ ED/i,j |2 pn Omin
Cllesmd” |
= 0-7.. (E.6)
man

Now let us deal with 0,,;,. By assumption, all user
have sample rate of at least £. By Proposition 2 and
union bound, we confirm that for some constant c,
with probability greater than 1 — cn™'0, oin > \/g
(relaxed by another v/2 to get rid of the small terms)
for all users.
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Summing (E.5) over all users, we get:

Do llyx—yomd

allusers

- (Tglog(n))m >l
Omin E|}/i7]'|2 pn allusers

2V2Ck 31 Ve
< \/_C K (7“ Og(n)> mnED/i,jP
VPE[Y; ;|2 pn

3 1/4
< Curkmm <Lg<n>) ,

p3n

Y* =Ylr =

1/4
so RMSEy < Cikk (%) is proved.

n 1
Similarly from (E.6), RMSEp < c%\/g <
ok

R
O

F. SVD Perturbation Theory

The following theorems in SVD Perturbation Theory
(Stewart, 1998) are applied in our proof of the sub-
space stability bound (Theorem 3).

1. Weyl’s Theorem gives a perturbation bound for
singular values.

Lemma F.1 (Weyl).
|6; — oi| < ||El|2,i=1,...,n.

2. Wedin’s Theorem provides a perturbation bound
for singular subspace. To state the Lemma, we need to
re-express the singular value decomposition of Y and
Y in block matrix form:

S0
R

Y=(L Ly L3y )| 0 % (Rl) (F.1)
0 0 ’
R . . R 21 AO Rl

Y=(Li Ly Ly )| 0 % <R > (F.2)
0 0 ’

Let @ denotes the canonical angles between span(Ly)
and span(L1); let © denotes the canonical angle ma-
trix between span(Ry) and span(Ry).

Also, define residuals:
Z = YR —L%
S = YTi,— &S,

The Wedin’s Theorem bounds ® and © together using
the Frobenious norm of Z and S.

Lemma F.2 (Wedin). If there is a 6 > 0 such that

minlo(21) — o (22)| >0 (F.3)
and R
mino(X1) >0 (F.4)
then
712 SI2
Jisinefz 1 sineyz < WAELISIE g 5

Besides Frobenious norm, the same result goes for || -
|2, the spectral norm of everything.

Lemma F.2(Wedin’s Theorem) says that if the two sep-
aration conditions on singular value (F.3) and (F.4) are
satisfied, we can bound the impact of perturbation on
the left and right singular subspace simultaneously.

G. Discussion on Box Constraint in (1)

The box constraint is introduced due to the proof tech-
nique used in Section 3. We suspect that a more re-
fined analysis may be possible to remove such a con-
straint. As for results of other sections, such constraint
is not needed. Yet, it does not hurt to impose such
constraint to (3), which will lead to similar results
of subspace stability (though much more tedious in
proof). Moreover, notice that for sufficiently large k,
the solution will remain unchanged with or without
the constraint.

On the other hand, we remark that such the box con-
straint is most natural for the application in collabo-
rative filtering. Since user ratings are usually bounded
in a pre-defined range. In real applications, either such
box constraint or regularization will be needed to avoid
over fitting to the noisy data. This is true regardless
whether formulation (1) or (3) is used.
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user axis
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item axis

Figure 1. An illustration of error distribution for Random
Attack, ne = 100, p = 0.3. We can see a sharp transition in
error level from honest user block on the left to the dummy
user blocks on the right, which agrees with the prediction
in Proposition 4 and the discussion in the beginning of
Section 4.
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Figure 2. Comparison of RMSE in Y-block and E-block
for targeted attacks. This is the targeted attack version of
Figure 2. From this figure, we can tell that while Propo-
sition 3 bounds the total-RM SFE, the gap between honest
block and malicious block exists too. This leads to an even
smaller manipulator impacts on honest users.
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Table 1. Table of Symbols and Notations

C, C, Cl,CQ,Cl

04y Omins Omax

m X n ground truth rating matrix.
m X m error matrix, in Section 6
dummy user matrix.

Noisy observation matrix Y=Y+
E.

Optimal solution of (1) Y* =
U* V*T

Refer to optimal solution, noisy ob-
servation, ground truth.

Item index and user index

Rank of ground truth matrix

The set of indices (i, 7) of observed
entries.

Cardinality of set 2.

The projection defined in (2).

[—k, k] Valid range of user rating.
Frobenious norm error ||[Y* — Y|
Denote subspace and complement
subspace
Orthonormal  basis
N, N+

Shortened N with only observed
rows in column ¢

Observed subset of column 14
Projection matrix to subspace N
Projection matrix to shortened sub-
space span(V;)

The gap of RMSE residual in the
proof of Theorem 1.

matrix  of

Loss function in Theorem 2.
Bounded value of || sin(©)|| of The-
orem 3.

The r*" singular value of Y* used
in Theorem 3.

The collection of all rank-r m x n
matrices.

Coherence parameter in Proposi-
tion 1

Sparse parameter in Proposition 3
Matrix condition number used in
Proposition 4
Sample rate
Proposition 4

— 1 ysed in
m(n+ne)

Numerical constants

i, minimum, maximum singular
value.

i'" canonical angle.

Diagonal canonical angle matrix.
Either absolute value or cardinality.
2-norm of vector/spectral norm of
matrix.

Frobenious norm of a matrix.

In Theorem 3 means both Frobe-
nious norm and

spectral norm, otherwise same as || -

[l2-




