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Formulation

What is the problem?

Predict the missing entries of a low-rank matrix, i.e., matrix completion.

minimize
Y

1

2

∥∥∥PΩ(Y − Ŷ )
∥∥∥2

F

subject to rank(Y ) ≤ r .
(1)
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What is the formulation we analyze?

Matrix factorization(MF) that implicitly imposes rank constraint.

minimize
U,V

1

2

∥∥∥PΩ(UV T − Ŷ )
∥∥∥2

F
, (2)

It is a non-convex formulation that is popular in practice, but theory-free.
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Applications

Example (Collaborative filtering/Recommender System)

Predict user preference based on their past ratings.

Emerging CF technology in everyday life.
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Applications

Example (Collaborative filtering/Recommender System)

Taste of users are influenced only by a small number of latent factors.
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Applications

Example (3D Structure from Motion in Computer Vision)

Feature track is usually short and incomplete. Full feature matrix can be
factorized into the multiplication of camera matrix and structure matrix.

The feature matrix and snapshots of Oxford dinosaur sequence.
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Applications

Example (Other applications)

Localization in wireless sensor network

System identification in control

Prediction of missing components in DNA microarray

Common traits of the applications

All can be formulated as low-rank matrix completion problem.

All have researchers who propose to solve by MF (with various
algorithms).

Often with convincing empirical results, despite noisy data.

Yu-Xiang Wang, Huan Xu (NUS) Stability of Matrix Factorization 29 June 2012 7 / 32



Applications

Example (Other applications)

Localization in wireless sensor network

System identification in control

Prediction of missing components in DNA microarray

Common traits of the applications

All can be formulated as low-rank matrix completion problem.

All have researchers who propose to solve by MF (with various
algorithms).

Often with convincing empirical results, despite noisy data.

Yu-Xiang Wang, Huan Xu (NUS) Stability of Matrix Factorization 29 June 2012 7 / 32



Motivation

Title: Stability of Matrix Factorization for Collaborative Filtering.

Why study stability?

Noise and corruptions Real data are subject to noise and corruptions.

Low-rank as an approximation How does MF work when data is not
exactly low rank?

Manipulator problem in CF A nasty yet common problem in commercial
recommender systems. Also called “Shilling attacks”,
“Profile-injection attacks”.

Inherent robustness of MF?

There has been empirical observations that MF is more robust to such
attacks compared to kNN. Is there a reason for this?
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Model of our analysis

Notations

Y ∈ Rm×n: ground truth rank-r matrix

Ŷ = Y + E is the corrupted observation

PΩ: projection to observed matrix entries

Ngnd ∈ Rm×r stands for the r dimensional column space of Y .

Y ∗ = U∗V ∗T , N∗ represents the optimal solutions.

Assumptions

Matrix entry bounded by k .

Sampling is uniformly random.
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Main contributions

A comprehensive analysis of MF stability.

Stability metrics

Overall stability RMSE = 1√
mn
‖Y ∗ − Y ‖F

Subspace stability ‖ sin Θ‖ = ‖ sin(∠(N∗,Ngnd))‖
Individual user stability RMSE (i) = 1√

m
‖y∗i − yi‖2

RMSE bound

{
Noisy matrix completion;
Collaborative filtering (as in Netflix Challenge)

Canonical angle
bound


PCA with missing data;
dimension reduction;
subspace tracking.

Individual
RMSE bound


Incremental algorithms;
New user without recomputing full factorization;
A worst case bound for individual user.
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RMSE Stability

Theorem (RMSE Stability)

There exists an absolute constant C, such that with probability at least
1− 2 exp(−n),

RMSE ≤ 1√
|Ω|
‖PΩ(E )‖F +

‖E‖F√
mn

+ Ck

(
nr log(n)

|Ω|

) 1
4

.

Sample requirement: |Ω| > Θ(nr log(n)) (diminishing sample rate!)

Only a log factor adding to d.o.f. (Arguably best to hope for.)

In general, RMSE ≤ C
′√

1/|Ω|‖PΩ(E )‖F , as long as sample
requirement is met.
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RMSE Stability

Benchmarking our Stability results

Our result: RMSE ≤C
√

1/|Ω|‖PΩ(E )‖F

StableMC[1]: RMSE ≤

√
32 min (m, n)

|Ω|
‖PΩ(E )‖F +

1√
mn
‖PΩ(E )‖F .

OptSpace[2]: RMSE ≤Cκ2 n
√
r

|Ω|
‖PΩ(E )‖2.

Oracle bound: RMSE ≈
√

1/|Ω|‖PΩ(E )‖F .

Our result is optimal up to a constant factor!

[1] Candes, E.J. and Plan, Y. Matrix completion with noise.(2010) Transactions of
IEEE, 98, 925 – 936.

[2] Keshavan, R.H. and Montanari, A. and Oh, S. Matrix completion with
noise.(2010) IEEE Info. Theory, 56, 2980 – 2998.
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Subspace Stability

Theorem (Subspace stability)

When Y is perturbed by additive error E and observed only on Ω, then

there exists a ∆ satisfying ‖∆‖ ≤
√

mn
|Ω|‖PΩ(E )‖F + ‖E‖F +

√
mn |τ(Ω)|,

such that:

‖ sin Θ‖ ≤
√

2

δ
‖(PN⊥

∆)‖; ‖ sin Φ‖ ≤
√

2

δ
‖(PM⊥

∆T )‖,

where ‖ · ‖ is either the Frobenious norm or the spectral norm, and δ = σ∗r ,
the r th largest singular value of the recovered matrix Y ∗, satisfying:

σr − ‖∆‖2 ≤ δ ≤ σr + ‖∆‖2.
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Subspace Stability

Explaining Subspace Stability

Column space and row space are both stable when σr � ‖∆‖
When matrix is well-conditioned, σr is a constant fraction of
‖Y ‖F/

√
r . (very large!)

A better measure for manipulator problem and incremental algorithm.

The result relies on our RMSE stability and perturbation theory of
SVD [3].

[3] Stewart, G.W., Perturbation theory for the singular value decomposition.(1998)
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Individual/Prediction error bound

Theorem (Individual/Prediction error)

Let N1 ∈ R|ω|×r denote the restriction of N ∈ Rm×r on the observed
entries of y . The least square prediction ỹ∗ of y ∈ N gnd via

ỹ∗ = N(NT
1 N1)−1N1y1,

has bounded performance:

‖ỹ∗ − y‖ ≤
(

1 +
1

σmin

)
ρ‖y‖,

where ρ = ‖ sin Θ‖ (as in Subspace Stability Theorem), σmin is the
smallest non-zero singular value of N1 (r th when N1 is non-degenerate).
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Individual/Prediction error bound

Explaining N1 and y1

ỹ∗ = N(NT
1 N1)−1N1y1,
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Individual/Prediction error bound

Explaining Individual/Prediction error bound

To understand

‖ỹ∗ − y‖ ≤
(

1 +
1

σmin

)
ρ‖y‖

ρ = ‖ sin Θ‖2 is bounded by subspace stability.

σmin is bounded under incoherence assumption.

For random matrix σmin ≈
√
|ω|
m =

√
p.

When subspace recovery is good and sample rate is significant,
prediction for for individual users has guaranteed good results.

Exact when subspace recovery is perfect (ρ = 0).
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Manipulator problem revisited

Manipulator injects dummy user profiles to distort the recommendation.

Illustration of manipulator attacks

Yu-Xiang Wang, Huan Xu (NUS) Stability of Matrix Factorization 29 June 2012 18 / 32



Manipulator problem revisited

Attack models[4]

Push attack/Nuke attack

Random attack/Average attack

Bandwagon attack/Segment attack

Love/Hate attack

[4] Mobasher, B. and Burke, R. and Bhaumik, R. and Williams, C. Toward
trustworthy recommender systems: An analysis of attack models and algorithm
robustness.(2007) ACM Tran. Info. Tech. 7, 23.
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Manipulator problem revisited

Attack models here

Targeted Attack Push/nuke targeted s items, otherwise pretend to be
honest user. e = egnd + s with sparse s.

Mass Attack General attacks that do not try any form of camouflage.
e = egnd + egnd

⊥
where egnd and egnd

⊥
are of similar size.

To apply our theorems:

E : Dummy user matrix (of width ne).

Y : Honest user matrix (of width n).

Key concept: Only prediction for Y block matters! We may assign
arbitrary ground truth to E block.
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Manipulator problem revisited

Instead of:

TargetAttack:

MassAttack:
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Robustness of MF to manipulator attacks

Robustness to Targeted Attacks

Proposition 3: MF is strongly robust to Targeted Attacks.

RMSE ≤ 4k

√
smaxne
|Ω|

+ Ck

(
(n + ne)r log(n + ne)

|Ω|

) 1
4

.

Ideas and implications:

The bulk of Targeted Attacks is still inside the true subspace.

When s is small, its impact E gnd⊥
to the recovered subspace is small.

Essentially, RMSE converge to 0 when dimension m increase.

ne can be as large as the number of honest users n.
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Robustness of MF to manipulator attacks

Robustness to Mass Attacks

Proposition 4: MF is only weakly robust to Mass Attacks.

If ne <
√
n

κ2r
(
E|Yi,j |2

k2 ) and |Ω| = pm(n + ne) satisfying p > 1/m1/4

RMSEY ≤ C1κk

(
r3 log(n)

p3n

)1/4

, RMSEE ≤
C2k√
p
,

Ideas and implications:

Idea is that when number of attacks are small, recovered subspace
error ‖ sin(Θ)‖ is small.

Error impact concentrates on E (dummy user) block.

ne can only be a small fraction of
√
n for RMSEY to go to 0

asymptotically.

Yu-Xiang Wang, Huan Xu (NUS) Stability of Matrix Factorization 29 June 2012 23 / 32



Numerical verification

Setting of the simulation

1 Y ∈ R1000×1000, rank(Y ) = 10. E ∈ R1000×ne .

2 Targeted Attack: randomly copy a column of Y , assign 2 ”push” and
2 ”nuke” targets.

3 Mass Attack: random column, assign 2 ”push” and 2 ”nuke” targets.

4 Algorithm: Alternating Least Square (ALS).
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Numerical verification
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Numerical verification

Yu-Xiang Wang, Huan Xu (NUS) Stability of Matrix Factorization 29 June 2012 26 / 32



Numerical verification

Illustration of error distribution of random attacks at ne = 100.
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Conclusions and future works

Conclusions

A comprehensive study of the stability of MF (first of its kind).

A near-optimal stability bound, a subspace stability bound and a
worst-case bound for individual columns.

A insightful illustration of MF’s inherent robustness to manipulators.

Future directions

Theoretical front: Under what conditions can MF reach global
optimal? With which algorithm?

Algorithmic front: Develop robust variation of MF that provably
handles arbitrary attacks.

Yu-Xiang Wang, Huan Xu (NUS) Stability of Matrix Factorization 29 June 2012 28 / 32



Questions and answers

Ask me more at Poster 83 outside the LT.
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Additional slide: Algorithms for MF

Incomplete list of algorithms for MF

Alternating: ALS, PowerFactorization, IRLS;

Second order: Wiberg, Damped Newton, LM X;

Incremental/stochastic: GROUSE/GRASTA;

Convex relaxation: SVT, APG, FPCA, ALM (Not necessarily rank-r)

Other methods: MF-LRSDP(low-rank SDP), LMaFit(Alternating &
SOR-like), OptSpace(SVD-based with theoretical guarantee)
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Additional slide: Algorithms for MF

Performance evaluation MF algorithms

Solution depends on algorithm and initialization.

Factorization/Grassmannian methods empirically performs better
than convex relaxation at the trade-off of losing the global optimality.

Convincing empirical results are demonstrated (LM X, MF-LRSDP
and LMaFit).

Some algorithms have larger basin of convergence (LM X).
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Additional slide: Global optimal assumption

Analysis independent to algorithms

We analyze the global solution of MF-formulation (not specific
algorithm).

We assume that under certain conditions global optimal can be
reached with high probability (at least for some algorithm).

Random low-rank matrices are always exactly completed (in
MF-LRSDP paper).
LM X: 90% of random initializations end up at global minimum on real
noisy SfM data.

Our results might be over-optimistic, but not completely unrealistic.
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