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Abstract

This thesis is devoted to the design and implementation of a vision-based

onboard sensory system of an indoor unmanned aerial vehicle in its autonomous

flight along a colored track. Specifically, attitude, position and velocity of the

indoor helicopter with respect to the track can be efficiently estimated using vision

and inertial measurement at more than 20 Hz on an embedded computer.

The core of the project is the vision-based algorithm that recovers the pose

of helicopter based on vanishing geometry. In particular, vanishing line and a

vanishing point of ground plane are calculated from a set of equally-spaced parallel

lines. By using such geometries, an elegant closed-form expression is derived to

compute the rotation matrix of the camera. This rotation matrix is then used in

a constrained estimation of the camera location. Moreover, a fast line detection

algorithm is proposed where one dimensional edge detections are performed to a

sampled subset of image pixels. In the latest development of the project, readings

of an inertial measurement unit is integrated so as to refine the vision algorithm.

This involves the fusing of pose readings and the estimation of velocity from

position and acceleration via Discrete Kalman Filtering.

The system has been successfully applied to a mini-UAV, codenamed ”Mer-

Lion” in the Singapore Amazing Flying Machines Competition 2011. The UAV

was able to autonomously follow the track and complete a series of tasks on its

own, thus is awarded the overall championship.
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Chapter 1

Introduction

1.1 GPS free: flying in indoor environment

The unavailability of satellite signal in indoor context has forced autonomous

robots, such as unmanned aerial vehicles (UAVs), to seek other forms of local-

ization methods. One possible solution is to use combinations of ultrasonic or

infrared range finders. However, these types of sensors are not suitable for com-

plex environment. Slightly better are the class of more sophisticated sensors such

as laser scanner. Yet, it is not feasible to install these sensors onto the airborne

platform considering their weight and high power consumption. Due to the low

cost and flexibly programmable nature of cameras, vision-based localization has

become a popular choice for researchers and engineers.

1.2 Challenges of an embedded vision system

There are pros and cons in adopting a vision system. While it is light-weighted, low

cost, high resolution and provides rich information, vision algorithms that make

use of such information are usually too bulky to be implemented on embedded

1



environment [2].

To tackle the problem, one common configuration is to transmit the image

frame back to a ground control station (GCS) for processing and then send pro-

cessed results to UAV for flight control and navigation, as in [3, 4]. The perfor-

mance of this configuration depends on the quality of the data-link between UAV

and GCS, hence is subject to electronic interference, traffic jam and physical bar-

riers, such as a wall. More critically, the delay incurred in this method is likely to

cause serious problems in UAV control.

Therefore, the major challenge of developing an vision system for UAV is to

perform everything on-board with the limited power of computation.

Besides the lack of computational power, the uniqueness of indoor UAV flight

poses further constraints to the vision system. They are:

(1) Lack of maneuvering space

(2) Blurry images due to vibration

The lack of space to maneuver limits the size of the UAV to the level of mini-UAV

and micro-UAV. Such constraint severely limits the number of sensors, computa-

tional instruments and batteries that can be carried onboard. The narrow space

also imposes stringent design parameters for controller and the precision of sensor

measurement, e.g. vision measurement.

During indoor flight, quality of the images captured will be influenced by the

severe vibration of the brushless motors and rotor blades. This can be detrimental

to a number of popular image processing algorithms.
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Figure 1.1: ”MerLion” sitting on the colored track

1.3 An efficient vision sensory system

While it is difficult to develop embedded vision system, it is by far the most reach-

able way to attain autonomous flight. Thanks to the works in [3], the platform

design and image capturing utility is available from the very beginning of this

project.

In this thesis, an efficient vision-based sensory system is proposed for UAV’s

indoor autonomous flight along a colored track (see Figure 1.1). This system fea-

tures full onboard processing, recovers the UAV’s attitude and location accurately

and is robust against various fly conditions, such as vibration. Furthermore, it

attains a real-time performance of more than 20 Hz. Major innovations of this

system over the predecessor in [3] is summarized below:

(1) Enlarged field of view

(2) Linear-time robust line detection method

(3) Exact pose and position measurement

(4) Fusing the Inertial Measurement Unit (IMU) readings

(5) Velocity estimation with Kalman Filter

3



Figure 1.2: ”MerLion” winning SAFMC Grand Awards

Figure 1.3: SAFMC 2011

1.4 Singapore Amazing Flying Machine Compe-

tition

To test out the system, this vision-based sensory system is installed on our

mini-UAV and entered for the Singapore Amazing Flying Machine Competition

(SAFMC). This coaxial rotorcraft named ”Merlion” won the overall championship

and most creative award after completing a set of challenges automatically. The

tasks include: A gate, a beam, a hoop, a symbol table to be detected via video

link and a target for releasing payload.
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Figure 1.4: SAFMC Challenges: Category D

1.5 Related works

PixHawk Project The PixHawk project from ETH has been very successful

in embedded computer vision on UAV. Similar to us, they target at indoor

flight and onboard processing. They have provided an entire documentation

of the cross-compilation toolchain and drivers of onboard cameras over the

OpenEmbedded platform. As is pointed out in [3], the PixHawk team is

using exactly the same onboard processor as MerLion, we can hence expect

similar processing capability and performance in both system. It is further

noted that PixHawk team also implemented a track following algorithm

for autonomous flight. Nonetheless, their track is based on some existing

barcode patterns where software that analyzes such patterns efficiently is

readily available online. As PixHawk did not disclose any information re-

garding their vision measurements, The performance comparison of their

system to ours remains unknown.

MAST-Micro Autonomous System Technology Prof. Vijay Kumar and his
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team have developed very impressive indoor maneuvers of UAV [5, 6]. Yet,

their applicability is limited to a special room where the so-called ”indoor

GPS system” is available via the scene reconstruction using multiple cam-

eras. Instead of the ego-centric view where camera is mounted onboard the

robot, MAST’s system requires a god’s eye view of the world.

AVATAR- Autonomous Vehicle Aerial Tracking And Reconnaissance The

USC’s Autonomous Flying Vehicle project has been very successful in de-

veloping UAV’s autonomous flight in urban environment. The 3rd Gener-

ation of their helicopter AVATAR is equipped with a frontal stereo camera

and two fish-eye cameras on the side for optical flow [7]. While they have

shown great capability of combining stereo and optical flow in its vision

measurement system, it is not feasible to implement the same configuration

on MerLion. The size and payload of the AVATAR is sufficient to carry very

powerful computers onboard and interface multiple cameras.

1.6 Organization of the document

The content of this thesis is divided into four parts. In Chapter 1, a brief overview

of the whole system of Merlion will be given with focus on software and hardware

related to the onboard vision system. It follows by Chapter 2 that describes

the vision-based pose estimation and localization where only vision information

is used. Chapter 3 documents the several attempts in fusing IMU and vision

measurement. The results turn out to be ideal in several aspects. Finally, Chapter

4 presents the track following algorithm that is used in the competition.
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Chapter 2

Embedded Platform Design

2.1 Overview of the MerLion

MerLion is a mini scale coaxial rotorcraft designed and built by our group of five

FYP students. It weighs 768 g and is capable of indoor autonomous hovering and

track following operations. The hardware of MerLion is summarized in the fol-

lowing diagram. For details of the chip selections, and performance consideration,

please refer to [8].

The information flow of the system is summarized in Figure 2.2. Essentially,

image captured by the onboard camera is processed by the vision processing sys-

tem and attitude and position of the UAV is extracted from the image. As we

can see in the block diagram, vision processing system can also take in IMU mea-

surement to refine the position estimation. This will be discussed in Chapter 4.
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Figure 2.1: Hardware summary diagram

Figure 2.2: Block diagram of MerLion’s information flow
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2.2 Platform of the embedded vision system

Now let us take a closer look of the platform design for embedded vision system.

In order to realize airborne onboard vision processing, the system must meet the

following criteria.

(1) Fast processing

(2) Light weight

(3) Low power consumption

(4) Support available on the internet

Henceforth, we need a powerful yet small microprocessor, a reasonably well-

performed camera, and a software infrastructure that facilitates the development.

After careful selection, we have decided on the following software and hardware

combinations.

2.2.1 Hardware platform

Microprocessor: Gumstix Overo Fire COM

Relevant specifications of the embedded computer are summarized in Ta-

ble 2.1.

The small size, high performance, low cost and integrated WiFi connectivity of

this computer-on-module (COM) has made it an ideal choice for our application.

Camera: HP DV3000 Webcam

This camera is chosen in an ad-hoc way. The system is not very particular

about webcam specifications, although a large field of view is recommended. In

fact, any USB webcams that are light-weighted and support 320 × 240 frame

capturing at 30 FPS will perform the same in our system.
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Processor Texas Instruments OMAP 3530
Applications Processor:
- ARM Cortex-A8 CPU
- C64x+ digital signal processor (DSP) core

Clock(MHz) 720 MHz
Memory 256MB RAM

256MB Flash
Features OMAP3530 Application Processor

802.11b/g wireless communications
Bluetooth communications
microSD card slot

Size 17mm × 58mm × 4.2mm
(0.67 in. × 2.28 in. × 0.16 in.)

Weight 5.6g

Table 2.1: Gumstix Overo Fire Specifications

Through experiment, we found that the vertical angle of view of this webcam

is about 45 degrees and the horizontal angle of view is about 60 degrees. This is

sufficient for our application.

(a) Gumstix Overo Fire (b) HP Webcam on DV3000 Laptop

Figure 2.3: Illustration of hardware
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2.2.2 Software platform

Operating system and cross compilation toolchain

The operating system (OS) is the core of the software platform as it includes a

complete set of hardware drivers, resource manager, file system and toolchain for

software development etc. In this project, GNU/Linux is the choice. We choose

this OS for three reasons. It is free, well-supported online and the drivers to all

hardware of interest are readily available in the latest kernel build.

This project adopts a customized version of Linux OS which is compiled and

built completely from source packages. The procedure is automated by the Auto

Cross Embedded Linux From Scratch (ACELFS). Although through time, certain

links are broken and some packages are updated to new version, the build script

of ACELFS is still of great convenience once a few tweaking here and there are

done correctly. Details of ACELFS can be obtained in its developer’s thesis [cite

Jun Jie].

It is further noted that besides a Linux OS, ACELFS also constructed a cross-

compilation tool chain for Overo Fire COM’s ARM processor. With this set of

cross-compilation tools, prefixed ”arm-unknown-linux-gnueabi-”, we can develop

software on common desktop or laptop with i386 architecture and build it for

running on ARM architecture. This approach is faster, less invasive and much

more developer-friendly. In fact, we have set up this cross-compilation tool chain

in Eclipse IDE, which greatly simplified the management of large software project.

An illustration of the cross compilation and the cross development cycle are given

in the following two diagrams.
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Figure 2.4: Illustration of different types of compilation

Figure 2.5: Illustration of cross development of software
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Open source packages used

OpenCV [9] The best open source computer vision library in C and C++.

Implementations of image data structure, matrix manipulation as well as

singular value decomposition are used intensively in this project.

Levmar [10] This is an efficient C++ implementation of Levenberg Marquadt

Optimization. It is used for non-linear refinement in this project.

Matlab camera calibration toolbox [11] Excellent toolbox for camera cali-

bration using matlab. It has an intuitive GUI and many options for ad-

vanced level configuration. It is used for off-line calibration of camera’s

intrinsic parameters.

V4L2 API While Video for Linux Two library is provided in Linux kernel, mak-

ing use of the driver to capture frame in user-defined program requires the

source code of this package. According to the discussion in [3], opencv’s

grabbing function cvQueryFrame is much slower and less stable compared

to v4l2.

2.3 Video link and GCS development on iPad

To monitor the flight state of UAV and to assist the testing of vision algorithms,

a ground control station (GCS) is developed on a favorite platform: iPad(see

Figure 2.6). Details of the iPad development and explanations of its functionality

are available in [12]. The focus of this section will be on the smart interface

between iPad and UAV, which consists of (1) Video link (2) Online tuning of

HSV parameters (3) Dispatching/receiving high level command.

13



Figure 2.6: Apple’s new tablet PC: iPad

Figure 2.7: Illustration of iPad GCS app

2.3.1 Video Link

Unreliable data link

802.11g WiFi connection is the obvious choice considering its availability on Gum-

stix, signal range and the build-in robustness of this protocol. Yet, in real condi-

tions, especially in a public place where dozens of WiFi access points and ad-hoc

devices are filling the frequency, the QoS of this wireless link can deteriorate signif-

icantly. In order not to influence the performance of the vision processor, UDP is

adopted over TCP/IP, because in UDP, no handshaking and error retransmission

are enforced.
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Error in transmission

In case of error in transmission or temporary broken data link, UAV side will not

be affected at all. It will continue to transmit images as if there is no problem. This

ensures the immediate recovery of video display at GCS side once the connection

is restored.

Live video feed at 4-5 FPS

In our design, the vision processor will compress an image frame into JPEG and

transmit it back to GCS every 5 processed frames, which renders a live video feed

of about 4 FPS on iPad display. This frequency is chosen such that it does not lag

the vision measurement, yet appears smooth on the live video feed. Experiments

have shown that the bottleneck of this video link is not the capacity of the wireless

link but rather the image compression.

2.3.2 Online tuning

The second important augmentation of the iPad GCS to UAV is the online tuning

mechanism of image processing parameters. In the tuning mode, parameters can

be tuned online by simply scrolling the bar up and down on the touch screen until

the ideal outcome is displayed on the video feed. This ensures easy adjustment

of thresholds in different lighting conditions. An illustration of this function and

why it is useful will be discussed in the Chapter 3.

2.3.3 High level command

Lastly, iPad GCS is able to control the UAV in semi-autonomous mode, which

means to control the UAV motion manually without affecting its inner stability.
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High level instruction is send to UAV based on the accelerometer measurement of

the iPad. In this way, pilot holding the iPad is just like holding the swashplate of

the helicopter directly.

2.4 Onboard Communication of devices

Onboard of MerLion, communications between devices are required to convey

sensor measurements to controllers. Specifically, both vision and control proces-

sors demands measurements of IMU and vision processor need to pass the vision

guidance to control processor. Unlike the communication to GCS, onboard com-

munication requires high level of reliability. Thus it must be carried through a

wired connection and adopt certain error checking mechanism. To cater the need,

a simple packet structure is designed (see Table 2.2).

header size Data payload ChecksumA ChecksumB

Table 2.2: Serial Packet Structure

UART serial communication is chosen because of its availability on all devices.

On the vision processor for instance, interface to the serial device and the data

buffer have been taken care of by Linux kernel. All we have to do is to read/write

the Tx/Rx buffers. The serial port settings are summarized in Table 2.3.

However, there is still a challenge: the sample rates of devices are different!

While ArduIMU and control processor runs at 50 Hz, vision processor can only

reach an average of 23 Hz. If the asynchronous behavior is not reconciled nicely,

either will the system suffer substantial delay and eventually cause buffer overflow,

or will the waiting time for new packet lengthened the running time per iteration.

Something must be done.
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Settings Flags Explanation
Baud rate B38400 38400 baud per second
Control options ∼PARENB 8N1: no parity,
(c cflag) ∼CSTOPB 1 stop bit

∼CSIZE
CS8 8 data bit,
∼CNEW RTSCTS Disable hardware flow control

Local Options ∼ICANON Set RAW mode input
(c lflag) ∼ECHO Disable echo

∼ECHOE
∼ISIG Disable special signals

Input Options IGNPAR Ignore parity
(c iflag) IGNBRK Ignore BREAK

IGNCR Ignore carriage return
Output Options ∼OPOST Set RAW mode output
(c oflag)

Table 2.3: Setting Serial port for RAW mode datalink

Figure 2.8: Illustration of inhomogeneous sample rate
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To solve this problem, we came up with two separate algorithms to receive

UART stream. Steps of the algorithms are summarized in the charts below. Using

these algorithms, all communications are carried out in an up-to-date, polling

manner.

IMU to Vision (High to Low)

(1) Read everything in the serial buffer to array buff[512].

(2) Search the array for packet header ”DIYd”, keep track of the latest two
detections.

(3) Try reading the last packet.

If it is complete and passed the checksum, go to (5) else proceed to (4).

(4) Try reading the second last packet.

if it passed the checksum, proceed to (5), else return failure.

(5) Save the packet read and return success.

Vision to Control (Low to high)

Declare a global FIFO queue structure of bytes using array.

For every loop:

(1) Read everything in serial buffer and push into the queue.

(2) Search for packet header from the head of queue. if found, go to proceed to
(3), else empty the queue and return failure.

(3) Try read the packet, if packet not complete, return failure;else if checksum
fail go to (4), else go to (5).

(4) Pop the packet and go to (2).

(5) Save the packet, pop the packet from queue and return success.
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Chapter 3

Vision-based pose estimation and

localization

3.1 Background

3.1.1 problem description

As is described in the introduction, the purpose of the vision sensory system is to

compensate the loss of GPS signal in indoor environment. To perform the same

function as GPS, frames captured by a camera must be processed in a way such

that the location and orientation of the camera can be extracted. This is often

characterized as the camera calibration problem for extrinsic parameters, which is

not easy in general unless certain assumptions are made about the environment,

such as known corner locations or orthogonality of lines.

Self-localization in an unknown environment is generally termed vision-based

Simultaneous Localization and Mapping (Vision SLAM) where a map of the envi-

ronment and robot’s location within the environment is computed simultaneously.

This is usually carried out via stereo [13], multiple view or structure from motion,
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Figure 3.1: Illustration of the colored track

e.g. monoSLAM [14]. In theory, it is possible to reconstruct the 3D model of an

environment up to projective ambiguity for uncalibrated camera and up to metric

ambiguity for calibrated camera [15]. We will not be able to discuss this general

case in this thesis.

In this problem, we are looking at a fixed pattern on the ground plane with

its metrics given a priori. Given this RGB colored track on the floor (see Fig-

ure 3.1), onboard vision system should be able to give measurements about UAV’s

heading, height and lateral displacement with respect to the track. In fact,

as will be shown later in this chapter, it is possible to recover five out of the six

extrinsic parameters of the camera given the simple geometry as in Figure 3.1.

The only missing value is the longitudinal position along the track which is not a

well-defined value anyway given the reference structure.

3.1.2 previous work

Two former students have worked on this subject in 2009 and 2010. They came

up with the following two designs:

Vision Positioning System of ”PetiteLion” [4] This system adopts various
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image processing techniques such as HSV color segmentation, morphologi-

cal filtering, Canny Edge Detection and Hough transform for line detection.

While it is workable, the high computational cost forced the system to pro-

cess image remotely at GCS.

Onboard Vision Navigation System of ”KingLion” [1] This system features

a highly efficient line extraction method by considering only the boundary

of the image frame (illustrated in Figure 3.2). The corresponding threshold

of 1D edge detection is selected adaptively via entropy minimization which

yields a degree of robustness against change in lighting conditions. The

drawbacks are obvious too. As is shown in Figure 3.3, defects or reflections

at critical region(the image boundary) will cause the algorithm to fail.

Figure 3.2: Illustration of line detection in [1]

Despite their difference in image processing algorithms, the two systems share

the same limitations.

(1) Small field of view, easy to lose target.

(2) Use only middle band of the track, failed to exploit all information from the
track.
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Figure 3.3: Illustration of possible failures in [1]

(3) Ambiguity between θ and y.

(4) Near hovering assumption: Limited applicability on coaxial rotorcraft.

(5) Measurements are qualitatively correct,but not theoretically plausible.

3.1.3 The new method and vanishing geometry

To overcome these limitations, we propose a simple and direct solution:

Look forward

By placing the camera somewhat towards the frontal direction, a larger portion

of the track can be captured in image frame (illustrated in Figure 3.4). Since the

track far away from camera is more stable in image, they are less likely to deviate

outside the image frame. Also, we can make use of the perspectivity to compute

the geometric features at the infinity such that the estimation of position and

orientation can be done in a decoupled way.
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Figure 3.4: Looking forward broadens the robot’s horizon

To do this, the geometry of vanishing point and vanishing line plays an impor-

tant role.This is because because points at infinity are invariant to the Euclidean

translation of view point, which is intuitive as we all have the experience on the

train that the mountains far away move slower than the trees along the railway.

Towards infinity, for instance the moon, almost remain stationary as we walk.

Not surprisingly, vanishing features can be used to extract the camera pose.

Various researchers have worked on vanishing point and line. Wang and Tsai

transformed vanishing line directly to roll angles in [16], but extra information

was required to uniquely determine yaw and pitch. Vanishing points were also

used for pose estimation in [17–19], but they required the points to be pointing at

orthogonal directions. In addition, a pose estimation using single vanishing point

normal to ground plane was proposed by Xu in [20]. Yet, it recovers only pitch

and roll.

Although aforementioned works identified the importance of vanishing geom-

etry, they failed to address the common situation where only one vanishing point

is available in the image,e.g. road following.This is exactly the case in our sit-

uation where the UAV is to fly autonomously according to the colored track on
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Figure 3.5: Perspectivity: vanishing geometry of Uffizi Museum, Florence

the floor (illustrated in Figure 3.1). Though in a sense, vision path following is

considered as a solved problem, the existing approaches do not require explicit

recovery of the camera pose [21–23]. The concept of vanishing point was only

used to provide heading feedback [23]. Even for the visual servoing of the UAV,

near hovering assumptions (zero pitch and roll angles) are being made, such as

in [1, 4, 24]. The near hovering assumption might be reasonable for low-speed

coaxial rotors with self-balancing hardware, but is not valid for quad-rotor and

conventional helicopter.

In this chapter, we describe an efficient algorithm to estimate UAV pose as well

as vertical and lateral displacement with respect to the track in Figure 3.1. An

elegant closed-form expression of rotation matrix using vanishing point and line

is derived, which reveals the underlying connections between pose and vanishing

geometry. The rotation matrix is further applied in a constrained estimation of
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the camera’s external matrix, in which the lateral and vertical displacement of

the camera relative to the track are found by solving a system of over-determined

linear equations. The measurements obtained will provide essential information

for accurate control of the UAV and facilitate various autonomous tasks. Further-

more, the algorithm described in this chapter is accepted for poster presentation

at the IAPR Conference of Machine Vision Application [25]. A large portion of

this chapter will be identical to that paper, but with more explanations.

3.1.4 Interlude: pinhole camera model

As a small interlude, we will describe the pinhole camera model in computer

vision. This model will be used intensively in the remaining part of the thesis.

Pinhole camera model regard a camera as a simple perspective projection from

3D world to 2D plane. As in (3.1), the homogeneous representation of 3D world

point x = [x y z 1]T is projected to the 2D point X = [X Y 1]T.

X ∝K[R|t]x = Px (3.1)

where P is a 3× 4 projection matrix.

K =


fx s cx

0 fy cy

0 0 1


is the intrinsic matrix, and

M = [R|t]
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encapsulates the extrinsic parameters which include position and orientation of

the camera.

R is the rotation matrix and t is a 3× 1 translation vector.

Let the camera center in world frame be C̃, t = −RC̃.

Strictly speaking, (3.1) is only correct for camera obscura (without lens), but in

reality, this model describes modern cameras just as well given thin lens assump-

tion. Minor image abberations and lens distortion are usually ignored, though

there exist methods to rectify these distortions. In this thesis, only radial distor-

tion is considered.

3.2 Image Processing and Feature Extraction

3.2.1 Linear-time Line extraction

The high complexity of Canny edge detection and Hough Transform makes it

unsuitable for onboard processing. In this particular case where a track of colored

bands is available, much more efficient algorithms can be expected. Recall that the

method described in [1]extract lines by performing 1D edge detection on the outer

boundary of the image(see Section 3.1.2). It lowers the complexity significantly

but its results are vulnerable to various scenarios. Inspired by the idea, we come

up with a more reliable algorithm.

The steps are summarized below:

(1) Binary search for the top-most horizontal pixel sequence that contains [Green
Red Blue] pattern;

(2) Take samples evenly in the lower half of image;

(3) Preprocess each sample, perform 1D edge detections and then search for the
segment groups that contain [Green Red Blue] pattern;
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(4) Rectify radial distortion;

(5) Fit line using least square methods;

(6) If the error is above a threshold, RANSAC is triggered. The line is then fit
again with outliers excluded.

1D Edge Detection

1D Edge Detection is the fundamental building block of this line extraction

method.

Almost exactly the same gradient-based edge detector as in [1], except that we

added a pre-processing step, which eliminated the need of adaptive thresholding.

While the authors of [1] claims its adaptive thresholding approach to be robust

against change in lighting condition, it can only robustly detect the two lines in

the middle. This is not acceptable in this application.

For the pre-processing step, an HSV domain color segmentation is developed.

A set of properly tuned thresholds can segment the image nicely such that the

edge detection becomes trivial. An illustration of the color segmentation is given

in Figure3.6. Note that for illustration purposes, the algorithm is applied to the

entire image instead of only the sampled strip of pixels.

Indeed, this HSV color segmentation is sensitive to lighting conditions. Thus

it must be tuned for every environment the UAV flies in. As the lighting in-

frastructure is usually fixed for a particular indoor environment, this approach is

good enough. For easy tuning of the HSV parameters, an App is developed on the

iPad GCS. The App features real-time display of processed images while the user

modifies a particular value by simply scrolling a bar on the touchscreen. With this

App, tuning of HSV parameter can be done in seconds. Details of the iPad GCS

development can be found in [12]. In fact, implementing the HSV color segmenta-

tion yields further significance. It helps the system to handle blurry images, in a
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(a) original image (b) pre-processed image

Figure 3.6: Illustration of color segmentation.

sense that this color segmentation will automatically identify a good edge within

the overlapping regions of two colors. As we’ll show later, the simulation result

confirms the system robustness against vibration.

RANSAC line fitting

RANSAC is a generic algorithm in fitting a particular model with data that

contains large outliers. It is used here to eliminate outliers and attain a more

better line fitting results in case of track and image defects. An illustration is

available at Figure 3.7(b), in which the fourth and last two samples of the right

most line are excluded from the computation of the line.

Implications in efficiency

There are several implications on efficiency within this new algorithm. First of all,

sampling the image downsizes the image from 320×240 to 320×k, where k is the

number of samples. This reduces the two-dimensional problem to a multiple of

one-dimensional ones. Secondly, the process of undistortion can now be performed

only to the points of interest. Thirdly, RANSAC is less taxing with small k. It is

even feasible to try out all combinations. Lastly, compared to Hough Transform,

28



(a) Edge detection (b) RANSAC line fitting

Figure 3.7: Illustration of line segmentation.

this method saves the trouble in filtering and reordering of detected lines. In

overall, this line detection algorithm retains a complexity of O(n) when k is small

and is thus an ideal method in our application.

3.2.2 Finding the Vanishing Point and Vanishing Line

The next step is to calculate the vanishing point and vanishing line from the lines

we obtained.

Vanishing Point

In theory, parallel lines should intersect at one single vanishing point on image.

However, due to the noisy real image, this is often not the case (see Figure 3.8(a)).

To solve this numerical problem, we first apply normalized direct linear trans-

formation (DLT) to formulate the problem into a system of linear equations. Then

we apply SVD to find a linear least square solution that minimizes algebraic error.

This algebraic error, however, does not attain the actual optimal. If we connect

the intersection point and the middle point of each detected line segment and form

a new line, a better cost function will be the sum of squared pixel distance between

one end point of the line segment to the new line (illustrated in Figure 3.8(b)). To
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(a)The over-determined problem.

(b)Minimizing geometric error.

Figure 3.8: An illustration of finding vanishing point.
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minimize this geometric error which is non-linear, we apply Levenberg-Marquadt

optimization and iteratively refine the solution. In this way, we obtained a better

set of lines and an optimal intersection point simultaneously.This method is the

gold standard method in computer vision described in [15].

Vanishing Line

According to [26], vanishing line can be expressed analytically with three coplanar

equally-spaced parallel lines. With four such lines on ground planes in our case, the

problem can be formulated into an over-determined system of linear equations.

Nonetheless, such formulation is not explicitly disclosed in that paper. Hence,

our formulation will be presented here as an example of applying Schaffalitzky’s

findings [26].

A group of parallel lines can be expressed in standard form:

Lλ : ax+ by + λ = 0

or its normal vector Lλ in matrix form:

Lλ =


0 a

0 b

1 0


(
λ

1

)
(3.2)

which defines a projection from 1D projective space P1 to 2D projective space

P2. By the definition of projective space, this relation is invariant to projective

transformation (homography). Note that when λ equals to consecutive integers,

the line group has equal spacing. Define M−T to be the line transformation matrix

between world plane and image plane. By multiplying M−T on both side of (3.2),
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we obtain a projection matrix from points in P1 to images of Lλ.

A = M−T


0 a

0 b

1 0


Also note that the first column of the projection matrix in (3.2) is the vanishing

line in P2, then the first column of A is the vanishing line in the image. Let A =

[aT
1 , a

T
2 , a

T
3 ]T, and the i-th image line is given by Li = [xi, yi, 1]T. Corresponding

i-th object point Xi = [i, 1]T. For each correspondence, the two linear equations

are:

[
0 −XT

i yiX
T
i

XT
i 0 −xiXT

i

]
a1

a2

a3

 = 0 (3.3)

A total of four equally-spaced lines give 8 independent equations, which is more

than enough to determine the matrix A and hence the vanishing line. An illus-

tration of the detected vanishing line and vanishing point is shown in Fig. 3.9.

3.3 Pose Estimation and Constrained Localiza-

tion

Without losing any generality, we choose the world coordinate frame with respect

to the track. Specifically, the forward middle line of the track is x direction and the

orthogonal direction to the right is y direction. By convention this is a right-hand

coordinate, thus z-axis points vertically downwards (see Fig. 3.10). This world

coordinate system is chosen in the same fashion as the North-East-Down(NED)
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Figure 3.9: The detected vanishing point and line.

frame, which preserves the conventional sign and meaning of the yaw, pitch and

roll angle.

3.3.1 Pose Estimation

Given the vanishing point on image X∞ = [X, Y, 1]T, we have

X∞ ∝K[R|t]


1

0

0

0

 = K[r1 r2 r3 t]


1

0

0

0


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Figure 3.10: The illustration of the coordinate systems.

where R = [r1 r2 r3]. Hence, we obtain

r1 =
K−1X∞
||K−1X∞||

Let the ground plane vanishing line L∞ = [p, q, 1]T. Since all points on

ground plane has a form x = [x, y, 0, w]T, the projection matrix reduces to a

homography.

H = K

[
r1 r2 t

]
(3.4)

Thus the transformation equation is:
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L∞ ∝H−Tl∞ = H−T


0

0

1

 .

Inverting the homography to another side and expand the term, we obtain


rT
1

rT
2

tT

KTL∞ ∝


0

0

1


The first two equations imply that the vector KTL∞ is orthogonal to both r1

and r2. This is exactly the characteristic of r3. Thus, up to direction ambiguity,

we have derived:

r3 = ± KTL∞
||KTL∞||

The other vector r2 is simply r3×r1 by right hand rule. Taking into consider-

ation the physical meaning of r3: the unit vector in z direction of the world frame

represented in camera frame, we can easily resolve the ambiguity by looking at

camera’s principal ray direction.

To sum up the derivation, rotation matrix can be expressed elegantly with one

vanishing point and vanishing line:

R =

[
K−1X∞
||K−1X∞||

± (KTL∞)× (K−1X∞)

||KTL∞||K−1X∞||
± KTL∞
||KTL∞||

]
(3.5)
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3.3.2 Constrained Localization

We should notice that no information is given along the track’s longitudinal direc-

tion, thus it is infeasible to recover x coordinate of camera center from the images.

As a result, a shifting world coordinate system is adopted such that x is always

zero.

Based on this assumption and the rotation matrix in Part A, the task of self-

localization reduces to a constrained estimation of only two values, i.e., the lateral

displacement and height. Given metric information of the track, the solution can

be obtained using correspondences. Let the camera center C̃ = [0, y, z]T, we

have

t = −RC̃ = −yr2 − zr3 (3.6)

Also let li be Line i in on ground plane and let Li be the image of li in image

plane. Since the lines are all parallel to x direction, we have a reduced form of

li = [0, 1, wi]
T. Then the homography between ground plane and image plane

relating the line correspondences can be written as:

li ∝


rT
1

rT
2

−yrT
2 − zrT

3

KTLi

By the direct linear transform formulation:

[
0 −wi(KTLi)

T (KTLi)
T

wi(K
TLi)

T 0 0

]
r1

r2

−yr2 − zr3

 = 0
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Apparently, only the first equation is relevant, so for each i, we have:

[(KTLi)
Tr2 (KTLi)

Tr3]

(
y

z

)
= −wi(KTLi)

Tr2

Piling up the equations and applying singular value decomposition (SVD), the

least square solution of y and z is obtained. Note that there is only one useful

equation from each line correspondence and only two line correspondences are

linearly independent. Thus, we have just enough equations for the two unknowns.

Likewise, counting the overall number of equations used and degree of freedom

is interesting too. All in all, four linearly independent equations coming from a

pencil of lines and one extra constraint of equal spacing add up to a total of

five independent constraints. Correspondingly, there are exactly five degrees of

freedom to be determined.

In a nutshell, by considering the geometric meaning of vanishing features, this

algorithm nicely by-passes the non-linearity within the quadratic equations that

define rotation matrix, and hence makes the process of calibrating the camera’s

extrinsic parameters more efficient.

3.3.3 From camera to UAV

The geometry between camera and UAV

By assuming the camera center to be coincide with the UAV’s center of gravity,

the x and y we obtained above is the UAV’s x and y. The pose however, requires

a further transformation. Assuming camera and UAV body are connected rigidly,

there is a unique transformation that maps takes the calibrated rotation matrix

of the camera to the UAV body frame and vice versa. In fact, we only need to

consider a rotation matrix RUAV 2Cam, which is defined as a rotation that maps
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point xUAV in UAV’s body frame to point xcam in camera frame.

xCam = RUAV 2CamxUAV

Then the UAV’s attitude with respect to ground frame is encapsulated in

RUAV = (RT

UAV 2CamRCam)T (3.7)

and the inverse relation:

RCam = RUAV 2CamR
T

UAV (3.8)

Following the aerospace convention of Euler angle, the rotation matrix can

be expressed by the sine and cosine of the three Euler angles, namely, yaw(ψ),

pitch(θ), roll(φ).

R =


cos θ cosψ − cos θ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cos θ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ

(3.9)

Thus given R we can inversely calculate φ θ ψ as follows:

ψ = tan−1
r21
r11

θ = sin−1 r31

φ = tan−1
r32
r33
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Figure 3.11: Calibrating the camera-UAV relation

Off-line calibration

Now the problem is how to find RUAV 2Cam. It is difficult to mount the camera to

UAV accurately to a specific orientation. That is why a calibration program using

vision is implemented. By placing a checkerboard on the ground,and placing the

UAV body in a way such that it see the pattern and its body frame aligns to the

grid direction. Under this setup, we calibrate the camera’s external parameters by

looking at the checkerboard. Then the matrix RUAV 2Cam is the transpose of the

calibrated rotation matrix R. Again, iPad GCS is used to provide user friendly

interface for this function. An illustration is given in 3.11.

3.4 Simulation and flytest

In order to verify the integrity of the algorithm, a series of simulation and fly-tests

were carried out.
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a. Ideal image b. Blurry and noisy image

Figure 3.12: Illustration of simulation conditions

3.4.1 Simulation

Methodology

In the simulation, a virtual UAV flies according to a predefined trajectory above

the track. Video frames generated by the virtual onboard camera are then fed

into the vision algorithm realized using OpenCV.

For comparison, two fly conditions are assumed: (a) ideally stable quasi-static

flight with normal lighting condition; (b) UAV flight with vibration and high-ISO

camera configuration (simulated using blurring and Gaussian noise). A sample of

these images is given in Fig. 3.12.

Simulation Results

The results of both conditions are shown in Fig. 3.13. As we may observe, the

measurement (solid blue line) follows the reference (dashed red line) closely. There

is no significant difference between ideal case and deteriorated case. This implies

that the algorithm is robust against harsh conditions.
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3.4.2 Fly Test

Methodology

Similar to simulation, two experiments are conducted:

(1) Hand-held UAV motion: for easy maneuver of decoupled testing of different

channels.

(2) R/C UAV flight: actual application scenario; performance subjected to se-

vere vibration and noise.

In both experiments, measurements are compared to the IMU reading of yaw/pitch/roll

angles.

Fly Test Results

The angle measurements of vision and IMU are plotted in comparison in Fig-

ure 3.14. In both experiments, vision provides sensitive and drift-free yaw and

pitch readings. The performance is comparable to, if not better than that of

IMU. Roll angle, however, is noisier than the IMU readings and exhibits falla-

cious behavior when the angle gets large. The position measurements of the first

experiment is also plotted (see Figure 3.15), motion on both directions during

the experiment are reflected as it is on the plot. The average frame rate in the

two experiments is 25.6 FPS. Such real-time performance is sufficient for UAV’s

indoor navigation.
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Figure 3.13: Simulation Results.

Left: Ideal Image; Right: Blurry AND noisy image.
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Figure 3.14: FlyTest Results. Left: Hand-hold Motion; Right: R/C Motion.
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Figure 3.15: Hand-held Motion Position Plot. Left: Deviation; Right: Height.
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Chapter 4

Sensor fusion: combining IMU

measurement

4.1 Weakness of vision-only measurement

Through simulation and experiments, we have discovered the strength and weak-

ness of the vision-only algorithm. Among all five measurements, z, ψ and θ are

always good while φ and y measurements are noisier and sometimes contain large

outliers. It turns out that the symptom gets worse when UAV ascends in height.

It also occurs that the measurements become unstable when one of the color bands

is truncated by image boundary as in Figure 4.1.

As the algorithm makes use of the equal spacing condition, it is natural that

the results appear more sensitive to noise than the calculation of vanishing point.

When UAV gains height, width of each color band appears only a few pixels

on image. Bear in mind that it is not the width that matters, but rather the

relationship between each widths. In extreme cases, plus and minus 2 pixels in

the line position can be detrimental.
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Figure 4.1: Boundary condition: right most line not visible

Figure 4.2: Illustration of difference in height

Likewise, the estimation of pitch is also affected by the increasing height of

UAV. It is easy to visualize that the pitch measurement is closely related to the Y

coordinate of vanishing point. As is shown in Figure 4.2, Y coordinate of vanishing

point will be less accurate because the lines in graph appear less oblique. As a

result, perspectivity is weakened.

The error in pose estimation will cause the estimation of y and z to be inac-

curate too. y is noisier than z because y has larger correlation to φ measurement.
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Empirically, when UAV is flying below 1.5 meters, vision measurements are

good. When it reaches 2 meters and above, noise in φ and y becomes unacceptable.

4.2 Using IMU attitude to refine pose estima-

tion

Having identified the crux of the issue, an instant solution emerges naturally,

which is to combine the IMU readings. Nowadays, low cost inertial sensors pow-

ered by MEMS technology have become sufficiently mature. The IMU used in

this project can reliably provide measurements of flight attitude (φ and θ) at 50

Hz. By combining the vanishing point from vision and attitude from IMU, we

can calculate camera pose in a more reliable way.

4.2.1 What does vanishing point alone tells us?

We have derived in Section3.3 the relationship between rotation matrix and van-

ishing features which comprise of one vanishing point and one vanishing line. In

fact, the vanishing point alone offers some interesting inference on flight attitude.

By (3.5), r1 =
K−1X∞
||K−1X∞||

. So the first column of RCam = [r1, r2, r3] is known.

Recall that in (3.7),

RUAV = (RT

UAV 2CamRCam)T (4.1)

So the first row of RUAV , denoted by hT, can be calculated by:

hT = (RT

UAV 2Camr1)
T
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Expand h using direct cosine format as in (3.9), we have:

h =


h1

h2

h3

 =


cos θ cosψ

− cos θ sinψ + sinφ sin θ cosψ

sinφ sinψ + cosφ sin θ cosψ


So, the yaw angle ψ can be expressed directly with entries of h and IMU pose φ

and θ:

ψ = arctan(
sin θ sinφ

cosφ
− h2 cos θ

h1 cosφ
)

Note that when IMU reading is not available, we can assume φ = 0 or φ =

θ = 0 and proceed with the algorithm. Typically, when UAV flies higher than 2

meters, it is advisable to make near-hovering assumption so as to prevent large

error in the estimated roll from confounding the y, z measurement.

When φ = 0, it is easy to show that:

ψ = − arcsinh2

θ = arctan
h3
h0
.

When φ = θ = 0, then

ψ = − arctan
h2
h0
.
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4.3 Patching the algorithm: using a subset of

features

Although the geometry of the track contains four parallel lines, we don’t have to

use all four lines to compute the 5 unknowns.

Two parallel lines are enough to intersect at vanishing point. Three equally

spaced parallel lines are sufficient for vanishing line. Therefore, when IMU read-

ings are given, two lines are enough to compute camera pose. As for the con-

strained estimation of y an z, two equations are sufficient according to our formu-

lation in Section 3.3.2.

Essentially, we can make use of this property to patch the algorithm so that

the boundary condition described in Figure 4.1 is no longer an issue.

By counting the number of non-boundary sample points, whether a line is

well-conditioned is obtained. The pose estimation and localization problems are

then classified into four cases.

(1) All four lines are well-conditioned.

(2) Only left three lines are well-conditioned.

(3) Only right three lines are well-conditioned.

(4) Only middle two lines are well-conditioned.

For each case, our pose estimation and localization algorithms are formulated

differently.

This is the actual algorithm that is implemented on MerLion, an illustration

is given in Figure 4.3.
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(a) case(2): Using left 3 lines (b) case(4): Using middle 2 lines

Figure 4.3: Subset estimation triggered in actual flight.

4.4 Velocity estimation via Kalman Filtering

Fusion of vision and IMU measurements can be further extended to the velocity

estimation of UAV. By the law of physics, velocity v = dx
dt

= v0 +
∫
adt. Now that

x is measured by vision and acceleration a is given by IMU. We should be able to

calculate v by either differentiate x or integrate a.

In reality, however, differentiation of x directly will amplify the noise and

integration of a will suffer from severe drift. In order to filter out the noise and

compensate the drift at the same time, we borrowed the Discrete Kalman Filter

in [27].

4.4.1 Discrete Kalman Filtering

The general discrete-time linear system is formulated as follows,

 x(k + 1) = A(k)x(k) + B(u(k) + w(k)),

y(k) = C(k)x(k) + v(k).
(4.2)

where x ∈ Rn, u ∈ Rp and y ∈ Rm are state, input and measurement. A(k),B(k)

and C(k) are system matrices. w and v are input and measurement noise, which
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is assumed to be zero-mean Gaussian noise. Assume (4.2) is observable, Kalman

filtering is performed via time update and measurement update every time a new

measurement is available.

Time update

 x̂(k|k − 1) = Ax̂(k − 1) + Bu(k − 1),

P (k|k − 1) = AP (k − 1)AT + BQBT.
(4.3)

Measurement update


H(k) = P (k|k − 1)CT(CP (k|k − 1)CT + R)−1,

x̂(k) = x̂(k − 1) + H(k)(y(k)−Cx̂(k|k − 1),

P (k) = (I −H(k)C)P (k|k − 1)

(4.4)

In the equation, H(k) is the feedback gain matrix, and a priori P (k|k− 1) is the

covariance of the state estimation error, which is defined in the following formula:


P (k|k − 1) = E {[x(k)− x̂(k|k − 1)][x(k)− x̂(k|k − 1)]T} ,

R(k) = E {v(k)vT(k)} ,

Q(k) = E {w(k)wT(k)} .

(4.5)

4.4.2 Ground Velocity Estimation

In our vision system, the following model is developed based on the kinematical

model of the helicopter. In this model,

A =

 I TsI

0 I

 ,B =

 T 2
s

2
I

TsI

 ,C =

[
I 0

]
(4.6)

where Ts is the sampling period.
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Let pg, vg be the position and velocity in world frame, anb be the IMU measured

body frame acceleration and Rgb is the rotation matrix that transform world

frame vector to body frame vector, then the state variable x :=

 pg

vg

, vision

measurement y := pg, input u := RT
gbab + g


0

0

1

 .

Following the computation in 4.3 and 4.5, we can perform the Kalman filtering

for every loop and obtain an optimal estimation of current velocity as in x̂(k+1|k).

Since initial condition is not important in Kalman filtering, initial state vari-

able and acceleration are assigned to null when the filter first starts.

Performance of this Kalman filtering formulation is verified and discussed in

the following session.

4.5 Experiments

4.5.1 Methodology

To verify the improved algorithm, fly-test experiments are conducted again. As

in Section 3.4.2, the experiments are conducted in two ways:

(1) Hand-hold oscillation

(2) R/C flight

An automatic flight test is also conducted. The results are omitted in Sec-

tion 4.5.2 and 4.5.3 because for vision/IMU measurements, there is no difference

to (2) in terms of test conditions. In Section 4.5.4, however, velocity estimations

of this automatic flight is given.
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In the plots, yaw measurements are plotted in comparison to the IMU mea-

sured yaw angle. Similarly, height measurements are compared to the output of a

sonar sensor. In Section 4.5.4, velocity measured using Kalman Filter is compared

to two other ways of calculating velocity, namely, integration of acceleration and

differentiation of position.

For integration, simple summation of acceleration value times sampling time

is used. For differentiation, we adopt a Washout Filter which makes use of the

current velocity and the difference between the latest two position measurement.

In this way, we managed to reduce the noise of this differentiation process to

certain extent.
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4.5.2 Pose Plot

Figure 4.4: Fly-test results: Pose.

Left: Hand-held Oscillation; Right: R/C Test Flight,
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4.5.3 Position Plot

Figure 4.5: Fly-test results: Position.

Left: Hand-held Oscillation; Right: R/C Test Flight,

From left to right, top to bottom: (a),(b),(c),(d).
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4.5.4 Velocity Plot

Left:(a) lateral velocity; Right:(b) vertical velocity,

Left:(c) Zoomed-in view of vy; Right:(d) Zoomed-in view of vz,

Figure 4.6: Comparison velocity in Hand-held oscillation.
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Left:(a) lateral velocity; Right:(b) vertical velocity,

Figure 4.7: Comparison velocity in automatic flight.

4.5.5 Discussions

On Pose Estimation

As the IMU on MerLion does not contain magnetometer, it suffers from drift in

heading angle all the time. The degree of drift varies. It can be very large (as

in Figure 4.4(a)), or very small (as in Figure 4.4(b)). ψ from vision however, is

always drift-free.

As for pitch(θ) and roll(φ), the IMU output is very good at hand-held motion

and acceptable during actual flight. Note that there is no significant outliers in φ

measurements similar to Figure 3.14.

On Position Estimation

This set of plots suggested that, by combining IMU output of θ and φ in the con-

strained localization, measurements of y, z have become less sensitive to change of

height. This is illustrated in Figure 4.5. As the height rises from 1.2m to 1.8m at
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about t = 136s, there is no significant disparity between the two portions of mea-

surements. Although in overall, the performance/noisiness of the measurements

are similar to vision-only algorithm.

On Velocity Estimation and Kalman Filtering

As we can see from the velocity plots, the integration approach drifts very fast.

While differentiation approach gives drift free measurements, the noise is usually

great especially when the UAV is in flight and suffers a lot of vibration. The

discrete Kalman filter integrates the two approaches and comes up with good

results.

While the drifts are compensated well, we may notice that the middle value

of Kalman filter output is sometimes not zero from the zoomed-in plots (e.g.,

Figure 4.6(c)). There is a constant small bias in the results it provides. This is

similar to the concept of steady state error in compensating drift and will certainly

cause problems in control if the bias becomes significant.

Another observation is that the normal noise assumption we made in formu-

lating Kalman filter is not necessarily true in real reality. Due to the nature of

vision measurements, there are sparse but significance outliers in measurements

especially when the track goes out of sight. Usually, it takes a long time for

Kalman filter to re-converge to the correct estimation.
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Chapter 5

Track following algorithm

Besides feeding measurements, the vision is also in charge of sending command

to controller about how to follow the track, namely, vision navigation. It involves

not only setting reference, but also how to continue following the track in case of

turning.

5.1 Back-projection of image point

Before going to the actual algorithm, let us first introduce the back-projection of

image point.

Usually, 3D world point cannot be uniquely determined given one image point.

This world point can be anywhere on the ray connecting camera center and image

point. However, in this special case, we can, because the objects of interest are

all located on ground plane.

According to (3.4) of Section 3.3, it is a 3× 3 homography H that maps the

the world point x = [x, y, 1]T on ground plane to the image point X = [X, Y, 1]T.
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The back-projection equation is:

x ∝H−1X (5.1)

This equation offers us flexibility in calculating the world coordinate of any

object in the image.In other word, if we can detect the end of track whenever it

appears in the image, the vision measurements are automatically upgraded to full

six d.o.f.

5.2 Turning detection and classification

Recall the line detection algorithm described in Section 3.2.1, we searched for the

end of track in image and conducted 1D edge detection for each sample strip.

Two pieces of information can be used here in our algorithm to detect turning

corners.

(1) The ”end of track point” X in the image can be back-projected to 3D world
and show us precisely how far away the end of track (if existed) is to the
UAV.

(2) The 1D edge detector can be reused for vertical strip of pixels to determine
if the corner is a left turn or right turn.

Referring to Figure 5.1, signals of turning are issued whenever left or right

turner is detected and the corner is within a pre-defined distance. The UAV

receiving such signal will turn immediately towards the next portion of track.

Usually, the measurements resume right away.

Sometimes when track appears very slanted to one side, as in Figure 5.2, there

might be false detections of frontal distance x (see the ”F=0.9” in Figure 5.2).

Detection for left or right turnings will be triggered if this x is small enough. Note
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(a)Turning corner detected at 1.8m. (b)Issue command when corner gets near enough

(c)Turned and identified new track right away. (d)continue to follow track.

Figure 5.1: An illustration of turning detection.
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Figure 5.2: Illustration of possible false turning

Category Error Residual
False detection of turning 0.6-3
True detection of turning 100-1000

Table 5.1: Classification of true and false detection

that if we take the left most pixel strip and conduct 1D edge detection, we will

find the same [Blue Green Red] pattern as if there is a turn on the left.

Fortunately, such false alarms can be reliably distinguished from true turnings

by testing whether the edge points of the vertical strip are lying on the correspond-

ing lines features which we obtained earlier. The pixel distance between point and

line can be calculated using |X·L|√
L2
1+L

2
2

if the point and line are represented in their

homogeneous representation X = [X1, X2, 1]T and L = [L1, L2, 1]T.

Based on our experiments, the average sum of square distances for true and

false detections are given in Table 5.1.
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Figure 5.3: Illustration of Point Tracking

5.3 Keeping the landmark in the scene: Point

tracking

Another prevailing issue about vision-based navigation is that the landmark may

go outside the image frame. This is usually done by panning the camera manually

or using a servo motor. In our case, as we assumed rigid connection between

camera and UAV body, this configuration is not possible.

Given the fact that the airborne system is highly unstable by itself, we cannot

rule out the possibility that the UAV will deviate away from the track from time

to time. Although placing the camera 45 degree downwards solved the problem

to some extent (compared to former works that look vertically downwards), it is

still not sufficient to keep the track inside the field of view all the time.

The solution is simple. Instead of keeping the heading reference constant

towards the x direction, we let the UAV to select the reference adaptively based
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on its current position with respect to the track. This heading reference is designed

such that the UAV is always facing an imaginary point 2.5 meters away on the

track. An illustration is given in Figure 5.3.

The formula to calculate heading reference ψref is

ψref = − arctan(y/2.5)

This simple and elegant solution ensures that the measurements that are given to

controller are continuous and available at all time. This is crucial to the precision

control and maneuverability of the UAV.
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Chapter 6

Conclusion

In this report, we described the design and implementation of a vision-based

sensory system that provides multiple dimensions of measurements for indoor

UAV and proper guidance for it to fly autonomously along a colored track. Let

us reiterate the major achievements and innovations in this project.

First of all, through a complete study of the geometry within four equally

spaced parallel lines, we provide critical insight into how hidden geometric enti-

ties such as a vanishing line (horizon) in indoor environment can provide useful

information. Specifically, a new pose estimation and self-locating algorithm is

proposed and discussed. This algorithm features an innovative linear-time line

detection technique, an unconventional vanishing line estimation method, a con-

strained localization formulation and the derivation of the analytical expression of

rotation matrix using geometry at infinity. Simulation and fly-test are conducted

and the results are verified.

Secondly, based on the fly-test results, we identified the shortcomings of this

vision-only algorithm and improved the algorithm by combining the readings of

IMU. This provides considerable refinement in vision measurements. Furthermore,
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we explored the use of Kalman filtering in estimating the velocity of UAV. All

these measurements are verified in the second fly-test.

Thirdly, we developed a set of practical methods to reliably fly along a colored

track with left and right turnings. On both hardware level and software level, we

attempted to extend the field of view so as to provide timely feedback throughout

the course.

Last but not least, this successful design and implementation of vision-based

sensory system on Coaxial Rotorcraft MerLion has won the group the Overall

Championship and Most Creative Award in the Singapore Amazing Flying Ma-

chine Competition 2011.
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Chapter 7

Future Works

In the future development of this vision-based sensory system for indoor UAV,

the following can be done.

Barrier Avoidance Barrier avoidance is a simple but powerful feature we can

implement. It can be performed via infrared sensor, stereo vision or other

depth measuring mechanism. In the crowded indoor environment, a robust

barrier avoidance mechanism is essential for the safety of both robots and

human beings.

Vision-based velocity estimation While Kalman filter approach of velocity

estimation is powerful, there are quite a few limitations as we discussed

earlier. In fact, we might be able to measure velocity using vision alone

by taking into consideration the temporal and spectral information among

multiple frames. Optical flow is one of the technique that we might want to

explore.

Change landmark As is remarked in this thesis, the geometric information of

this RGB colored track is actually very little. In particular, there is no infor-
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mation at all in the longitudinal direction. To empower more sophisticated

research such as SLAM, or should we wish to be more robust in the track

following operation, we might wish to consider changing the landmark into

barcode or other things that contains richer information.
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