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Abstract

With increasing ethical and legal concerns on privacy
for deep models in visual recognition, differential privacy
has emerged as a mechanism to disguise membership of
sensitive data in training datasets. Recent methods like Pri-
vate Aggregation of Teacher Ensembles (PATE) leverage a
large ensemble of teacher models trained on disjoint subsets
of private data, to transfer knowledge to a student model
with privacy guarantees. However, labeled vision data is
often expensive and datasets when split into many disjoint
training sets lead to significantly sub-optimal accuracy and
thus hardly sustain good privacy bounds. We propose a
practically data-efficient scheme based on private release of
k-nearest neighbor (kNN) queries, which altogether avoids
splitting the training dataset. Our approach allows the use
of privacy-amplification by subsampling and iterative refine-
ment of the kNN feature embedding. We rigorously analyze
the theoretical properties of our method and demonstrate
strong experimental performance on practical computer vi-
sion datasets for face attribute recognition and person re-
identification. In particular, we achieve comparable or better
accuracy than PATE while reducing more than 90% of the
privacy loss, thereby providing the “most practical method
to-date” for private deep learning in computer vision. 1

1. Introduction

Recent studies have shown that many machine learning
(ML) models trained on sensitive human subject data can
be used to re-identify individual subjects [27] or reconstruct
sensitive information such as social security and credit card
numbers [6]. Moreover, recent legislative steps such as the
General Data Protection Regulation (GDPR) have elevated
privacy from a mere “risk” to a central “requirement” for
institutions and governments across the world.

Differential privacy (DP) [11] is a quantifiable and com-
posable definition of privacy that provides provable guaran-
tees against identifications of individuals in a data set. As of

1Code is available at https://github.com/jeremy43/
Private_kNN

Figure 1. A comparison of PATE’s framework and ours.

today, DP has been widely adopted and has become the de
facto standard for defining privacy. Differentially private ma-
chine learning [15, 7] is a burgeoning area of research that
aims to train ML models with formal DP guarantees, which
ensures no attacker (with arbitrary side information) may
distinguish models trained with or without a specific training
example, thus, addressing the aforementioned problems.

The key idea of differentially private machine learning is
to appropriately randomize the training process (e.g. adding
noise), so the fitted model parameters can be thought of as
a sanitized “release” with individual information removed.
Several existing approaches do not apply for deep learning
[7, 10, 30, 26]. A notable exception – NoisySGD [28, 3, 1] –
requires privately releasing the gradients for many iterations
by adding noise proportional to

√
d to every coordinate of

the gradient in a model with d parameters, hence does not
scale to large models with millions of parameters that are
commonly used in computer vision.

A recent model-agnostic approach, termed “Private Ag-
gregation of Teacher Ensembles” (PATE), introduces a model
aggregation strategy and gains privacy by injecting random-
ness into the aggregation [24, 25]. It assumes a teacher-
student knowledge transfer framework by leveraging an iso-
lated private data and unrestricted public unlabeled data.
The most critical parameter to choose in PATE is the num-
ber of disjoint teachers k. It largely determines the margin
between the top two votes and is often as large as 250 for a
meaningful privacy guarantee while ensuring the sufficiently
accurate pseudo-labels. When the teacher model is a deep
neural network, large-scale data is required for each model
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to achieve generalization for typical computer vision tasks.
On the other hand, labeled visual data can be expensive to
acquire and as such, using a large k for most public vision
datasets would render them insufficient. For example, set-
ting k = 250 for CIFAR-10 yields just 200 images for each
disjoint teacher, leading to accuracy under 50%.

To address the problem, we propose a more data-efficient
differentially private algorithm based on releasing pseudo-
labels using the majority voting of the k-nearest neighbors
(kNN). This approach avoids data-splitting since adding or
removing an individual to the data can change at most one of
any sample’s k-nearest neighbor. This enables us to choose
larger k without worrying about not having enough data to
train teachers – kNN involves no training at all. Moreover,
this allows leveraging recent advances in “privacy amplifica-
tion by sampling” to pseudo-label orders-of-magnitude more
public data at only a fraction of the privacy cost of PATE.

The careful reader may ask how this may present an ad-
vantage given modern deep networks. Despite the strong
guarantee that kNN asymptotically achieves the Bayes rate
[8], it is not known as a state-of-the-art classifier in finite-
sample computer vision problems. Our novel solution to this
problem is to make learning iterative. Specifically, we out-
source representation-learning to the public domain, where
the student trained with a deep neural network model shares
the learned feature map with the teacher. So, the quality of
kNN’s pseudo-labels improves, which in return helps the stu-
dent to learn a better representation as we iteratively conduct
this. Though the student model is shared to extract features
in the private domain, there is no model parameter update
utilizing the private data, thus not violating the differential
privacy setting. Within our framework, “privacy amplifica-
tion by sampling” is the key component, which consumes the
privacy budget more efficiently and thus enables releasing
more pseudo-labels.

Our main contributions are summarized below:
• We propose Private k-Nearest Neighbor (Private-kNN),

the first practical differentially private deep learning solu-
tion for large-scale computer vision that achieves theoreti-
cally meaningful DP guarantees (ε < 1).

• We present a new Renyi-differential privacy analysis on
the “noisy screening” mechanism proposed in [25]. This
allows us to use it with the moments accountant for a
tighter privacy accounting. Collectively, “subsampling”
and “noisy screening” allow us to answer 10 times more
queries with even less privacy budget compared to state-
of-the-art PATE models. The data-dependent version of
this “noisy screening” mechanism can be thought of as a
post-hoc Gaussian-noise version of the well-known Sparse
Vector Technique in differential privacy, which is of inde-
pendent interest.

• We evaluate our approach on extensive vision tasks such
as classification on MNIST, SVHN, CIFAR-10, as well as

two realistic identity-relevant tasks of face attribute classi-
fication on Celeb-A and human body attribute classifica-
tion on Market1501. Private-kNN achieves consistently
better performance across privacy cost and accuracy for
all the above, compared to other state-of-the-art methods
for differentially-private learning.

2. Preliminaries
In this section, we review the necessary technical compo-

nents that we build upon and we start by defining DP.

Definition 1 (Differential Privacy[11]). A randomized algo-
rithmM : X → Θ is (ε, δ)-DP (differentially private) if for
every pair of neighboring datasets X,X ′ ∈ X , and every
possible (measurable) output set E ⊆ Θ the following in-
equality holds: Pr[M(X) ∈ E] ≤ eε Pr[M(X ′) ∈ E] + δ.

The definition provides rigorous, information-theoretic
guarantee against on an adversary’s ability to infer whether
one data is being used in the training process of randomized
mechanismM. ε, δ ≥ 0 are privacy loss parameters, which
quantify the strength of the privacy protection. In practice,
we consider a privacy guarantee meaningful if ε ≈ 1 and
δ = o(1/n) where n is the size of private dataset. One
important property of DP is that it is closed under post-
processing, which says that if we can privately label the
public data, then the resulting model from training the public
data enjoys the same privacy guarantee.

Rényi Differential Privacy and Moments Accountant.
Rényi differential privacy (RDP)[19] is a generalization of
(ε, 0)-DP that uses Rényi-divergence as a distance metric.

Definition 2 (Rényi Differential Privacy [20]). We say that
a mechanismM is (α, ε)-RDP with order α ∈ (1,∞) if for
all neighboring datasets X,X ′

Dα(M(X)‖M(X ′))

=
1

α− 1
logEθ∼M(X′)

[(
pM(X)(θ)

pM(X′)(θ)

)α]
≤ ε.

As α → ∞, RDP converges to the standard (ε, 0)-DP.
More generally, we can convert RDP to standard (ε, δ)-DP
for any δ > 0 using:

Lemma 3 (From RDP to DP). If a mechanismM satisfies
(α, ε)-RDP, thenM also satisfies (ε+ log 1/δ

α−1 , δ)-DP for any
δ ∈ (0, 1).

There is a partial inverse, which says any (ε, 0)-DP algo-
rithm obeys (α, αε2/2)-RDP [5].

It is often convenient to consider RDP in its function form.
Hereafter, we denote εM(α) as the RDP ε ofM at order α.
The function εM(·) provides a more refined characterization
of the privacy guarantee associated withM. The Gaussian
mechanism is such an example.



Lemma 4 (Gaussian Mechanism [5]). Let f : X → R obeys
that ‖f(X)− f(X ′)‖2 ≤ ∆2 for any neighboring datasets
X,X ′, the Gaussian mechanismM(X) = f(X)+N (0, σ2)

obeys RDP with εM(α) =
α∆2

2

2σ2 .

Another notable advantage of RDP over (ε, δ)-DP is that
it composes very naturally.

Lemma 5 (Composition with Rényi Differential Privacy).
Let mechanismM = (M1, ...,Mt) whereMi can poten-
tially depend on the outputs of M1, ...,Mi−1. Then M
obeys RDP with εM(·) =

∑t
i=1 εMi

(·).

This allows to calculate the advanced composition [13] in
the standard DP significantly more easily, and often tighter
as well. An application of Lemma 3 and Lemma 5 largely
benefits the moments accountant [1] technique — a data-
structure that keeps track of RDP vector ε from a sequence
of RDP mechanisms, through which it finds the smallest
possible ε for any δ by searching over α. All privacy guar-
antee that we report in this paper is based on the analytical
moments account [29] that keeps track of the entire RDP
function in their analytical form and solve for ε given δ via a
binary search.

Privacy Amplification by Subsampling. Subsampling is a
widely used algorithmic tool in privacy, which deals with a
composite mechanism that first randomly samples the data,
and then applies a DP mechanism on the randomly selected
subset. Intuitively, since the one person that differs between
X and X ′ is often not selected in the subset, the overall pri-
vacy guarantee should be stronger. Loosely speaking, when
we apply an (ε, δ)-DP mechanism to a random γ-proportion
of the data, the whole procedure satisfies (O(γε), γδ)-DP.
The result of this style is also known as “subsampling lemma”
or “secrecy of the samples” in the literature [2]. This is prac-
tically relevant as it is the reason why we can afford to run
Noisy-SGD [28] for many iterations without blowing up the
privacy cost. Recently, such as “subsampling lemma” was
proven for the RDP. The benefits of the subsampling can
be combined with the tight advanced composition of RDP
[29, 33], which roughly says that under some restrictions on
α:

εM◦Sampleγ (α) ≤ O(γ2εM(α)).

In this work, we apply a Poisson subsampled “RDP-
amplification ” bound from [33]. A more precise statement
of this result is attached in the appendix. We emphasize that
this is the main technical contribution leveraged in this work
that simply cannot be done under the PATE approach.

Data-Dependent RDP and PATE The privacy analysis in
PATE is straight-forward. It involves injecting Laplace noise
[24] or Gaussian noise [25] to the teacher votes. For noise
with standard deviation O(k), a budget of ε, δ, roughly

speaking, allows PATE to release O( ε2k2

log(1/δ) ) pseudo-labels,
which is insufficient for many cases.

A notion of data-dependent RDP is introduced to further
take into account of the high margin that occurs when the
teachers largely agree with each other, in which case the
privacy cost is intuitively smaller.

Definition 6 (Data-dependent RDP [24]). A mechanismM
is (α, ε)-data-dependent RDP with order α ∈ (1,∞) if for
all X ′ that is a adjacent to X

max{Dα(M(X)‖M(X ′)), Dα(M(X ′)‖M(X))} ≤ ε.

In other words, the data-dependent RDP function ε is
a joint function of X and α. There are a few other tricks
proposed in [25] to reduce the total privacy loss. Notably,
they designed a “ noisy screen” step that first adds a larger
Gaussian noise to max{votes}, and then release a more con-
fident version of votes only for those questions that passes
the screening. This allows PATE to save privacy loss via
data-dependent RDP in the second step with smaller noise.
In this paper, we use the same “noisy screening” but pro-
vide a tighter analysis of this procedure that saves a constant
fraction of the privacy budget.

Finally, we note that the use of data-dependent RDP can
be seen as controversial, as the resulting privacy loss ε is now
a sensitive quantity that depends on the data. [25] provided
a smooth-sensitivity based method [23] to privately release
εM,X(α) for a sequence of α, but that incurs additional
privacy losses that are not reported in their main result. One
major contribution of the current paper is to demonstrate that
practical differential privacy can be achieved when training
a deep networks under the “knowledge transfer” setting even
without using data-dependent RDP.

3. Our Approach
We are now ready to describe our method: Private-kNN.

Notations and symbols. In this section and thereafter, we
stick to the following notations. x ∈ Rd denotes the fea-
ture of both private and public data. Let Dprivate be the
private dataset of size n: (x1, y1), (x2, y2), ..., (xn, yn) and
yi ∈ [1, c] is the label, where c is the number of classes in
Dprivate. Letm be the size of the unlabeled public data. γ is
the sampling ratio used to sample a random subset Dγ from
Dprivate. We define φ be the feature extractor for private
kNN. fj(x) is the prediction of jth neighbor on the public
feature x and the total number of neighbors is k. In the noisy
screening, we use σ1 to denote the Gaussian noise scale, and
T is the threshold for a screening check. σ2 is the Gaussian
noise scale for the noisy aggregation procedure. ε and δ are
reserved for denoting privacy cost.

Setup. As defined in PATE, we have access to a private
dataset and an unlabeled public dataset, and we seek to
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Figure 2. The overview of the proposed framework. Given the unlabeled public data Xpublic, we query through privacy wall for pseudo
labels, where the private data and the queried public data are sent through feature extractor Φ and “Private-kNN” to assign pseudo labels.
Combining the public data and the pseudo labels, the feature extractor Φ is further updated. This procedure can be iterated for rounds to
achieve satisfied privacy-accuracy trade-off.

design an (ε, δ)-DP algorithm that outputs pseudo-labels
for as much public data as possible. Then a student model
is trained via semi-supervised learning using both pseudo
labeled and unlabeled public data. Again, by the property
of “closedness to postprocessing”, the student model itself
satisfies DP assumption.

Private-kNN. Our algorithm involves four simple steps.
1. PICK K-NEAREST NEIGHBORS WITH POISSON SAM-
PLING For each query x from the public domain, we use
Poisson sampling2 to get a random subset from the entire pri-
vate dataset. Then we pick the k nearest neighbors from Dγ
by measuring their Euclidean distance in feature spaceRdφ ,
where φ is a non-private feature extractor. The choice of Eu-
clidean distance is general, whereas other distance metrics
can also be applied. Our algorithm is designed into rounds
of iterations. In the first iteration, φ is initialized with a
Histogram of Oriented Gradient (HOG)[9] feature extractor,
which is a popular descriptor used in the computer vision
tasks. In the next iteration, we apply a deep neural network
for the public student model (except for the last softmax
layer) to update the feature extractor φ. In the experiment
section, we show how this interactive scheme iteratively
refines the feature embedding used by Private-kNN.
2. NOISY SCREENING. let fj(x) be the prediction of jth

neighbor on x, where j ∈ [1, k]. The label count of class
i ∈ [1, c] is

ni(x) = |{j : fj(x) = i}|

Answering all queries from public without selection leads to
running out privacy budget instantly. To be more selective,
we only answer those queries which have an overwhelming
consensus in voting, and this screening process is imple-
mented privately with Gaussian noise parameter σ1, for the
query not passing the noisy screening check, we return ⊥,
and ignore this data in re-training a student model.

If max
i
{ni(x)}+N (0, σ2

1) ≤ T then return ⊥

2Possion sampling includes each data point independently with proba-
bility γ. It can be efficiently implemented by first sample the size of the
subset from a Binomial distribution then find a random subset.

Figure 3. Illustration on the noisy screening and noisy aggregation
procedure.

T here is the threshold parameter for screening, we set T ≈
0.6× k in the hope of there is consensus among neighbors
upon this query. Since we pay for private screening for every
query, a larger σ1 would be helpful for privacy concerns. As
we mentioned before, the same screening procedure is used
in PATE[25] and despite a larger noise, this is still the most
costly part of PATE. PATE treated this screening procedure
as a simple post-processing of the Gaussian mechanism.
We note that the output is actually drawn from a discrete
distribution of either

⊥

(Pass) or⊥ (Fail). In the next section
we derive the RDP for this procedure, which allows to benefit
from moments accountant.
3. NOISY AGGREGATION For those query x which pass the
check, we release its label

f(x) = arg max
j
{nj +N (0, σ2

2)}

with a fresh random subsample of the data. The noisy screen-
ing process filters out about 50% query, which enables the
noisy aggregation process to have a smaller σ2 for better-
aggregated accuracy.
4.TRAINING STUDENT MODEL Our model only answers
a selected number of queries from the public. Otherwise
the final privacy cost becomes meaningless. Taking the an-
swered queries as pseudo labeled data, together with the un-
labeled data, a student model is trained in the self-supervised
manner. We consider two popular self-supervised meth-
ods: virtual adversarial training(VAT)[21] and unsupervised



Data Augmentation(UDA)[31]. VAT uses the virtual adver-
sarial perturbation in the noisy process and UDA exploits
advanced data augmentation instead of random augmenta-
tion. In our experiments, we find that UDA outperforms VAT
in both SVHN and CIFAR-10 tasks. As shown in Figure 2,
the student model is trained with the above mentioned self-
supervised method. On the other hand, the student model
is utilized to extract the updated feature in the private do-
main for private-kNN. This iterative feature distilling allows
private-kNN to have similar capacity as ConvNet (replace
the last softmax layer in ConvNet with kNN), and to further
improve the accuracy of answering public queries. Besides,
iterative training allows to exploit the benefits from unla-
beled public data, which does not violate the DP assumption
or incur any privacy cost, but is shown to enhance the utility
of student model under the self-supervised training.

Privacy analysis. We prove the DP guarantee in the fol-
lowing. LetM denote the mechanism of Private-kNN. Our
method can be viewed as a composition of (Ms) ◦ Sampleγ
and (Mσ2

) ◦ Sampleγ . Based on composition theorem, the
privacy cost can be traced by individually calculating the
RDP of the two mechanisms and then add them up. For
the latter, we can readily apply the tight bound of the sub-
sampled Gaussian mechanism from [33]. Our main theo-
retical result is the following characterization of the noisy
screening procedure via a tight RDP analysis.

Theorem 7 (RDP of “Noisy Screening”). Let Ms be a
randomized algorithm for noisy screening procedure with
a predefined Gaussian noise scale σ1 and the threshold T .
ThenMs obeys RDP with

εMs(α) = max
(p,q)∈S

1

α− 1
log (pαq1−α + (1− p)α(1− q)1−α).

where S contains the following “pairs”:(
P[N (t, σ2

1) ≥ T ],P[N (t+ 1, σ2
1)] ≥ T ]

)
,(

P[N (t, σ2
1) ≥ T ],P[N (t− 1, σ2

1)] ≥ T ]
)

for all integer dk/ce ≤ t ≤ k.

We remark that the above bound can be calculated effi-
ciently for any pairs of k, T in O(k) time and can be evalu-
ated by calculating the Gaussian cumulative density function
using the efficient implementation of the error function erfc.
A more detailed proof is provided in the appendix. Moreover,
it is more numerically stable to directly represent the log of
p and q above. By the information-processing inequality of
Rényi-divergence, this bound is strictly better than that from
the Gaussian mechanism for every α.

Finally, we estimate the overall privacy bound for the
end-to-end method.

Theorem 8 (Asymptotic scaling). The total privacy bound
of Private-kNN to label all m public data points with noise

Table 1. Utility and privacy of semi-supervised student model

Dataset Methods #Queries ε Acc. NP Acc.

MNIST
LNMAX 1000 8.03 98.1%

99.2%GNMAX 286 1.97 98.5%
Ours 735 0.47 98.8%

SVHN
LNMAX 1000 8.19 90.1%

92.8%GNMAX 3098 4.96 91.6%
Ours 2939 0.49 91.6%

CIFAR-10
GNMAX ≤ 50%

80.5%Noisy SGD 4 70%
Ours 3877 2.92 70.8%

Table 2. Ablative results of iterative training on SVHN dataset.

Iteration kNN Acc. retrain CNN #Queries ε
1 82.5% 86.6% 1022/3000 0.492 94.41% 91.6% 1917/3000

σ1, σ2 is (ε, δ)-DP, with any δ, and

ε = O(γ
√

log(1/δ)(

√
m

σ1
+

√
mselected

σ2
)).

The proof is in the appendix. Notice that this is only used
for illustrating the amplification effect γ that is not present
in PATE. The actually numerical calculation of ε is tighter
using analytical moments accountant [29].

4. Experiments

In this section, we demonstrate our Private-kNN for its
data efficiency with character recognition tasks such as
MNIST [17] and SVHN [22]. We show that our model
achieves the same accuracy with only 10% of the privacy cost
used in state-of-the-art (SOTA) methods such as PATE [24].
We also leverage the general vision tasks where data split-
ting for PATE is the bottleneck. CIFAR-10 [16] as a gen-
eral object recognition task is investigated across the DP
methods. More specifically, we focus on two realistic set-
ting vision problems, namely face attribute classification
on CelebA [18] and body attribute classification on Mar-
ket1501 [32], which is the first to show that our method can
facilitate to realistic multi-label classification tasks.

4.1. MNIST and SVHN Evaluation

MNIST and SVHN are two common datasets to measure
the utility and privacy performance of differential private
models [24, 25]. We evaluate Private-kNN using the same
setup of private dataset and the model architecture as in
PATE [24, 25]. On MNIST, the training set is reserved as the
private dataset, half of the testing set acts as unlabeled stu-
dent training data, and the remaining part is for real testing.
For SVHN, the extended data, together with training data,
are regarded as private data. Among the 26k testing set, 25k



Figure 4. Tradeoff between utility and privacy for Private-kNN on
SVHN. In this figure, different curve are generated with different
sampling ratio γ. In each curve, we set different query number
for student, and compute the total privacy and accuracy at test set.
σ1 = 240, T = 480, σ2 = 60, k = 800. We also plot the results
reported in PATE. It shows that the privacy cost of our model could
achieve nearly two order of magnitude smaller privacy with better
accuracy.

acts as publicly unlabeled student data for query and self-
supervised training, where the remaining 1k is for testing.
We defer the detailed information of model architectures in
appendix and report their non-private baselines in Table 1.

As illustrated in the method, we conduct initial round
kNN classification using a handcrafted feature — histogram
of oriented gradients(HOG). Then we apply self-supervised
training (e.g.[21, 31]) with the pseudo-labeled data from
kNN for better feature representation learning.
MNIST: In our method, the privacy cost is accumulated over
1000 queries of 2 iterations. We set the number of neigh-
bors k = 300, σ1 = 75 for screening, threshold T = 180
and σ2 = 25 for aggregation, and fix the sub-sampling ra-
tio γ = 0.15. In the initial iteration, the accuracy of the
privately aggregated kNN model based on HOG feature
is 92.1%. Then a student model is trained on the 735 an-
swered queries with pseudo labels and VAT regularization,
which achieves accuracy 98.8%. In Table 1, comparing
to PATE of Laplace mechanism “LNMAX” and Gaussian
mechanism “GNMAX”, our method achieves significantly
better accuracy-privacy trade-off. For instance, when we
control the same number of queries between “GNMAX” and
ours, Private-kNN achieves similar accuracy as 98.8% over
98.5%, but much better privacy cost as ε = 0.47 compared
to ε = 1.97 of “GNMAX”. More surprisingly, with a strict
privacy cost of ε = 0.47, our method shows only 0.4%
deficit to the non-private model performance 99.2%.
SVHN: As shown in Table 2, we run our model for two
iterations with hyper-parameters k = 800, T = 480, σ1 =
200, σ2 = 60 and γ = 0.03. In the first iteration, kNN with
HoG feature provides 82.5% accuracy on 1022 answered
queries. By retraining a CNN with the queried labels, it

improves to 86.6%. In the second iteration, another 3000
queries are conducted via kNN, and 1917 queries are re-
turned. KNN accuracy is evaluated on the selected queries,
which passed the noisy screening check, whereas the re-
train CNN is evaluated on the public testing set after self-
supervised training and achieves 91.6% accuracy. These pro-
cedures can be iterated many times, where we empirically ob-
serve that two rounds can bring the converged performance.
In total, we spend the privacy cost on 6000 samples for noisy
screening and noisy aggregation with 2919(1022 + 1917)
samples.

Table 1 shows the comparison to “GNMAX” and “LN-
MAX”. Both “GNMAX” and ours achieve better privacy
accuracy trade-off than “LNMAX”. Though the number of
queries in “LNMAX” is only 100, the privacy cost is as
high as 8.19. This is mainly from the inefficiency of the
Laplace mechanism compared to Gaussian mechanism, as
Gaussian mechanism shows 30 times more queries with half
of the privacy cost (4.96 over 8.19). Further comparing
our method with “GNMAX”, with the similar number of
queries and exactly the same accuracy, we achieved 0.49
privacy cost, which is significantly smaller than 4.96 from
“GNMAX”. Notice that privacy cost below 1 indicates an
excellent system which is ready for practical applications.

Figure 4 shows by varying sampling ratio γ, the privacy
cost ε changes with respect to the number of queries. “GN-
MAX” and “LNMAX” are also compared. In the figure, all
of our methods are advantageous, i.e. consistently lower pri-
vacy cost than those two spots of “GNMAX” and “LNMAX”.
Further exploring different levels of γ, we observe that all
the curves are mostly flat, which indicates that when push-
ing accuracy high, the increase of privacy cost is marginal.
Moreover, it shows that with different sampling ratio, our
method can achieve different level of privacy cost. Across
the large range of sampling ratio (0.02 to 0.1), we can push
all the performance between 91% to 92%, which is at the
same level of “GNMAX” and “LNMAX”, while with an
order of magnitude lower privacy cost.

4.2. CIFAR-10 Evaluation

CIFAR-10 is a general objection classification task, where
the PATE model is hard to apply as the data partitioning re-
sults in limited training data for each teacher model. For
instance, each teacher model is assigned only 200 data if we
partition the training set into 250 teachers, which is far from
sufficient to train a deep neural network. For our experimen-
tal setting, we split total 60k data into three parts: 30k is
treated as private data, 29k is for unlabeled public data, and
1k for testing.

Regarding this dataset, a competitive method, termed
Noisy-SGD [1], achieved accuracy 70% and ε = 4 when
δ = 10−5 as shown in Table 1 CIFAR-10. In the Noisy-SGD
setting, CIFAR-100 is leveraged to pre-train a model. For



Table 3. Real sensitive dataset evaluation on CelebA [18] and Market1501 [32], we set τ = 10 for both GNMAX and ours. T is the number
of teachers in teacher ensemble model. We compare different methods under high privacy and low privacy regime. δ = 10−6 for CelebA
and δ = 10−5 for Market.

Dataset Methods Parameter #Queries ε Acc. NP Acc.
T k σ γ

CelebA

GNMAX 300 - 150 - 600 7.72 85.0%

89.5%GNMAX 800 - 300 - 500 3.31 84.4%
Ours - 800 50 0.05 800 1.24 85.2%
Ours - 800 100 0.10 800 1.20 84.9%

Market1501

GNMAX 300 - 100 - 800 13.41 86.8%

92.1%GNMAX 300 - 250 - 80 1.41 85.6%
Ours - 300 100 0.05 1200 0.67 88.8%
Ours - 300 100 0.10 1200 1.38 89.2%

fair comparison, we also use the CIFAR-100 model as a pre-
trained model for each teacher in PATE [25] and extract the
initial feature with it for the Private-kNN. The latter iterative
updating of the student model remains the same. For PATE
performance, we notice that after model aggregation, it is
below 50% even after we set ε� 10.

In our implementation, with the initial CIFAR-100 ex-
tracted feature, the Private-kNN aggregator answers 3877
over total 18000 queries from the public domain. We set
neighbor K = 300, T = 210, σ1 = 85, σ2 = 20, sampling
ratio p = 0.2 and adopt the same model architecture as
[1]. The model architecture contains three convolutional
layers with 32, 64, 128 filters in each convolution layer. The
non-private baseline of this model reaches 80.5% accuracy
when trained with 30k private data, whereas SOTA models
present over 10% higher accuracy. The reason of not lever-
aging the SOTA models in this experiment is because, for
fair comparison to Noisy-SGD, we aim to emphasize the
privacy-utility trade-off, but not the best utility. Our method
achieves an accuracy of 70.8% with privacy cost ε = 2.92,
which thoroughly outperforms Noisy-SGD.

Notice that the privacy cost in Noisy-SGD is spent on
every parameter of the network; Thus, their retraining only
involves the fully connected layers. Another difference is,
we assume there exists unlabeled auxiliary data in public
domain while Noisy-SGD [1] directly train a private model
with 50k private data. Comparing to Noisy-SGD, our Private-
kNN is indeed model agnostic, no restriction on network
structure or optimization methods for retraining a student
model, whereas clipping gradient in Noisy SGD may result
in unstable optimization.

4.3. Noisy Screening for Less Privacy Cost

Screening and private voting are the core components of
privacy guarantee. The purpose of screening is to filter out
queries where there is no consensus among the votes. The
privacy cost on screening is the major expense as reported in
PATE [24] since we need to pay privacy cost for each query.

Figure 5. The privacy cost of answering 8192 queries with five ran-
domized algorithms in the noisy screening process. The green line
is the strong composition of Gaussian Mechanism used in PATE,
the black dash line shows the privacy cost of Poisson subsampled
Gaussian Mechanism after 8192 rounds’ composition. The blue
line is the ε of strong composition of data-independent screening
and the blue-dash line is the strong composition of data-dependent
screening. The red line is the Poisson subsampled data-independent
screeningMs. The sampling ratio γ = 0.25, σ1 = 85, k = 300.

We investigate different private screening methods by ex-
ploring their privacy cost with respect to a different number
of queries. In Figure 5, each screening algorithm is required
to answer 8192 queries on the CIFAR-10 dataset, and the
cumulative privacy cost is plotted along the y-axis. We use
the HoG feature in the initial iteration for our Private-kNN
and set the sampling ratio of γ = 0.25. The noisy scale
σ1 = 85, threshold T = 210 and k = 300 is used for all
screening methods.

The green line describes the privacy cost of Gaussian
mechanism applied by PATE[25], serving as our baseline.
It achieves ε = 5.67 after privately screening 8192 queries.
The black dash line demonstrates the privacy amplification
by Poisson sampling [33] with the same Gaussian mecha-
nism. The privacy cost improves to 1.313. Even though, the



original data-splitting setting in PATE prevents it to benefit
from sub-sampling. The red line shows our data-independent
screening method composed of Poisson sampling achieves
ε = 1.04. The blue line and the blue dash line show the result
of incorporating our data-independent and data-dependent
analysis of screening into PATE. It improves ε from 5.67 to
4.43 with the data-independent screening and 3.83 with the
data-dependent screening.

When compared to the black-dash line (sub-sampled
Gaussian), our method saves 26% privacy budget with the
same screening results. Our method allows to answer more
queries from the public domain, which is of essential impor-
tance, especially when the training task itself is tough. For
example, employing self-supervised training with CIFAR-
10 requires at least 4000 ground-truth labeled data [31].
Then, the minimum number of queries demands at least
10000, since empirically, more than 50% data fails to pass
the screening check. Our advantageous privacy cost 1.04
makes it a practical solution for private training with more
difficult machine learning tasks.

4.4. Real Private Datasets Evaluation

We show that our Private-kNN is a practical framework
that indeed can apply to real private datasets, i.e., face at-
tribute classification from CelebA [18] and body attribute
classification from Market1501 [32]. We aim to develop an
attribute classification model, where the adversary is hard to
detect whether one particular image has been used in training
set with high probability. Both of the datasets target the hu-
man or face related tasks, where identity is crucial privacy to
be preserved. Notice that they are multi-label classification
tasks other than binary classification, which are more chal-
lenging. To reduce the privacy budget of multi-label tasks,
we apply a τ approximation method where the basic idea
is that, each neighbor could at most vote for τ attributes, or
their total votes will be clipped to τ . The detailed definition
and privacy guarantee can be found in Appendix. In our
setting, we do not conduct noisy screening for multi-label
classification because it is hard to guarantee all the labels
within one query pass the screen.
CelebA is a large-scale face attribute dataset with more than
220k celebrity images, each with 40 attribute annotations.
According to data splitting, we take the 160k training data
as private data. From the 60k testing data, depending on the
volume to be queried, i.e. 600 queries, the rest 59400 im-
ages are automatically regarded as testing. The non-private
baseline is 89.5% trained via a Resnet50m structure. We
apply PATE as another baseline. Since each image have 40
attributes, the global sensitivity grows as large as the dimen-
sion of attributes. We apply τ -approximation method to limit
the range of global sensitivity and also consider the trade-off
induced by the different τ . In Table 3, by choosing the pa-
rameters, when the privacy cost is smaller than “GNMAX”,

we achieve clear better accuracy of 85.18% compared to
84.4%. When the accuracy is at the same level around 85%,
our method achieves significantly lower privacy cost 1.20
compared to 7.72 of “GNMAX”.
Market1501 contains 1501 identities and 32668 images,
where each image has 30 attributes. We split original training
set for private data and validation set as unlabeled public data,
performance is evaluated on original testing set. In this task,
data-splitting is stressful. The total private data contains only
750 identities. For PATE, to guarantee the teacher models’
independence, we need to partition the private data with
respect to the identities. A meaningful privacy cost requires
sufficient many teacher models, i.e., K = 300. With such
many partitions of the private data, each teacher is trained
with around 40 images from 2 identities, and the non-private
accuracy of each teacher is only 71%.

Shown in Table 3, our method is able to answer 1200
queries compared to 80 in “GNMAX” where two methods
achieve similar privacy cost 1.414 and 1.377. The signifi-
cantly more queries lead to performance boost as 89.18%
compared to GNMAX 85.61%. To push up the performance
for “GNMAX”(i.e., from 85.6% to 86.8%), we tune the
privacy-utility trade-off and the privacy cost goes high up
to 13.41, which prevents the trade-off from improving per-
formance further. We provide a relative close trade-off, ac-
curacy 88.8%, and privacy ε = 0.67, both of which are far
better than the “GNMAX”. The detailed utility and privacy
trade-off can be found in the appendix, which demonstrates
the consistent advantages of our method in real private tasks.

5. Conclusions

In this work, we propose a data-efficient privately releas-
ing of k nearest neighbor framework, termed Private-kNN,
to overcome the limited private data to train deep neural
networks in vision applications. A new Rényi differential
privacy analysis for noisy screening procedure is proposed,
which allows our model to answer 10 times more queries
compared to other DP models such as PATE. Extensive exper-
iments are conducted across five vision benchmarks, show-
ing that our method achieves comparable or better accuracy
than PATE while saving more than 90% privacy cost. Specif-
ically, the two realistic identity related computer vision tasks
demonstrate that our Private-kNN achieves high utility with
practical DP guarantees.
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Appendices
A. Appendix

In this supplementary, we provide the proofs of Theorem
7 and Theorem 8. Moreover, we present a discussion of
utility and privacy trade-off in Market1501 dataset. Later,
we describe the τ -approximation approach to reduce the
global sensitivity in multi-label tasks.

B. Proofs of Theorem 7 and 8
Theorem 9 (RDP of “Noisy Screening”, Restatement of
Theorem 7). LetMs be a randomized algorithm for noisy
screening procedure with a predefined Gaussian noise scale
σ1 and the threshold T . ThenMs obeys RDP with

εMs(α) = max
(p,q)∈S

1

α− 1
log (pαq1−α + (1− p)α(1− q)1−α).

where S contains the following “pairs”:(
P[N (t, σ2

1) ≥ T ],P[N (t+ 1, σ2
1)] ≥ T ]

)
,(

P[N (t, σ2
1) ≥ T ],P[N (t− 1, σ2

1)] ≥ T ]
)

for all integer dk/ce ≤ t ≤ k. The bound can be computed
in time time O(k).

Proof. For a given query x, set n∗(x) be the vote count
of the plurality and p, q denote the probability of x passes
the noisy screening procedure with neighboring private
datasets X,X ′ respectively. The output space of both
Ms(X) andMs(X

′) is {>,⊥}, where> indicates x passes
noisy screening process, and vice versa. ThenMs(X) and
Ms(X

′) satisfy the Bernoulli distribution with the parame-
ter p, q respectively.

By definition of Renyi Differential privacy and the Renyi
Divergence of two Bernoulli distributions:

εM(α) = sup
X,X′are neighbors

1

α− 1
logEq(

p

q
)α

= sup
X,X′are neighbors

1

α− 1
log (pαq1−α + (1− p)α(1− q)1−α)

The key of deriving RDP is to maximize over the two neigh-
boring datasets. We make two observations. First, the notion
of datasetsX,X ′ are completely captured by their max votes
t, t′. By the fact that the two datasets differ by at most one
individual, |t−t′| ≤ 1. In other word, to enumerate all neigh-
boring datasets, it suffices to consider integer t, t′ from dk/ce
to k such that t′ ∈ {t−1, t+1}. Second, p, q can be directly
calculated from t and t′ respectively: p = 1− cdf(T−tσ ) and
q = 1 − cdf(T−t

′

σ1 ). Where cdf denotes the CDF of a stan-
dard normal random variable. Note that p monotonically
increases as t increases.

These two observations ensure that we can calculate the
RDP εM(α) for any fixed α in time O(k).

Where is t∗ in practice? In practice, the worst pair of
neighboring datasets occur either around max{votes} = T
or around the boundaries when max{votes} = k (the largest
possible) or max{votes} = dk/ce (the smallest possible due
to pigeon hole principle).

In Figure 6, we plot the data-independent RDP of “Noisy
screening” of all possible plurality. The plurality n∗ ranges
from dk/ce to k and we set k = 300, threshold T =
210, σ1 = 85. The x-axis is the RDP order α ranges from
1 to 50, the y-axis is the range of possible n∗, and we plot
the corresponding RDP ε(α) with the fixed α, n∗. The red
curve shows the ε(α) when max{votes} = T , and we plot
the red-dash line to view its exact RDP value more clearly.
This figure shows that when α is small (below 50), the worst
case of data-independent RDP is when max{votes} = T .
In Figure 7, we pick 5 curves from Figure 6 to further com-
pare the RDP under the different choices of n∗. It shows
that when α ≤ 80, the maximum data-independent ε(α) is
achieved when n∗ ≈ T , and when α ≥ 80 the ε(α) is max-
imized when n∗ = k. So for the upper bound of RDP of
noisy screening, we only need to evaluateMs for several
neighboring datasets. In Figure 8, we plot the privacy cost
of answering 8192 queries with 5 different data-independent
analysis (from Figure 7 in the noisy screening procedure.
The red line shows the privacy cost when n∗ = T , and it’s
on the top the five curves which verifies our conjecture: the
worst-case appears around n∗ = T or n∗ = k. In the first
10 iterations, n∗ = k achieves the maximum. From Lemma
3, we know ε = minα ε(α) + log 1/δ

α−1 . When the number of
iteration is small, the total privacy cost ε is minimized when
α is large. As the number of iterations keeps increasing, ε
is minimized when α is small. This phenomenon explains
that the maximum data-independent privacy cost could be
caused by several choices of n∗, which maximizes ε(α) in
the different range of α. However, εM(α) is not always
maximized when max votes = korT . For a larger α,the max
εM(α) is attained when n∗ = k. Check these two cases can
give us a fast approximation of εM(α).

Theorem 10 (Asymptotic scaling, formal version of The-
orem 8). Assume parameter γ, σ1, σ2, δ are chosen such
that γ < 0.1, σ1 ≥

√
5, σ2 ≥ 2

√
5, and moreover

4 log(1/δ)σ2
1

γ2
(

min{σ2
1 ,σ

2
2} log2(1/γ)−2

) ≤ m ≤ σ2
1 log(1/δ)

3γ2 , mselect ≤

σ2
2 log(1/δ)

6γ2 . Then, the end-to-end Private-KNN algorithm
that processes all m public data points using with noise
σ1, σ2 and sampling ratio γ obeys (ε, δ)-DP, with

ε = 20γ
√

log(1/δ)(

√
m

σ1
+

√
mselected

σ2
).

Proof. The algorithm that process all m data points is an
adaptive composition of two steps. In the first step, we
release the {>,⊥} with the “noisy screening”. In the second
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step, we release the “noisy max” for those that passes the
screening rule. In both steps, the randomized procedure is
amplified by Poisson subsampling. As a result, both has
an RDP that is upper-bounded by the Poisson subsampled-
gaussian mechanism.

The following is an asymptotic scaling of the the subsam-
pled Gaussian mechanism.

Lemma 11 (Theorem 11 of [4]). Let the global `2 sensitivity
be ∆. Assume γ ≤ 0.1, σ/∆ ≥

√
5, then the Poisson-

subsampled Gaussian mechanism obeys (α, 6γ2∆2

σ2 )-RDP

for all α ≤ σ2 log(1/γ)
2 .

The above lemma is implied by the original statement
about tCDP [4] for randomly selecting a subset of a fixed
size γn, because (1) tCDP is an upper bound of RDP; (2) the
exact RDP calculation for the Poisson-subsampled Gaussian
mechanism matches the RDP lower bound of the (Random
subset) subsampled Gaussian mechanism [33, Proposition
10].

The global sensitivity of the Gaussian mechanism in the
“noisy screening” step is 1 because we are releasing only
max{Votes}, while it is 2 in the Gaussian mechanism for
releasing the Votes — the histogram. Check that the stated
assumptions on γ, σ1, σ2 satisfy the conditions above.

By the composition rule of Renyi Differential Privacy
in Lemma 5 which establish that the end-to-end algorithm
obeys RDP with

ε(α) ≤ 6γ2mα

σ2
1

+
12γ2mselectα

σ2
2

.

for all α in the range that are permitted by Lemma 11.
Finally, by Lemma 3, we can convert RDP to (ε, δ)-DP

with

ε = α
(6γ2m

σ2
1

+
12γ2mselect

σ2
2

)
+

log(1/δ)

α− 1
.

Choose α = 1 +

√
log(1/δ)√

6γ2m

σ21
+

12γ2mselect
σ22

we get that:

ε =
6γ2m

σ2
1

+
12γ2mselect

σ2
2

+ 2γ

√
log(

1

δ
)
(6m

σ2
1

+
12mselect

σ2
2

)
.

The proof is complete by checking that under our assumption
m, the second term always dominates and the assumption on
α in Lemma 11 no matter that mselect turns out to be.

C. The utility and privacy trade-off on Mar-
ket1501 dataset

Figure 9 shows the utility and privacy trade-off of PATE
and ours by varying sampling ratio γ, the noisy scale σ1

and the number of queries. For GNMAX in PATE, to push
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the accuracy from 86.80% to 86.90%, we need to increase
the privacy budget from 13.41 to 43.14. In the low privacy
cost regime, our method achieves accuracy 87.82% with
privacy budget 0.2416. In the high privacy cost regime,
our algorithm achieves 89.18% with ε = 1.72 compared
to ε = 5.298 and accuracy =86.21% in PATE. Further by
checking the same accuracy, i.e., 86.5% for both “GNMAX”
and ours with γ = 0.05, our privacy cost is 0.116 while
“GNMAX” is 6.62. Indeed, more than 90% privacy budget
is saved from the baseline method.

Privacy and utility trade-off of GNMAX In all experi-
ments of GNMAX, we set the number of teachers with re-
spect to the performance of each teacher. For example, if we
set the number of teachers to be 600, then the average non-
private accuracy of each teacher is around 76%. Since every
partitioned data should not be overlapped with each other
regard to the identity, the total identity is 750, and T = 600
is the maximum number GNMAX algorithm can afford. If
we set a small T for GNMAX, e.x. T = 100, σ1 = 40, then
the privacy loss of GNMAX achieves ε = 13.22 even it only
answers 80 queries.

D. Applying Private-kNN to multi-label classi-
fication tasks

So far, we have been primarily working with multi-class
classification tasks where the global sensitivity of the vot-
ing results of the nearest neighbors are naturally bounded.
But for multi-label tasks, this is no longer true. Potentially,
for a problem with c-labels, any neighbor can potentially
vote on all c-labels, which makes the naı̈ve noisy-adding
mechanisms inefficient. We propose to fix it by a “clipping”
heuristic that limits contribution of every label to at most τ .

Definition 12. (τ approximation) For a traditional classifi-
cation task, the global sensitivity of our model in the noisy

aggregation process is 2 from Theorem 9. However, consider
the more general multi-label task in vision, e.x. Facial at-
tribute classification task, where one face image could have
at most 40 attributes and the global sensitivity will increase to
80. To limit the global sensitivity in the multi-label task, we
introduce the τ -approximation method, where the basic idea
is that each neighbor could vote no more than τ attributes.
For simplicity’s sake, we only consider binary multi-label
tasks here. In a multi-label task, the vote of neighbor j upon
query x is fj(x) ∈ N c now becomes a c−way vector. To
impose τ approximation on it, we apply

f̂j,i = fj,i ·min(
τ

|fj(x)|
, 1), i ∈ [1, c],

with |fj(x)| the L1 norm of original neighbor j’s voting and
f̂j the neighbor j’ prediction upon x with τ approximation.

Theorem 13 below provides a practical privacy bound to
guide the analysis for multi-label classification task.

Theorem 13. Let Mτ be a randomized algorithm for a
multi-label task with τ -approximation method, the global
sensitivity of f(x) here is 2 · τ , then we have for integer
α ≥ 2,

Dα(Mτ (X)||Mτ (X ′)) =
α · τ
σ2

1

Regression problems. Similar clipping tricks can be ap-
plied to regression problems so private-kNN applies. We can
also use median, rather than the mean. Careful experimental
evaluation on regression problems are left as a future work.

E. Architecture of networks

We plot the network architecture of MNIST in Table 4.
The MNIST model contains two convolutional layers with
max-pooling and two fully connected layers with ReLUs.
For the SVHN task, Table 5 shows that the SVHN model
stacks seven convolutional layers with two fully connected
layers, which replicates the experimental setup as in [25].
The source code of MNIST and SVHN experiments and a
Pytorch implementation of [25] are available on Github.3

Table 4. Network architecture of MNIST task
Conv 64 filters of size 5× 5

Max pool 2× 2
Conv 128 filters of size 5× 5

Max pool 2× 2
FC (384, 192, 10)

3https://github.com/jeremy43/Private_kNN

https://github.com/jeremy43/Private_kNN


Table 5. Network architecture of SVHN task
Conv 96 filters of size 3× 3

Conv 96 filters of size 3× 3
Conv 96 filters of size 3× 3
Conv 192 filters of size 3× 3
Conv 192 filters of size 3× 3
Conv 192 filters of size 3× 3
Conv 192 filters of size 5× 5
FC (192, 192, 10)

F. More discussion about data-dependent
noisy-screening

Noisy-Screening vs. Sparse Vector Technique. The
noisy screening is closely related to the Sparse Vector Tech-
nique [12, 14] (SVT) that screens a sequence of online
queries f1, f2, ...with global sensitivity 1 and output {>,⊥}
with the hope of approximately selecting those queries with
value greater than a threshold T and essentially paying only
the privacy loss for those that are selected.

The key steps of an SVT include adding Laplace noise to
the threshold and also adding Laplace noise to fi(x) when
deciding whether to output > or ⊥. When the large majority
of the queries have either > or ⊥ with sufficiently high
margin from the threshold T , then SVT is able to handle an
exponentially large set of queries.

“Noisy-screening” is different in two ways. First, it
does not aim at “calibrating noise to stability” to achieve
a pre-defined privacy budget. Instead the version that we
used pays the same amount for every query. Second, we
can use Gaussian mechanism on fi(x) while keeping the
threshold T unchanged. This method at a glance does not
resemble SVT at all because it does not adapt to the in-
put sequence, and pay only an amount proportional to the√

min{# of ⊥,# of >} as in SVT.
That said, the data-dependent RDP of “Noisy-screening”

is in fact a lot more closely related to SVT. If a query fi
obeys that either fi(x) � T or fi(x) � T , then the data-
dependent RDP is going to be exponentially smaller than
that is coming from the Gaussian mechanism. Directly com-
posing the data-dependent RDP will lead to qualitatively the
same behavior as SVT.

For example, for a sequence of queries where SVT can an-
swer exponentially many without using up a budget of (ε, δ),
we can answer the same sequence with “noisy-screening”
while paying a “data-dependent” privacy loss that is likely
to be smaller than (ε, δ).

Consider another example, if the sequence of queries are
close to fi(x) = T , then the data-dependent calculations
for “noisy screening” will arrive at about the same privacy
losses as the data-independent counterpart. Similarly, SVT
will also stop within just a few rounds because essentially it

pays every other iteration on average.
In summary, the data-dependent RDP calculations of

“noisy screening” can be thought of as a versatile alternative
of SVT, when satisfying a fixed pre-specified privacy budget
is not too important and when we do not have to reveal the
final privacy loss that is realized (because its value depends
on the data). This allows us to use a more concentrated Gaus-
sian noise, and to take advantage of the RDP for a tighter
composition.

Both limitations can be resolved by privately releasing
the data-dependent RDP using smooth sensitivity [23] as in
what was proposed in the appendix of [25]. Details of this
procedure and how “noisy screening” compares to SVT in
general is left as a future direction of research.

Open problem: Data-dependent RDP of subsampled
mechanism. Privacy-amplification by subsampling is not
compatible with data-dependent RDP because implicitly, the
amplification is coming from the fact that for any subset that
is selected, the same RDP bound holds.

A trap is to amplify the data-dependent RDP calculated
through the specific sample that is chosen. This is because
value probably cannot hold for other subsets.

It remains an open problem how to correctly calculate
the data-dependent RDP for a subsampled mechanism. The
exact calculation would require enumerating over all subsets
and calculating their corresponding data-dependent RDP.


