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ABSTRACT
Factorization Machines offer good performance and useful
embeddings of data. However, they are costly to scale to
large amounts of data and large numbers of features. In
this paper we describe DiFacto, which uses a refined Factor-
ization Machine model with sparse memory adaptive con-
straints and frequency adaptive regularization. We show how
to distribute DiFacto over multiple machines using the Pa-
rameter Server framework by computing distributed sub-
gradients on minibatches asynchronously. We analyze its
convergence and demonstrate its efficiency in computational
advertising datasets with billions examples and features.

1. INTRODUCTION
Nonlinear models for recommendation and estimation have

experienced significant interest in recent years. The grow-
ing body in deep learning [3], kernels [7], and decision trees
[22] bears witness of this development. For recommender
systems and polynomial generalized linear models Factoriza-
tion Machines (FM) [15, 16] offer a computationally efficient
and powerful alternative. They achieve excellent results by
using a low-rank expansion of the higher degree polynomial
terms. Moreover, they offer a principled framework for a
number of feature space heuristics in recommender systems,
such as bias, features, cold-start strategies, and temporal
models. This makes them a very attractive target for statis-
tical modeling of high-dimensional sparse data occurring in
many settings such as computational advertising, personal-
ization, user profiling, recommendation, and search.

Unfortunately, despite low-rank expansions the memory
cost remains tremendous for real-world settings. This oc-
curs since each feature, each user, and each object need to
be embedded into a low-dimensional space. A quick calcu-
lation shows that even on modest datasets such as Criteo’s
CTR estimation contest [6] we have up to 109 features. Real-
istic problems can have up to 1011 terms [8]. Even a modest
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100 dimensional representation would require in the order
of 1TB of data (parameters, preconditioners, auxiliary key
storage). Even worse, the latter may be too simplistic for
frequently occurring attributes. This makes the problem un-
solvable on a single machine, when tackling industrial scale
problems. Moreover, even multiple machines are heavily
taxed by the large memory footprint. In order to address
the above problems, we need:

1. A compact model with low computation and commu-
nication cost that nonetheless offers high-quality em-
beddings of the features.

2. An efficient mechanism for distributed optimization.
This includes problem partitioning, optimization, and
high performance communications protocols.

One key observation we made is that the importance of fea-
tures in real datasets is not uniform, which deserves adaptive
model capacities. In this paper, we propose a refined FM
model, called DiFacto, which adaptively chooses the effective
embedding dimension and regularization for each feature ac-
cording to the importance, which is based on the feature fre-
quency count and sparse regularization. The resulted model
is up to 100x more compact than conventional FM and even
provides better generalization accuracy.

We propose a fast distributed optimization algorithm based
on the asynchronous stochastic gradient descent, with ex-
plicit modeling of the possibly non-uniform sparsity patterns
in the training data and guarantee of satisfied sparse mod-
els. We prove that the proposed algorithm converges for this
highly challenging nonconvex objective function even under
asynchronous updates.

We describe a Distributed Factorization code (DiFacto)
based on the Parameter Server framework [8, 17]. Experi-
ments show that DiFacto scales to sparse data with billions
of examples and features. To the best of our knowledge,
our results describe one of the largest statistical model ever
computed (using up to 1.2 ·1011 features) over [1] by at least
one order of magnitude. Our algorithms require only modest
resources on a per-machine basis.

Outline. In section 2 we begin with an overview of Factor-
ization Machines and of the Parameter Server framework.
This is followed in Section 3 by a description of the statisti-
cal model employed in this paper, since it differs in a number
of key parts from a simple Factorization Machine. Section 4
has details on the distributed optimization and convergence
aspects of the problem. Experimental results are provided
in Section 5. We conclude with a summary and discussion.



2. BACKGROUND

2.1 Objectives
In this paper we address two related goals — recommenda-

tion and prediction. The distinction between those problems
is partly due to different notation conventions, and partly
due to slightly different objectives. In recommender sys-
tems [2] one is typically given pairs of entities, say users u
and movies m for which a rating y(u,m) needs to be es-
timated. The quality of an estimate f(u,m) is evaluated,
e.g. by the squared discrepancy between rating and estimate
1
2
(y(u,m) − f(u,m))2, or by the quality of the relative or-

dering of ratings, or by per-session ordering of preferences.
For an exhaustive summary of different such objectives see
e.g. [13]. In short, we are interested in the performance of
f(u,m) relative to y(u,m). Whenever we have additional
features zu, zm regarding u and m respectively and context
c, they form part of the estimate via f(u, zu,m, zm, c). In
the following we use the shorthand

x := (u, zu,m, zm, c) and f(x) := f(u, zu,m, zm, c) (1)

to indicate that we are interested in obtaining a function
that consumes x as an argument to generate f(x).

In prediction we are interested in the slightly more mun-
dane goal of obtaining f(x), given pairs of features x and
labels y. Typical goals are to minimize the squared devia-
tion 1

2
(y − f(x))2 or the log-likelihood of a particular label

log(1 + e−yf(x)). Note that y and f(x) need not be of the
same datatype. This was exploited substantially in struc-
tured estimation [19].

In the following we will not make major distinctions be-
tween both problems above. Instead, we will simply assume
that x is either a set of covariates, such as the words occur-
ring in a document for which the click through rate (CTR)
of an advertisement is sought, or a set of recommendation
and rating parameters. The quality will be evaluated via a
loss function l(x, y, f(x)), yielding the risk functional

R[f,X, Y ] :=
1

|X|
∑

(xi,yi)∈(X,Y )

l(xi, yi, f(xi)). (2)

It is our goal to find some f such that, given a training set
Xtrain, Ytrain, the expected risk (or the risk on an unseen test
set) is minimized.

2.2 Factorization Machine
The typical setting in our context is that of a very high

d-dimensional (and sparse) x ∈ Rd. For instance, in recom-
mender systems x might only contain two nonzero terms —
an indicator for the user, and one for the movie respectively,
i.e. xu = 1 and xm = 1. The consequence is that linear
models are of limited use. For instance, in a recommender
system this would amount to

f(x) = 〈w, x〉 = wu + wm. (3)

This is the trivial model where recommendations are sim-
ply the sum of user and movie biases. Nonetheless, in CTR
estimation problems [12], such assumptions are quite pop-
ular, due to the very high dimensionality of the model and
the associated uncertainty in determining even just linear
parameters. In particular, even a quadratic model is too
expensive to estimate, since this would require O(d2) rather

than O(d) parameters. This is invariably too large since
typically the number of observations n� d2.

Rendle et al. [15, 16] introduced a principled strategy for
alleviating this problem via a low-rank expansion instead of
a general high-dimensional expansion. They propose

f(x) = 〈w, x〉+
∑
i<j

xixjtr
(
V

(2)
i ⊗ V (2)

j

)
+ (4)

∑
i<j<k

xixjxktr
(
V

(3)
i ⊗ V (3)

j ⊗ Vk
)

+ . . .

In other words, FM use a low-dimensional embedding of
the (typically very sparse set of) features in x to a much
smaller ki-dimensional space via the embedding matrices
V (i) ∈ Rd×ki . For the purpose of the current paper we
limit ourselves to expansions up to second order (this is not
a technical limitation of our algorithm but a mere conve-
nience). This simplifies the exposition and it is sufficient,
given the sparsity of the problem as we will discuss subse-
quently. Hence we may rewrite (4) via

f(x) = 〈w, x〉+
1

2
‖V x‖22 −

d∑
i=1

x2i ‖Vi‖22 (5)

Here we used the shorthand V := V (2) and k2 = k, the
polarization equality to rewrite the ordered sum, and the
fact that tr (a⊗ b) = 〈a, b〉. Moreover, Vi is the i-th column
in V . Note also that (5) can be computed efficiently in
O(dk) time, requiring O(dk) storage. This also illustrates a
shortcoming of Factorization Machines.

Lemma 1 Assume that we estimate (5) with an embedding
dimension rank k. Then for features i for which xi 6= 0 for
less than k + 1 times, the problem of estimating (wi, Vi) is
underdetermined.

Proof. This follows directly from linear algebra: when-
ever xi = 0 the terms vi, Vi do not occur in (5). To solve a
linear system of k + 1 variables we need at least the same
number of constraints.

Even worse, we need to store O(k) memory even for vari-
ables that hardly ever occur. Given the power-law nature
of many natural feature distributions, this is clearly unde-
sirable. Lastly, large numbers of variables are not just hard
to estimate and hard to store, they are also cumbersome
in terms of optimization purposes, since they slow down
convergence and need to be addressed, e.g. via additional
stabilizers (regularization).

However, even in those cases the problem size remains
formidable and we need tools for distributed inference: quite
often the number of parameters significantly exceeds the
amount of available memory on a computer. This calls for
distributed representations and optimization algorithms.

2.3 Parameter Server
The underlying computational engine for the algorithm is

the Parameter Server [8, 17]. In it, computation is performed
by two separate groups of computers — workers and servers.
The servers act as a generalized version of a (key,value) store
which manages and updates the model parameters, while
the workers process the training data that has been sharded
(typically at random). The diagram below illustrates the
machine layout.



push pull

server 
nodes:

worker 
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data:

scheduler

Task schedulers and resource manager allow for a controlled
data flow. Moreover, they manage fault tolerance, e.g. to
cope with failure of individual nodes. The pertinent aspects
of this setup are that each one of the workers processes a
distinct (random) block of data. w and V are stored in a
distributed fashion on the server. Retrieval and updates are
achieved by the following two operations:

push(key, value) sends a vector of (key, value) pairs in
combination to the recipient (e.g. a group of servers
holding parts of the data). To be more specific —
in a distributed gradient update procedure, the work-
ers might send the locally computed gradients to the
servers. Due to the data sparsity, only a part of the
gradients is nonzero, denoted by (gi1 , . . . , gin) and n�
d. Often it is desirable to present the gradients as a
list of (key, value) pairs, namely

{
(ij , gij )

}n
j=1

, where

the feature index is the key and the according gradient
item is the value.

pull(key) requests the values associated with a list of keys.
This is particularly useful whenever the amount of
memory available is insufficient to hold a full model.
Instead, workers prefetch the model entries relevant for
solving the model only when needed.

The parameter server provides flexible data consistency model
via a dependency graph (a DAG). It allows for a many al-
gorithms ranging from bulk-synchronous processing to fully
asynchronous algorithms and sketching services. See e.g. [8]
for details on a range of related strategies. It also supports
various filters to reduce the data communication costs. For
the purpose of the present paper we ignore detailed systems
considerations and focus mostly on the algorithm, the sta-
tistical model, and its application to a number of datasets.

3. STATISTICAL MODEL

3.1 Memory Adaptive Constraints
The first step in making factorization machines tractable

is to modify (4) in line with Lemma 1. That is, whenever
we have insufficient evidence of a feature occurring, it makes
no sense to allocate much capacity to it. More to the point,
instead of allocating a fixed number of dimensions k to each
feature i, regardless of how frequently the i-th feature of
example x, denoted by xi, not equal to 0, we make this
number dependent on ni, the number of times xi 6= 0 on the
training set, i.e. more formally

ni := |{x : xi 6= 0}| . (6)

Given a set of dimensionalities {ki} we modify the map-
ping xi → xiVi such as to require that Vij = 0 for all
j > ki. This forces infrequently occurring features to as-
sume a rather lower-dimensional embedding using only ki

dimensions rather than the full set k > ki, e.g. via

ki =

{
k if ni > r

0 otherwise
(7)

where the threshold r could be simply r = k. This would
effectively allow only for sufficiently frequent terms to be
considered in the Factorization Machine embedding. We can
also allocate small embeddings for these infrequent features:

ki =

{
k if ni > r

min(ni, k) otherwise
(8)

More refined choices use more than one level, e.g.

ki =


k(1) if ni > r(1)

k(2) if r(1) ≥ ni > r(2)

0 otherwise

(9)

For instance set k(1) = r(1) = 1000 and k(2) = r(2) = 100,
yielding a larger embedding for the most frequent keys.

3.2 Sparse Regularization
While the above strategy of variable elimination is entirely

independent of the actual problem we solve, we also need a
data adaptive capacity control mechanism that depends on
the predictive power of features relative to the labels yi.
A popular choice is `1 regularization [20], which has been
widely used in linear models for high dimensional data such
as computational advertising [12]. We pick the penalty

Ω[w] := λ1 ‖w‖1
Here λ1 controls the degree of sparsity. The sparse model
induced by the `1 regularization not only penalizes complex
model, it also reduces the computation cost of the gradient
and saves the communication traffic. It results in a smaller
final model which further makes deploying this model on an
online service easier.

We can also apply a similar structured sparsity [14] on V
to obtain sparse solution, such as

Ω[w, V ] =
∑
i

[
w2
i + ‖Vi‖22

] 1
2 + ‖Vi‖2 (10)

Recall that in this case the derivative of the penalty van-
ishes at wi = 0, provided that Vi 6= 0. Unfortunately, this
penalty is harder to handle from the system perspective.
Hence we replace it by a rather straightforward approxima-
tion that directly implements what (10) aims to accomplish
— we require that Vi = 0 whenever wi = 0. As experi-
ments show, this is by no means detrimental to the overall
outcome of the estimation. This also resembles most closely
the ANOVA decomposition hierarchy proposed e.g. by [21].

3.3 Frequency Adaptive Regularization
It is well known that penalizing terms occurring at differ-

ent frequency adaptively can lead to improved generalization
performance [18]. For instance, in collaborative filtering the
strategy to penalize frequent terms more aggressively, e.g.
by performing shrinkage only whenever a user (or a movie)
is being updated, has proven successful.

In DiFacto we use a slightly more general and flexible
method for capacity control — to shrink only whenever an
feature occurs in a minibatch. The consequence of this is



that parameters associated with frequent features are less
overregularized. The penalty can be presented as

Ω[w, V ] =
1

2

∑
i

[
λiw

2
i + µi ‖Vi‖22

]
with λi ∝ µi. (11)

As we shall see, this approach can be implemented extremely
conveniently, simply by adjusting the minibatch size.

Lemma 2 (Dynamic Regularization) Assume that we
solve a factorization machines problem with the following
updates in a minibatch update setting: for each feature i,

Ii ←− I {[xj ]i 6= 0 for some (xj , yj) ∈ B} (12)

wi ←− wi −
ηt
b

∑
(xj ,yj)∈B

∂wi l(f(xj), yj)− ηtλwiIi (13)

Vi ←− Vi −
ηt
b

∑
(xj ,yj)∈B

∂Vi l(f(xj), yj)− ηtµViIi (14)

Here B denotes the minibatch and b the according size, and
Ii denotes whether or not feature i appears in this minibatch.
Then effective regularization is given by

λi = λρi and µi = µρi where ρi = 1− (1− ni/m)b ≈ nib

m

Proof. The probability that a particular feature occurs
in a random minibatch is ρi = 1 − (1 − ni/m)b. Observe
that while the amount of regularization on the minibatches
is not independent, it is additive (and exchangeable). Hence
the expected amount of regularizations are ρiλ and ρiµ, re-
spectively. Expanding the Taylor series in ρi yields the ap-
proximation.

Note that for b = 1 we obtain the conventional frequency de-
pendent regularization, whereas in the batch setting b = m
we obtain the Frobenius regularization. That is, choosing
the minibatch size conveniently allows us to interpolate be-
tween both extremes efficiently.

3.4 Putting All Things Together
We obtain the following model and optimization problem:

minimize
w,V

1

|X|
∑
(x,y)

l(f(x), y) + λ1 ‖w‖1

+
1

2

∑
i

[
λiw

2
i + µi ‖Vi‖22

]
(15)

subject to Vij = 0 for j > ki

where the choice of constants λ1, λi, µi and ki are as dis-
cussed above. This model differs in two key parts from stan-
dard FM models: We add frequency adaptive regularization
to better model the possible nonuniform sparsity pattern in
the data. Secondly, we use sparsity regularization and mem-
ory adaptive constraints to control the model size, which
benefits both the statistical model and system performance.

4. DISTRIBUTED OPTIMIZATION
Minimizing (15) is challenging since the potentially large

model brings large communication cost. We focus on asyn-
chronous optimization, which hides synchronization cost by
communicating and computing in parallel. It has been shown
that asynchronous block subspace descent can effectively
solve nonconvex objective functions with a nonsmooth `1

1 2 3

server 
nodes:

worker 
nodes:

t=1 t=1 t=2t=2 t=3 t=4

Figure 1: An illustration of asynchronous SGD. Workers
W1 and W2 first pull weights from the servers at time 1.
Next W1 pushes the gradient back and therefore increase
the timestamp at the servers. Worker W3 pulls the weight
immediately after that. Then W2 and W3 push the gradient
back. The delays for W1, W2, and W3 are 0, 1, and 1.

regularizer [9]. However, it requires expensive data prepro-
cessing. In this paper, we consider asynchronous stochastic
gradient descent (SGD) [9] for optimization.

4.1 Asynchronous Stochastic Gradient Descent
For simplicity we assume that there is a single (virtual)

server node, which maintains the model w and V (the pa-
rameter server framework provides for a clean abstraction for
multiple servers). Multiple workers run SGD independently
of each other. Each worker repeatedly reads data, pulls the
recent model from the server, computes a gradient, and then
pushes the gradient back. Due to the network delay, the re-
ceived gradient the server used to update the model may be
not computed based on the most recent model. An example
is illustrated in Figure 1.

A worker can calculate the gradient of the loss in the stan-
dard way [15]. We first compute the partial gradient of f

∂wif(x,w, V ) = xi (16)

∂Vijf(x,w, V ) = xi [V x]j − x
2
iVij , (17)

Note that the term V x can be pre-computed. Invoking the
chain rule yields the gradient of l. Denote by w(t) and V (t)
the model stored at the server on time t. Assume that at
time t the server received gradient pushed from one worker

gθ(t)← ∂θl(f(x,w(t− τ), V (t− τ)), y) (18)

where θ can be either w or V . τ is the delay, indicating that
the gradient was computed using the model at time t− τ .

As mentioned in Section 3.3, we use frequency adaptive
regularization for w and V and the sparse induce `1 norm
for w. In addition, we use AdaGrad [4] for a better model
of the possible nonuniform sparsity in the data. In other
words, assuming scalars λ in (14) and scalars ηV and βV ,
the server updates Vij by

nij ←− nij +
[
gVij(t)

]2
Vij(t+ 1)←− Vij(t)−

ηV
βV +

√
nij

(
gVij(t) + µVij(t)

)
(19)

where nij is initialized to 0. Updating w is slightly differ-
ent to V due to the nonsmooth `1 regularizer. We adopted
FTRL [11], which solves a “smoothed” proximal operator
based on AdaGrad. Similarly denote by ηw and βw the



global learning rate. Updates in wi are given by

σi ←
1

ηw

(√
ni + [gwi (t)]2 −

√
ni

)
zi ← zi − gwi (t) + σiwi(t)

ni ← ni + [gwi (t)]2 (20)

wi(t+ 1)←

0 if |zi| ≤ λ1(
βw+

√
ni

ηw
+ λ2

)−1

(zi − sgn(zi)λ1) otherwise

where both ni and zi is set to 0 at the beginning.

4.2 Convergence Analysis
The objective (15) is a challenging non-convex and non-

smooth optimization problem and its convergence analysis is
non-trivial, especially in the face of asynchronous updates.
Here we provide a preliminary analysis of Algorithm 1 on a
special case with λ1 = 0. For notation simplicity we assume
a fixed learning rate. It is straightforward to extend the
results to handle the adaptive learning rate by assuming nij
in (19) is bounded, see [9] for more details.

We will show that the simplified algorithm has anO(1/
√
t)

ergodic convergence rate [5]. Due to the non-convexity, our
results do not imply convergence to a KKT point. However,
it is stronger than typical non-convex analysis in that there
is an explicit convergence rate. Our results are based on a
generic result in [10]. By carefully incorporating the spe-
cific properties of our problem, we arrive at a convergence
bound that explicitly reveals the intuitive dependency on
the sparsity of the data and the size of the minibatch in ad-
dition to the more typical maximum delay parameter for the
asynchronous update. First we show Algorithm 1 reduces to
simple asynchronous SGD.

Lemma 3 Let η be the fixed learning rate for both parameter
w and V , and in addition, λ1 = 0, then the update equations
(19) and (20) for solving the problem (15) becomes plain
asynchronous SGD.

Proof. First of all, we note that despite the memory
adaptive constraints Vij = 0 for some i, j, we are essentially
solving an unconstrained smooth optimization problem in
a pre-defined coordinate subspace, which admits a simple
(non-projected) SGD algorithm.

It remains to show that the stochastic gradient is unbi-
ased. Since the minibatch is picked randomly, the expecta-
tion of the loss-function half of the partial stochastic gradi-
ent with respect to V is just the gradient. Since λi is fre-
quency adaptively chosen, it does not affect the expectation
of the gradient at all. Now we turn to the partial gradient
with respect to w. Under the assumption that λ1 = 0 and
without AdaGrad it follows that ni = 0. Hence for every
t ∈ {1, . . . T} the update equation (16) becomes

wi(t+ 1)← ηw
βw

zi(t+ 1) where zi(t+ 1)← zi(t)− gwi (t).

Substituting in zi(1) = βw
ηw
wi(1), this recursion is essentially

the SGD update equation

wi(t+ 1)← wi(t)−
ηw
βw

gwi (t)

with learning rate η = ηw
βw

. To show that the approximation
is unbiased is again trivial since the data points are picked

uniformly at random and the regularization weights µi are
frequency adaptive.

Theorem 4 (Lian et al. [10, Corollary 2]) Assume that
the stochastic gradient is unbiased and has variance bounded
by σ2 and that the gradient functional ∇f(·) is L-Lipschitz.
Also, assume that the global optimal solution x∗ exists and
f∗ > −∞. Moreover, assume the delay at time t τt is upper
bounded by τ , then if we use a constant stepsize

η :=

√
f(x1)− f(x∗)

Lτσ2
.

then for every integer T ≥ 4L(f(x1)−f(x∗))
σ

(τ + 1)2, we have
the output of the SGD obeying

1

T

T∑
t=1

E(‖∇f(xt)‖2) ≤ 4

√
(f(θ1)− f(θ∗))Lσ2

T
(21)

Simplifying it further in our problem results in the following
corollary, where the constants explicitly depend on the av-
erage sparsity of the data and size of the minibatch we use.

Corollary 1 Denote by θ = {w, V } the parameters of the
model and let φi(θ) = l(f(xi), yi) be the objective function.
Moreover, decompose the objective via

Φ(θ) =
1

|X|
∑
i

φi(θ) +
∑
j

[λjw
2
j + µj‖Vj‖2].

Let the delay of the asynchronous gradient τt ≤ τ for any
update t and the minibatch size be b. Assume that the data
X is bounded. More specifically, assume that it obeys the
following property si := ‖xi‖0, ‖X‖∞ ≤ 1 and si ≤ s.

In addition, assume that we work within a sublevel set of
the problem such that ‖[wsupp(xi), Vsupp(xi⊗xi)]‖ ≤ Bi. Fur-
thermore, assume that the regularization parameter is suffi-
ciently small so that the regularization term does not weight
more than the data term in the gradient.

Then there is a universal constant C and a data (sparsity)
dependent constant

K :=
1

|X|b max
i

(siBi)
2

|X|∑
i=1

(siBi)

such that setting stepsize η =
√

Cφ(θ1)
τK

results in a stochastic

sequence of parameters that satisfies

min
t∈{1,...,T}

E‖∇φ(θt)‖2 ≤
1

T

T∑
t=1

E‖∇φ(θt)‖2 ≤ 4

√
φ(θ1)τK

T
.

We first interpret the result before stating the proof.

1. The expected magnitude of the gradient on the LHS
is an intuitive measure of the distance from the sta-
tionarity condition. While it is weaker than typical
measures in convex optimization (e.g., primal subop-
timality, mean square distance from the optimal solu-
tion), it should be in the same ball park for “nice” loss
functions, as can be seen e.g. in discussions in [5, 10].

2. When the data is sparser or the minibatch size is big-
ger, we can afford to use a larger learning rate and
hence get faster convergence. Note that the results



captures the average sparsity so the quantity remains
small even when a small number of data points are
dense. This is especially important in face of the prac-
tical power law distributions.

Proof of Corollary 1. This is a simple specialization
of Theorem 4 to our specific problem, which involves calcu-
lating the Lipschitz constant of the gradient and the variance
of the stochastic gradient and upper bounding them using
the intuitive quantities of interests. By the chain rule

∂θφi(θ) =
∂

∂f(xi)
l(f(xi), yi)

∂

∂θ
f(xi).

Since l is the logistic loss, its Lipschitz constant is bounded
by 1. Hence it follows from (16) and (17) that

‖∂θφi(θ)‖ ≤ 1 ·
√∑

j

(∂wjf(xi))2 +
∑
j,`

(∂Vj`f(xi))2

=

√∑
j

x2i +
∑
j,`

(xj [V x]` − x2jVj`)2

≤
√
si‖xi‖∞ + si‖xi[V xi]T ‖2,∞ ≤ siBi

Since the objective is differentiable, the Lipschitz constant
can be obtained by upper bounding the gradient

‖∂θφ(θ)‖ ≤

∥∥∥∥∥∥ 1

|X|

|X|∑
i=1

∂θφi(θ) + 2Λθ

∥∥∥∥∥∥
≤ 1

|X|

|X|∑
i=1

siBi + ‖Λθ‖2 ≤
2

|X|

|X|∑
i=1

siBi

where Λ is a big diagonal matrix that contains the frequency
adaptive regularization weights λj and µj and the last in-
equality holds whne these weights are small.

The variance of the stochastic gradient is taken over an
iid minibatch of size b, and it can be trivially bounded using
the boundedness of the gradient

σ2 ≤ maxi ‖∂θφi(θ)‖2

b
≤ maxi(siBi +B)2

b
≤ 4 maxi(siBi)

2

b
.

The last inequality can again be simplified under the as-
sumptions that the regularization terms are small. Finally,
we note that φ(θ) ≥ 0 for any θ, so φ(θ∗) ≥ 0. We arrive
at the claim by substituting these bounds into (21) in Theo-
rem 4. The proof is complete by noting that the minimum is
always smaller than the mean in a sequence of numbers.

4.3 Implementation
The sketch of DiFacto is shown in Algorithm 1. It is di-

vided into three parts: the scheduler node runs the control
logic, server nodes update the model, and the worker nodes
compute the gradient.

Scheduler node issues commands, such as process file i or
save the model to worker and server nodes. It also
monitors the progress of workers. Once a straggler or
a dead node is detected, the scheduler will re-issue the
command which was sent to this node to another avail-
able node. Furthermore, the scheduler decides whether
the stopping criteria have been reached. For example,
we may terminate once the objective value on an ad-
ditional validation set stops decreasing.

Algorithm 1 Implement DiFacto in the parameter server

Start: Create one scheduler node, m worker nodes and n
server nodes over multiple machines.
Scheduler Node:

1: Assume the data is partitioned into s parts p1, . . . , ps,
2: for t = 1 to T do
3: Work packages P = {p1, . . . , ps}
4: Accomplished packages A = ∅
5: while P 6= ∅ do
6: switch detected event from worker i do
7: case idle
8: Pick p ∈ P \ A and assign p to worker i
9: A = A ∪ {p},

10: case finished p
11: P = P \ {p}
12: case dead or timeout
13: A = A \ {p},
14: end while
15: end for

Worker i:

1: Receive command “processing p” from the scheduler
2: while read a minibatch from p do
3: Pull wi and Vi from server nodes for all features i

that appear in this minibatch
4: Compute the gradient based on (16) and (17)
5: Push gradient back to servers
6: end while

Server i:

1: if received gradient from a worker then
2: update w and V by using (20) and (19)
3: end if

Server nodes maintain and update the model w and V .
Due to the adaptive memory constraints, the elements
of Vi could be partly (or entirely) zeros. Therefore a
server node only needs to allocate physical memory to
a nonzero element Vi to reduce the memory footprint.
This also saves bandwidth when handling model pull
requests from the worker nodes. Conversely, when re-
ceiving gradients from a worker node, the server node
updates the model using the steps discussed above.

Worker nodes perform most of the computation. After re-
ceiving a process data p command from the scheduler,
a worker repeatedly reads minibatches from p, which
is often a file stored in a distributed filesystem. For
each minibatch B, the worker first finds the support-
ing feature indices I = {i : xi 6= 0 for some x ∈ B}.
Then it pulls (prefetches) the working set of the model
from server nodes, namely {wi, Vi : i ∈ I}. Next the
worker calculates the gradient of this minibatch and
then pushes them to the servers.

Note that a worker node only needs to cache the minibatches
being processed and the associated working sets to minimize
the memory consumption. It also parallelizes data IO, com-
putation, and communication (in particular prefetching) to
hide IO cost. Besides, a worker node uses various filters
to reduce the amount of data that need to be communi-
cated. We adopt standard filters provided by the param-
eter server [8] including key caching (caching the keys in
both sender and receiver to avoid duplicated communica-



name # examples # features # entries

Criteo1 1 4.6× 107 3.4× 107 1.5× 109

CTR1 2.9× 105 1.4× 107 3.5× 107

Criteo2 2 1.5× 109 3.6× 108 5.0× 1010

CTR2 3 1.1× 108 1.9× 109 1.3× 1010

Table 1: A collection of click-through rate datasets.

tion) and lossless data compression. In addition, we use
fixed-point encoding. Namely we convert the floating-point
weight and gradient into shorter fixed-point integers during
communication.

The codes are publicly available as part of the DMLC
project http://dmlc.github.io/.

5. EXPERIMENTS
Quite clearly Factorization Machines are useful for many

problems beyond computational advertising. That said, we
feel that CTR estimation offers the most difficult challenges,
both in terms of data set size and dimensionality.

5.1 Setup
Datasets: We collected several click-through rate datasets
at various scales, as shown in Table 1. Criteo1 and Criteo2 are
display advertising datasets from Criteo. The former is used
in a recent Kaggle competition, for which we used the first
80% examples for training and the rest for test. The latter is
by far the largest public released click-through rate dataset.
We used the first 10 days data for training, and the 11-th day
data for test. In both Criteo1 and Criteo2, each example has
13 integer features and 26 category features. We extracted
sparse binary features via the widely-used one-hot encoding.

CTR2 is another advertising dataset sampled from a one
month period from an anonymous Internet company. We
used the on-production feature extraction module to obtain
sparse binary anonymized features. Compared to the Criteo
datasets, CTR2 has more 3 times more features per exam-
ple due to the extensive feature engineering. We sampled a
smaller dataset CTR1 from CTR2 for comparison with other
systems which cannot scale to CTR2.

Machines: All experiments with performance numbers were
run on Amazon EC2 c4.8xlarge instances. Each instance is
equipped with dual Intel E5-2666 V3 2.8 GHz CPUs, 60 GB
memory, and 10 Gigabit Ethernet. Auxiliary experiments,
such as tuning the hyperparameters were carried out on a
local cluster with 10 machines, with dual Intel E5-2680 v2
2.80GHz CPUs, 128 GB memory, and 40 GbE.

Hyperparameters: Unless stated otherwise, we choose the
hyperparameters as follows: We run DiFacto with 100 work-
ers and 100 servers on 10 physical machines. We fixed the
dimension k = 16 and the minibatch size 104 for Criteo2 and
103 for CTR2. While the smaller dataset Criteo1 and CTR1,
we decrease the minibatch sizes by 10 times respectively.
We used a fixed regularizer for w with λ1 = 4 and λ = 0,
while choosing the constant µ for V within the range of{

0, 10−5, 10−4, 10−3
}

based on an additional validation set.

1https://www.kaggle.com/c/
criteo-display-ad-challenge
2http://labs.criteo.com/downloads/
download-terabyte-click-logs
3https://github.com/mli/data

The elements in V were initialized uniformly at random in
the range [−0.01, 0.01]. The fast learning rate ηw is selected
between 0.001 and 0.1 with ηV = ηw and βw = βV = 1.
Finally, we stop the algorithm when the objective value on
the validation set stops decreasing.

5.2 Adaptive memory
We first study the effectiveness of adaptive memory. We

compare the following three setups which use different mem-
ory adaptive constraints in (15):

No memory adaption No constraint is applied, i.e. we do
not force elements in Vi to 0.

Frequency threshold Only the constraint Vi = 0 for in-
frequent keys ni < k is used, where ni is the occurrence
of feature i in the data.

Frequency threshold + `1 shrinkage We add the con-
straint Vi = 0 if wi = 0. That is, we mark Vi as
inactive if wi is set to 0 by the sparse induction `1
regularization.

We use the same hyper-parameters for all three setups and
vary the dimension k from 1 to 64. The results are shown
in Figure 2.

As can be seen, these memory adaptive constraints effec-
tively reduce the model size. The reduction is about 100x
for Criteo2 and 300x for CTR2 when k = 64. Therefore these
constraints significantly decrease the server node memory
consumption and network traffic. It also brings about a
20% reduction in the runtime. Especially when k is large,
the resulted amount of communication may overwhelm the
system. Being able to reduce the model size benefits the
system performance a lot.

A more interesting observation is that these memory adap-
tive constraints do not affect the test accuracy. To the con-
trary, we even see a slight improvement when the dimension
k is greater than 8 for CTR2. The reason could be that the
model capacity control is of great importance when the di-
mension k is large. And these memory adaptive constraints
can provide additional capacity control besides the `2 and
`1 regularizers.

5.3 Fixed-point Compression
We evaluate lossy fixed-point compression for data com-

munication. By default, both the model and gradient entries
are represented as 32 bit floats. In this experiment, we com-
press these values to lower precision integers. More specifi-
cally, given a bin size b and number of bits n, we represent
x by the following n-bit integer

z :=
⌊x
b
× 2n

⌋
+ σ, (22)

where σ is a Bernoulli random variable chosen such as to
ensure that E[z] = 2n x

b
.

We implemented the fixed-point compression as a user-
defined filter in the parameter server framework. Since mul-
tiple numbers are communicated in each round, we choose
b to be the absolute maximum value of these numbers. In
addition, we used the key caching and lossless data compres-
sion (via LZ4) filters.

The results for n = 8, 16, 24 are shown in Figure 3. As ex-
pected, fixed-point compression linearly reduces the network
traffic volume, since the traffic is dominated by communi-
cating the model and gradient. A more interesting observa-
tion is that we obtained a 4.2x compression rate from 32-bit

http://dmlc.github.io/
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
http://labs.criteo.com/downloads/download-terabyte-click-logs
http://labs.criteo.com/downloads/download-terabyte-click-logs
https://github.com/mli/data
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(c) Relative test logloss comparing to logistic regression (k = 0 and 0 relative loss).

Figure 2: Using different adaptive memory constraints when varying the embedding dimension. Left: Criteo2. Right: CTR2.

floating-point to 8-bit fixed-point on Criteo2. The reason is
the latter improves the compression rate for the following
lossless LZ4 compression.

We observed different effects of accuracy on these two
datasets: CTR2 is robust to the number precision, while
Criteo2 has a 6% increase of logloss if only using 1-byte pre-
sentation. However, a medium compression rate even im-
proves the model accuracy. This might be because the lossy
compression acts as regularizer to the objective function.

5.4 Comparison with LibFM
To our best knowledge, there is no publicly released dis-

tributed FM solver. Hence we only compare DiFacto to the
popular single machine package LibFM developed by Ren-
dle [15]. We only report results on Criteo1 and CTR1 on a
single machine, since LibFM fails on the other two larger
datasets. We perform a similar grid search of the hyper-
parameters as we did for DiFacto. As LibFM only uses
single thread, we run DiFacto with 1 worker and 1 server



1 2 3 4
0

100

200

300

400

500

#byte per entry

G
ig

a
b
y
te

 

 

Criteo2

CTR2

(a) Total data sent by workers in one iteration. The compression
rates from 4-byte to 1-byte are 4.2x and 2.9x for Criteo2 and CTR2,
respectively.

1 2 3 4
−2

0

2

4

6

#byte per entry

re
la

ti
v
e

 l
o

g
lo

s
s
 (

%
)

 

 

Criteo2

CTR2

(b) The relative test logloss comparing to no fixed-point compression.

Figure 3: Compressing model and gradient using the fixed-
point compression, where 4-byte means using the default
32-bit floating-point format.

in sequential execution order. We also report the perfor-
mance using 10 workers and 10 servers on a single machine
for reference.

The results are shown in Figure 4. As can been seen,
DiFacto converges significantly faster than LibFM, it uses
2 times fewer iterations to reach the best model. This is
because the adaptive learning rate used in DiFacto better
models the data sparsity and the adaptive regularization and
constraints can further accelerate the convergence. In par-
ticular, the latter results in a lower test logloss on the CTR1

dataset, where the number of features exceeds the number
of examples, requiring improved capacity control.

Also note that DiFacto with a single worker is twice slower
than LibFM per iteration. This is because the data commu-
nication overhead between the worker and the server cannot
be ignored in the sequential execution. More importantly,
DiFacto does not require any data preprocessing to map ar-
bitrary 64-bit integer and string feature indices, which are
used in both Criteo1 and CTR2, to continuous integer indices.
The cost of this data preprocessing step, required by LibFM
but not shown in Figure 4, even exceeds the cost of train-
ing (1,400 seconds for Criteo1). Nevertheless, DiFacto with a
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Figure 4: Comparison with LibFM on a single machine. The
data preprocessing time for LibFM is omitted.

single worker still outperforms LibFM thanks to the faster
convergence. In addition, it is 10 times faster than LibFM
when using 10 workers on the same machine.

5.5 Scalability
Finally, we study the scalability of DiFacto by varying the

number of physical machines used in training. We run 10
workers and 10 servers in each machine, and increase the
number of machines from 1 to 16. Both the time for each
iteration and the logloss on the test dataset are recorded and
shown in Figure 5.

We observe an 8x speedup from 1 machine to 16 machines
on both Criteo2 and CTR2. The reason for the satisfactory
performance is twofold. First, asynchronous SGD eliminates
the need for synchronization between workers and it is toler-
ant to stragglers. Even though we used dedicated machines
for the job, they still share network bandwidth with others.
In particular, we observed a large variation of read speed
when streaming data from Amazon’s S3 service, despite us-
ing the IO optimized c4.8xlarge series of machines. This
ensures that we actually take advantage of parallelization
relative to LibFM, which is single core.

Second, DiFacto uses several filters which effectively re-
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Figure 5: The speedup from 1 machine to 16 machines,
where each machine runs 10 workers and 10 servers. The
difference between the test logloss is within 0.5%, which is
omitted in the figure.

duce the amount of network traffic. Even though CTR2 pro-
duces 10 times more network traffic than Criteo2, they have
similar speedup performance.

There is a longstanding suspicion that the convergence of
asynchronous SGD slows down when increasing the number
of workers. Nonetheless, we did not observe a substantial
difference in model accuracy. In other words, the relative
difference of the objective logloss on test datasets is below
0.5% when increasing the number of workers from 10 to 160.
This might be because the datasets we used are highly sparse
and the features are not extremely correlated. Hence incon-
sistency due to concurrently updating by multiple workers
may not have a major effect. These observations correspond
well with what we predict in the convergence analysis.

6. CONCLUSION
In this paper we presented DiFacto, a high performance

distributed factorization machine. DiFacto uses a refined
factorization machine model with adaptive memory con-
straints and frequency adaptive regularization, which per-
form fine-grained capacity control based on both data and
model statistics. DiFacto uses asynchronous stochastic gra-
dient descent. We give theoretical convergence analysis and
implement it in the parameter server framework. We evalu-
ated DiFacto thoroughly on two real computational adver-
tising datasets with up to billions of examples and features.
We showed that DiFacto produces a very compact model, yet
it retains similar generalization accuracy. We also demon-
strated that DiFacto converges faster than the state-of-the-
art package LibFM. Furthermore, DiFacto is able to solve
TB scale problems on modest machines within hours.
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