
Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

This is the supplementary document to the paper: “Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms”.

A. Convergence analysis
We provide a self-contained convergence proof in this section. The skeleton of our convergence proof follow closely from
Lacoste-Julien et al. (2013) and Jaggi (2013). There are a few subtle modification and improvements that we need to add
due to our weaker definition of approximate oracle call that is nearly correct only in expectation. The delayed convergence
is new and interesting for the best of our knowledge, which uses a simple result in “load balancing” (Mitzenmacher, 2001).

Note that for the cleanness of the presentation, we focus on the primal and primal-dual convergence of the version of the
algorithms with pre-defined step sizes and additive approximate subroutine, it is simple to extend the same analysis for
line-search variant and multiplicative approximation.

A.1. Primal Convergence

Lemma 8. Denote the gap between current f(x(k)) and the optimal f(x∗) to be h(x(k)). The iterative updates in Algo-
rithm 1(with arbitrary fixed stepsize γ or by the line search) obey

Eh(x(k+1)) ≤ (1− γτ

n
)Eh(x(k)) +

γ2(1 + δ)

2
Cτf .

where the expectation is taken over the joint randomness all the way to iteration k + 1.

Proof. Let x := x(k) for notational convenience. We prove the result for Algorithm 1 first. Apply the definition of C(S)
f

and then apply the definition of the additive approximation in (5), to get

f(x
(k+1)
line−search) ≤ f(x(k+1)

γ) = f(x+ γ
∑
i∈S

(s[i] − x[i]))

≤ f(x) + γ
∑
i∈S
〈s[i] − x[i],∇[i]f(x)〉+

γ2

2
C

(S)
f

= f(x) + γ〈s[S] − x[S],∇[S]f(x)〉+
γ2

2
C

(S)
f

Subtract f(x∗) on both sides we get:

h(x(k+1)) ≤ h(x(k)) + γ〈s[S] − x
(k)
[S] ,∇[S]f(x(k))〉+

γ2

2
C

(S)
f

Now take the expectation over the entire history then apply (5) and definition of the surrogate duality gap (6), we obtain

Eh(x(k+1)) ≤Eh(x(k)) + E
{
γ〈s[S] − x

(k)
[S] ,∇[S]f(x(k))〉

}
+ E

γ2

2
C

(S)
f

=Eh(x(k)) + γE
{
〈s[S],∇[S]f(x(k))〉 − min

s∈M(S)
〈s,∇[S]f(x(k))〉

}
− γE

{
〈x(k)[S] ,∇[S]f(x(k))〉 − min

s∈M(S)
〈s,∇[S]f(x(k))

}
+
γ2

2
Cτf

≤Eh(x(k)) +
γ2δ

2
Cτf − γExkES|xk

∑
i∈S

g(i)(x(k)) +
γ2

2
Cτf

=Eh(x(k)) +
γ2δ

2
Cτf − γExk

τ

n
g(x(k)) +

γ2

2
Cτf (10)

≤(1− γτ

n
)Eh(x(k)) +

γ2(1 + δ)

2
Cτf .

The last inequality follows from the property of the surrogate duality gap g(x(k)) ≥ h(x(k)) due to the fact that g(x) =
f(x)− f∗(·). This completes the proof of the descent lemma.

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Now we are ready to state the proof for Theorem 2.

Proof of Theorem 2. We follow the proof in Theorem C.1 in (Lacoste-Julien et al., 2013) to prove the statement for
Algorithm 1. The difference is that we use a different and carefully chosen sequence of step size.

Take C = h0 + n(1 + δ)Cτf , and denote Eh(x(k)) as hk for short hands. The inequality in Lemma 8 simplifies to

hk+1 ≤
(

1− γτ

n

)
hk +

γ2

2n
C.

Now we will prove hk ≤ 2nC
τ2k+2n for γk = 2nτ

τ2k+2n by induction. The base case k = 0 is trivially true since C > h0.
Assuming that the claim holds for k, we apply the induction hypothesis and the above inequality is reduced to

hk+1 ≤ (1− γτ

n
)hk +

γ2

2n
C ≤ 2nC

τ2k + 2n

[
1− γτ

n
+
τ2k + 2n

2n

γ2

2n

]
=

2nC

τ2k + 2n

[
τ2k + 2n

τ2k + 2n
− 2nτ

τ2k + 2n
· τ
n

+
(2nτ)2

4n2(τ2k + 2n)

]
=

2nC

τ2k + 2n
· τ

2k + 2n− τ2

τ2k + 2n
≤ 2nC

τ2k + 2n
· τ

2k + 2n− τ2 + τ2

τ2k + 2n+ τ2

=
2nC

τ2(k + 1) + 2n
.

This completes the induction and hence the proof for the primal convergence for Algorithm 1.

A.2. Convergence of the surrogate duality gap

Proof of Theorem 3. We mimic the proof in (Lacoste-Julien et al., 2013, Section C.3) for the analogous result closely, and
we will use the same notation for hkand C as in the proof for primal convergence, moreover denote gk = Eg(x(k)) First
from (10) in the proof of Lemma 8, we have

hk+1 ≤ hk −
γτ

n
gk +

γ2

2n
C.

Rearrange the terms, we get

gk ≤
n

γτ
(hk − hk+1) +

γC

2τ
. (11)

The idea is that if we take an arbitrary convex combination of {g1, ..., gK}, the result will be within the convex hull,
namely between the minimum and the maximum, hence proven the existence claim in the theorem. By choosing weight
ρk := k/SK where normalization constant SK = K(K+1)

2 and taking the convex combination of both side of (11), we
have

E(min
k∈[K]

gk) ≤
K∑
k=0

ρkgk ≤
n

τ

K∑
k=1

ρk(
hk
γk
− hk+1

γk
) +

K∑
k=0

ρkγk
C

2τ

=
n

τ
(
h0ρ0
γ0
− hK+1

ρk
γk

) +
n

τ

K−1∑
k=0

hk+1(
ρk+1

γk+1
− ρk
γk

) +

K∑
k=0

ρkγk
C

2τ

≤ n

τ

K−1∑
k=0

hk+1(
ρk+1

γk+1
− ρk
γk

) +

K∑
k=0

ρkγk
C

2τ
(12)

Note that ρ0 = 0, so we simply dropped a negative term in last line. Applying the step size γk = 2nτ/(τ2k + 2n), we get

ρk+1

γk+1
− ρk
γk

=
k + 1

SK

τ2(k + 1)2n

2nτ
− k

SK

τ2k + 2n

2nτ

=
1

2nSKτ

[
τ2(k + 1)2 + 2n(k + 1)− τ2k2 − 2nk

]
=
τ2(2k + 1) + 2n

2nSKτ
.

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Plug the above back into (12) and use the bound hk+1 ≤ 2nC/(τ2(k + 1) + 2n), we get

E(min
k∈[K]

gk) ≤
K∑
k=0

ρkgk ≤
nC

τ2SK

K−1∑
k=0

τ2(2k + 2) + 2n

2n

2n

τ (2k + 1) + 2n
+

K∑
k=0

k

SK

2nτ

τ2k + 2n

C

2τ

=
nC

τ2SK

[
K−1∑
k=0

(1 +
τ2

τ2(k + 1) + 2n
) +

K∑
k=1

kτ2

(τ2k + 2n)

]

≤ nC

τ2SK
[2K +K] =

2nC

τ2(K + 1)
· 3.

This completes the proof for K ≥ 1.

Proof of Convergence with Delayed Gradient The idea is that we are going to treat the updates calculated from the
delayed gradients as an additive error and then invoke our convergence results that allow the oracle to be approximate. We
will first present a lemma that we will use for the proof of Theorem 6.

Lemma 9. Let x ∈ M, ‖ · ‖ be a norm, Diam(M)‖·‖ ≤ D, L be the gradient Lipschitz constant of f with respect to the
given norm ‖ · ‖. Moreover, let x′ be at most κ steps away from x and the largest stepsize in the past κ steps, and

x∗ := argmin
s∈M

〈s,∇f(x)〉

x̃ := argmin
s∈M

〈s,∇f(x′)〉

Then, we have
〈s̃− x,∇f(x)〉 ≤ 〈s∗ − x,∇f(x)〉+ γκD2L

Proof. Because s̃ minimizes 〈s,∇f(x̃)〉 over s ∈M and s∗ is feasible, we can write

〈s∗ − s̃,∇f(x̃)〉 ≥ 0.

Using this and Hölder’s inequality, we can write

〈s̃− x,∇f(x)〉 − 〈s∗ − x,∇f(x)〉 ≤ 〈s̃− s∗,∇f(x)−∇f(x̃)〉 ≤ ‖s̃− s∗‖‖∇f(x̃)−∇f(x)‖∗ ≤ DL‖x̃− x‖.

It remains to bound ‖x̃− x‖.

‖x̃− x‖ =

∥∥∥∥∥x̃− x̃−
κ∑
i=1

γ−i(s−i − x−i)

∥∥∥∥∥ ≤ γκmax
i
‖s−i − x−i‖ ≤ γκD,

where we used the fact that x is at most κ steps away from x̃. Assume γ−i is the stepsize used and 〈s−i, x−i〉 are the actual
updates that had been performed in the nearest ith parameter update before we get to x.

The second lemma that we need is the following.

Lemma 10. LetM be a convex set. Let x0 ∈M. Let m be any positive integer. For i = 1, ...,m, let xi = xi−1 + γi(si−
xi−1) for some 0 ≤ γi ≤ 1 and si ∈M. Then there exists an s ∈M and γ ≤

∑m
i=1 γi, such that xm = γ(s− x0) + x0.

Proof. We prove by induction. When m = 1, s = s1 and γ = γ1. Assume for any m = k− 1, that the claim holds assume
the condition is true, then by the recursive formula,

xk = xk−1 + γk(sk − xk−1)

= x0 + γ(s− x0) + γk[sk − x0 − γ(s− x0)]

= x0 − (γ + γk − γkγ)x0 + (γ − γkγ)s+ γksk

= x0 + (γ + γk − γkγ)

[
γ − γkγ

γ + γk − γkγ
s+

γk
γ + γk − γkγ

sk − x0
]

= x0 + (γ + γk − γkγ)(s′ − x0)

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Note that s′ is a convex combination of sk and s therefore by convexity s′ ∈M. Substitute γ ≤
∑k−1
i=1 γi, we get

γ + γk − γkγ ≤
k∑
i=1

γi.

This completes the inductive proof for all m.

The third Lemma that we will need is the following characterization of the expected “max load” in randomized load
balancing.

Lemma 11 ((Mitzenmacher, 2001; Raab & Steger, 1998)). Suppose m balls are thrown independently and uniformly at
random into n bins. Then, the maximum number of balls in a bin Y satisfies

EY ≤

3 logn

log(n/m) if m < n/ log n,

c′ log n if m < cn log n,

m
n +O(

√
2m
n log n) if m� n log n.

where c′ is a constant that depends only on c.

Proof of Theorem 6. The proof involves a sharpening of the Lemma 9 for the BCFW and minibatch setting, where x ∈
M = M(1) × ... × M(n) is a product domain. The proof idea is to exploit this property. Let the current update be
on coordinate block index subset S. For each j ∈ S, let the corresponding worker be delayed by κj steps, and the
corresponding parameter vector be x̃. κj is a random variable.

As in the proof of Lemma 9, we can bound the suboptimality of the approximate subroutine for solving problem j:

Suboptimality(s̃j) ≤ 〈s̃j − s∗j ,∇jf(x̃)−∇jf(x)〉 ≤ ‖s̃j − s∗j‖‖∇jf(x̃)−∇jf(x)‖∗

≤ D(j)
‖·‖L

(j)
‖·‖‖x̃− x‖ = D

(j)
‖·‖L

(j)
‖·‖

∥∥∥∥∥
κj∑
i=1

γ−i(s−i − x−i)

∥∥∥∥∥ (13)

≤ D1
‖·‖L

1
‖·‖

κj∑
i=1

γ−i ‖(s−i − x−i)‖

≤ D1
‖·‖L

1
‖·‖

κj∑
i=1

γ−iD
τ
‖·‖ ≤ κjγ−κjD1

‖·‖L
1
‖·‖D

τ
‖·‖.

Let κ := Eκj , take expectation on both sides we get

E Suboptimality(s̃j) ≤ E(κjγ−κj)D1
‖·‖L

1
‖·‖D

τ
‖·‖

Repeat the same argument for each i ∈ S, we get

E Suboptimality(s̃) ≤ E(κjγ−κj)τD1
‖·‖L

1
‖·‖D

τ
‖·‖.

To put it into the desired format in (5), we solve the following inequality for δ

γδCτf
2
≥ E(κjγ−κj)τDτ

‖·‖D
1
‖·‖L

1
‖·‖

we get

δ ≥ 2τ

Cτf
E
(
κjγ−κj

γ

)
Dτ
‖·‖D

1
‖·‖L

1
‖·‖.

By the specification of the stepsizes, we can calculate for each k,

γ−κj
γ

=
τ2k + 2n

τ2(max(k − κj , 0)) + 2n
.

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Note that we always enforce κj to be smaller than k
2 (otherwise the update is dropped), we can therefore upper bound

E(
κjγ−κj

γ) by 2κ. This gives us the the first bound (9) on δ in Theorem 6.

To get the second bound on δ, we start from (13) and bound ‖x̃ − x‖ differently. Let S be the set of τκj coordinate
blocks that were updated in the past κj iterations. In the cases where fewer than τκj blocks were updated, just arbitrarily
pick among the coordinate blocks that were updated 0 times so that |S| = τκj . x̃ − x is supported only on S. Suppose
coordinate block i ∈ S is updated by m times, as below

x̃(i) =

m∑
j=1

γj(sj − [xj](i))

for some sequence of 0 ≤ γ1, ..., γm ≤ 1 and s1, ..., sm ∈ Mi and recursively [xj](i) = [xj−1](i) + γj(sj − [xj−1](i))
(x0 = x). Apply Lemma 10 for each coordinate block, we know that there exist s(i) ∈Mi in each block i ∈ S such that

x̃(i) = x(i) + γ(i)(s(i) − x(i))

with
γ(i) ≤

∑
j∈ iterations where i is updated

γj ≤ mγmax. (14)

Note that s(i) ∈Mi for each i ∈ S implies that their concatenation s(S) ∈MS . Also γmax ≤ γ−κj . Therefore

‖x̃− x‖ =

∥∥∥∥∥∑
i∈S

γ(i)(s(i) − x(i))

∥∥∥∥∥ ≤ mγmax‖s(S) − x(S)‖ ≤ Y γ−κjD
τκj
‖·‖

where Y is a random variable that denotes the number of updates received by the most updated coordinate block (the
maximum load). Apply a previously used argument to get γ−κj < 2γ, take expectation on both sides, to get the following
by the law of total expectations and (14)

E‖x̃− x‖ ≤ E
(
Y γ−κjD

τκj
‖·‖

)
= E

[
E
(
Y γ−κjD

τκj
‖·‖

∣∣∣κj)] = E
[
γ−κjD

τκj
‖·‖ E (Y |κj)

]
≤ 2γE

[
D
τκj
‖·‖ E (Y |κj)

]
(15)

This expectation is taken over the entire history of minibatch choice and delay associated with each update. When we
condition on κj , the conditional expectation of Y becomes the load-balancing problem.

By Lemma 11 when κmaxτ ≤ n
logn , it follows from (15) that

E‖x̃− x‖ ≤ 2γEDκjτ
‖·‖

3 log n

log(n/κjτ)
≤ 3 log n

log[n/(τκmax)]
2γEDκjτ

‖·‖ .

When κmaxτ < cn log n,

E‖x̃− x‖ ≤ 2γEDκjτ
‖·‖ O(log n) ≤ O(log n)2γEDκjτ

‖·‖ .

When κmaxτ � n log n, then

E‖x̃− x‖ ≤ (1 + o(1))
τκmax

n
2γEDκjτ

‖·‖ .

Repeating the above results for each block j ∈ S, and summing them up leads to an upper bound for
γδCτf

2 and the proof
of (9) is complete by solving for δ.

B. Proofs of other technical results
Relationship of the curvatures.

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Proof of Lemma 1. C(S)
f ≤ Cf follows from the fact that

〈y(S) − x(S),∇(S)f(x)〉 = 〈y[S] − x[S],∇f(x)〉,

and s[S] ∈ M. In other words, the arg sup of (3) is a feasible solution in the sup to compute the global Cf . Similar
argument holds for the proof C(i)

f ≤ C
(S)
f as i ∈ S.

In the second part,

Cτf =
1(
n
τ

) ∑
T⊂[n],|T |=τ

C
(T)
f .

We can evenly partition sets T in the summation into n parts Pj for j ∈ [n], such that sets in Pj have the element j. Clearly
each Pj has a size of

(
n
τ

)
/n. We can use C(S)

f ≥ Cf (j) from the first inequality of the lemma, to get the inequality below.

Cτf =
1(
n
τ

) ∑
j∈[n]

∑
T∈Pj

C
(T)
f ≥ 1(

n
τ

) ∑
j∈[n]

∑
T∈Pj

C
(j)
f =

1(
n
τ

) ∑
j∈[n]

(
n

τ

)
1

n
C

(j)
f =

1

n
C⊗f

The relaxation of Cτf to Cf is trivial since C(T)
f ≤ Cf holds for any T ⊆ [n] from the first part of the lemma.

Bounding Cτf using expected boundedness and expected incoherence

Proof of Theorem 4. By Definition of H, for any x, z ∈M, γ ∈ [0, 1]

f(x+ γ(z − x)) ≤ f(x) + γ(z − x)T∇f(x) +
γ2

2
(z − x)TH(z − x).

Rearranging the terms we get

2

γ2
[
f(x+ γ(z − x))− f(x)− γ(z − x)T∇f(x)

]
≤ (z − x)TH(z − x)

The definition of set curvature (3) is written in an equivalent notation with z = x[Sc] + s[S] and y = x + γ(z − x) =
x+ γ(s[S] − x[S]). So we know the support of z − x is constrained to be within the coordinate blocks S.

Plugging this into the definition of (3) we get an analog of Equation (2.12) in (Jaggi, 2011) for C(S)
f .

C
(S)
f = sup

x,z∈M,γ∈[0,1]
z(Sc)−x(Sc)=0

2

γ2
[
f(x+ γ(z − x))− f(x)− γ(z − x)T∇f(x)

]
≤ sup
x,z∈M,
z(Sc)−x(Sc)=0

(z − x)TH(z − x) = sup
x,z∈M,
z(Sc)−x(Sc)=0

sT(S)Hs(S)

≤ sup
w∈M(S)

(2wT)HS(2w) = 4

 sup
wi∈M(i)∀i∈S

∑
i∈S

wTi Hiiwi +
∑

i,j∈S,i 6=j

wTi Hiiwj

≤ 4

∑
i∈S

sup
z

sup
wi

wTi Hii(z)wi +
∑

i,j∈S,i 6=j

sup
z

sup
wi,wj

wTi Hii(z)wj

≤ 4(

∑
i∈S

Bi +
∑

i,j∈S,i 6=j

µij).

Take expectation for all possible S of size τ and we obtain the lemma statement.

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Proof of the example with sublinear dependence of κ

Proof of Lemma 7. We first show that a continuous extension of Dθ
‖·‖ is concave in θ

Dθ
‖·‖ = max

S⊂[n]||S|=θ
sup

x,y∈M(S)

‖x− y‖

= max
S⊂[n]||S|=θ

sup
x,y∈M(S)

√∑
i∈S
‖x(i) − y(i)‖2

=

√
max

S⊂[n]||S|=θ

∑
i∈S

sup
x(i),y(i)∈M(i)

‖x(i) − y(i)‖2

The supremum is obtained by sorting and the function in the square root is concave function of θ, when we extend the
support of this function to R+ through linear interpolation. By the composition theorem, the square root of that is also a
concave function in τ . We call this function D̃θ

‖·‖. Note that D̃θ
‖·‖ = Dθ

‖·‖ when θ ∈ [n] such that if we take expectation
over the any discrete distribution over θ, their expectations are the same. It follows from Jensen’s inequality that

EDκτ
‖·‖ = ED̃κτ

‖·‖ ≤ D̃
Eκτ
‖·‖

≤ DdEκτe‖·‖

=

√
max

S⊂[n]
∣∣|S|=dEκτe

∑
i∈S

sup
x(i),y(i)∈M(i)

‖x(i) − y(i)‖2

≤
√
dEκeDτ

‖·‖.

Proof of specific examples

Proof of Example 1. First of all, H = λATA. Since all columns of A have the same magnitude
√

2/n. By the Holder’s
inequality and the 1-norm constraint in every block, we know Bi = 2

n2λ for any i therefore B = 2
n2λ . Secondly, by

well-known upper bound for the area of the spherical cap, which says for any fixed vector z and random vector a on a unit
sphere in Rd,

P(|〈z, a〉| > ε‖z‖) ≤ 2e
−dε2

2 ,

we get

P(µij > 2

√
20 log d

d
) ≤ 2

d10
.

Take union bound over all pairs of labels we get the probability as claimed.

Proof of Example 2. The matrix DTD is tridiagonal with 2 on the diagonal and −1 on the off-diagonal. If we vectorize U
by concatenating u = [u1; ...;un−1], the Hessian matrix for uwill beH = ΠId⊗(DTD)ΠT where Π is some permutation
matrix. Without calculating it explicitly, we can express

uTSHSuS = uTS (DT ⊗ 1d)(D
T ⊗ 1d)

TuS

=
∑
i∈S

uTi

DT

:,i

DT
:,i
...

DT
:,i

 [D:,i D:,i . . . D:,i

]
ui +

∑
i,j∈S,i 6=j

uTi

DT

:,i

DT
:,i
...

DT
:,i

 [D:,j D:,j . . . D:,j

]
uj .

We note that for any |i− j| ≥ 2, the second term is 0. Apply the constraint that ‖ui‖2 ≤ λ and the fact that the `2 operator
norm of

[
D:,j D:,j . . . D:,j

]
is
√

2d, we get Bi = 2λ2d. Similarly, 2(n− 2) nonzero obeys µij = λ2d. This allows
us to obtain an upper bound

Cτf ≤ 4

[
2τλ2d+

2(n− 2)τ(τ − 1)

(n− 2)(n− 1)
λ2d

]
≤ 16τλ2d.

which scales with τ .

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

B.1. Pseudocode for the Multicore Shared Memory Architecture

We present pseudocode for the multicore shared memory setting here. It is the same except that each worker becomes a
thread, the network buffer of servers become the a data structure, the workers’ network buffer becomes the shared parameter
vector and the workers can write to the data structure or the shared parameter vector directly.

Algorithm 2 AP-BCFW: Asynchronous Parallel Block-Coordinate Frank-Wolfe (Shared memory)

————————SERVER THREAD———————
Input: An initial feasible x(0), mini-batch size τ , number of workers T .
0. Write x(0) to shared memory. Declare a container (a queue or a stack).
for k = 1,2,... (k is the iteration number.) do

1. Keep popping the container until we have τ updates on τ disjoint blocks. Denote the index set by S.
2. Set step size γ = 2nτ

τ2k+2n .

3. Write sparse updates x(k) = x(k−1) + γ
∑
i∈S(s[i] − x

(k−1)
[i]) into the shared memory.

if converged then
Broadcast STOP signal to all threads and break.

end if
end for
Output: x(k).
———————–WORKER THREADS———————
while no STOP signal received do

a. Randomly choose i ∈ [n].
b. Calculate partial gradient∇(i)f(x) using x in the shared memory and solve (2).
c. Push {i, s(i)} to the container.

end while

The above pseudo code can be further simplified when τ = 1. In particular, we do not need a server any more. Each
worker can simply write to the shared memory bus. The probability of two workers writing to the same block is small as
we analyzed in Section D.2. The algorithm essentially lock-free as in (Niu et al., 2011) modulo requiring the updates of
each coordinate block to be atomic. Niu et al. (2011) is stronger in that it allows each scalar addition to be atomic.

There is an additional restriction due to the fixed predefined sequence of step sizes, which in fact requires a centralized
shared counter that is atomic, so that no two threads have simultaneously the same k. In practice, we can simply choose a
fixed sequence of stepsize for each worker separately.

Algorithm 3 AP-BCFW: Asynchronous Parallel Block-Coordinate Frank-Wolfe (Lock-Free Shared-Memory)

Input: An initial feasible x(0), number of workers T , a centralized counter.
0. Write x(0) to shared memory.
————INDEPENDENTLY ON EACH THREAD———–
while not converged do

a. Randomly choose i ∈ [n].
b. Calculate partial gradient∇(i)f(x) using x in the shared memory and solve (2).
c. Read centralized counter for k. Set step size γ = 2n

k+2n .
d. Add γ(s(i) − x(i)) to block i of the shared memory.
e. Increment the counter k = k + 1.

end while
——————————————————————-
if converged then

Output: x(k). and break.
end if

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

C. Application to Structural SVM
We briefly review structural SVMs and show how to solve the associated convex optimization problem using our AP-BCFW
method.

In structured prediction setting, the task is to predict a structured output y ∈ Y , given x ∈ X . For example, x could
be the pixels in the picture of a word, y could be the sequence of characters in the word. A feature map φ : X ×
Y → Rd encodes compatibility between inputs and outputs. A linear classifier parameter w is learned from data so that
argmaxy∈Y〈w, φ(x,y)〉 gives the output for an input x. Suppose we have the training data {xi,yi}ni=1 to learn w. Define
ψi(y) := φ(xi,yi) − φ(xi, y) and let Li(y) := L(yi,y) denote the loss incurred by predicting y instead of the correct
output yi. The classifier parameter w is learned by solving the optimization problem

min
w,ξ

λ

2
‖w‖2 +

1

n

n∑
i=1

ξi (16)

s.t 〈w, ψi(y)〉 ≥ L(yi,y)− ξi ∀i,y ∈ Y(xi).

We solve the dual of this problem using our method. We introduce some more notation to formulate the dual. Denote
Yi := Y(xi), the set of possible labels for xi. Note that |Yi| is exponential in the length of label yi. Let m =

∑
i=1 |Yi|.

Let A ∈ Rd×m denote a matrix whose m columns are given by { 1
λnψi(y) | i ∈ [n],y ∈ Yi}. Let b ∈ Rm be a vector

given by the entries { 1nLi(y) | i ∈ [n],y ∈ Yi}. The dual of (16) is given by

min
α∈Rm

f(α) :=
λ

2
‖Aα‖2 − bTα (17)

s.t
∑
y∈Yi

αi(y) = 1 ∀i ∈ [n], α ≥ 0

The primal solution w can be retrieved from the dual solution α from the relation w = Aα obtained from KKT conditions.
Also note that the domainM of (17) is exactly the product of simplicesM = ∆|Y1| × · · · ×∆|Yn|.

The subproblem in equation (2) takes a well-known form in the Frank-Wolfe setup for solving (17). The gradient is given
by

∇f(α) = λATAα− b = λATw − b

whose (i,y)-th component is given by 1
n (〈w, ψi(y)〉 − Li(y)). Define Hi(y;w) := Li(y) − 〈w, ψi(y)〉 so that the

(i,y)-th component of the gradient is − 1
nHi(y;w). In the subproblem (2), the domainM(i) is the simplex ∆Yi and the

block gradient ∇(i)f(α) is linear. So, the objective is minimized at a corner of the simplexM(i) and the optimum value
is simply given by miny∇(i)f(α) which can be rewritten as maxyHi(y;w). Further, the corner can be explicitly written
as the indicator vector ey

∗
i ∈ M(i) where y∗i = argmaxyHi(y;w). It turns out that this maximization problem can be

solved efficiently for several problems. For example, when the output is a sequence of labels, a dynamic programming
algorithm like Viterbi can be used.

As mentioned before, m is too large to update the dual variable α directly. So, we make an update to the primal variable
w = Aα instead. The Block-Coordinate Frank-Wolfe update for the i-th block maybe written as αk+1

(i) = αki +γ(si−αk(i))
where γ is the step-size. Recalling that the optimal si is ey

∗
i , by multiplying the previous equation by Ai, we arrive at

w
(k+1)
i = wk

i + γ(Ai,y∗i − w
(k)
i) where w

(k)
i := Aiα(i). From this definition of w(k)

i , the primal update is obtained

by noting that w(k) =
∑
iw

(k)
i . Explicitly, the primal update is given by w(k+1) = wk + γ(Ai,y∗i − w

(k)
i). Note

that Ai,y∗i = 1
λnψ(y

∗
i). This Block-Coordinate version can be easily extended to AP-BCFW. In our shared memory

implementation, for OCR dataset, we do the line search computation and w
(k)
i update step on the workers instead of the

server because these computations turn out to be expensive enough to make the server the bottleneck even for modest
number of workers.

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

D. Other technical results and discussions
D.1. Oracle assumption and heterogeneous blocks

Recall that our results rely on the oracle assumption that O provides updates that are iid uniform over [n] (Assumption
A1). We discuss the implications and limitations of this assumption and then propose possible solutions.

Consider the setting where O consists of T possibly heterogeneous workers and each worker samples iid from [n]. As we
discussed before, A1 holds under the additional condition that the time needed to complete one subroutine solve for Block
i by Worker j does not depend on i.

Consider the simple example due to an anonymous reviewer: Let τ = 1, T = 2 and there are a total of two blocks. Block
1 takes only a millisecond an Block 2 takes a year to solve for both workers. In this case, the first update received by the
server is with probability 3/4 for Block 1 and only 1/4 for Block 2.

This could potentially limit the use of our parallel algorithm for applications such as structured predictions where sentences
having different lengths, or cases where there are different sparsity level over data points/constraints depending on how we
formulate the problem.

This is in fact not a problem unique to us, Assumption A1 is implicitly required in most existing analysis for asynchronous
stochastic algorithms (e.g., Liu et al., 2014; Niu et al., 2011). As a result, they all share the same woe. One could argue
that parallelization is the wrong problem to address when block subroutines significantly differ with each other. Efforts
should be spent on perhaps solving the expensive subproblem in parallel. But still, even mild heterogeneity over blocks
invalidates our convergence result.

Henceforth, we propose two simple ways to address this issue and discuss their pros and cons.

Padding: A naive solution is to per-calculate the time-complexity with respect to each block and inject artificial time
padding on each user such that all blocks have the same time complexity.

Pre-select S: An alternative is to let the server randomly choose a coordinate subset S of size τ , and the workers can only
work on S, either by independently sample from S or work on whichever that is not available.

Neither of the two solutions is completely satisfactory. The padding approach ensures all results in the paper to hold
including those for the delayed oracles, but inevitably, the time to complete each block now depends on the most expensive
block. The second approach has milder dependence on the worst block, in fact it depends only on the time for the fastest
worker to solve the slowest problem in each chosen S. However, it requires sending an updated parameter to all workers in
every iteration. It could still be robust to heterogeneous workers when τ is several times larger than T , and when workers
work asynchronously within the mini-batch, we prove in Proposition 12 that the number of collisions is small.

Fully asynchronous parallelism over blocks with heterogeneous blocks without dependence on the slowest block remains
an important open problem.

D.2. Controlling collisions in distributed setting

In the distributed setting, different workers might end up working on the same slot.

In Algorithm 1, different workers may end up working on the same coordinate block and the server will drop a number of
updates in case of collision. The following proposition shows that for this potential redundancy is not excessive is small
and for a large range of τ , we also show additional strong concentration to its mean.

Proposition 12. In the distributed asynchronous update scheme above:
i) The expected number of subroutine calls from all workers to complete each iteration is τ +

∑τ−1
i=1

i
n−i .

ii) If 0.02n < τ < 0.6n, with probability at least 1− exp(−n/60), no more than 2τ random draws (2τ subroutine calls
in total from all workers) suffice to complete each iteration.

Proof. The first claim is the well-known coupon collector problem.

The second claim requires an upper bound of the expectation. In expectation, we need n
n−k balls to increase the unique

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

count from k to k + 1. So in expectation we need

1 +
n

n− 1
+

n

n− 2
+ ...+

n

n− τ + 1
= τ +

τ−1∑
i=1

i

n− i

≤ τ +
1 + 2 + · · ·+ (τ − 1)

n− τ + 1
= τ +

τ(τ − 1)

2(n− τ + 1)
< τ

[
1 +

1

2(n/τ − 1)

]
.

To see the second claim, first defined ft to be the number of non-empty bins after t random ball throws, which can
be consider as a function of the t iid ball throws X1, X2, ..., Xt. It is clear that if we change only one of the Xi, ft
can be changed by at most 1. Also, note that the probability that any one bin being filled is 1 − (1 − 1

n)t, so Eft =

n
[
1−

(
1− 1

n

)t]
.

By the McDiarmid’s inequality, P [ft < Eft − ε] ≤ exp
[
− 2ε2

t

]
. Take t = 2τ , and ε = Ef2τ − τ , then

P [f2τ < τ] ≤ exp

−1

τ

(
n

[
1−

(
1− 1

n

)2τ
]
− τ

)2
 ≤ exp

[
−1

τ

(
n
[
1− e− 2τ

n

]
− τ
)2]

= exp

[
−n · n

τ

(
1− e− 2τ

n − τ

n

)2]
≤ exp [−Cn],

where C is some constant which is the smaller of the two evaluations of the function n
τ

(
1− e− 2τ

n − τ
n

)2
at τ = 0.02n

and τ = 0.6n (where the function is concave between the two). As a matter of fact, C can be taken as 1
60 .

Let gτ be the number of balls that one throws that fills τ bins, the result is proven by noting that

P(gτ ≤ 2τ) = P(f2τ ≥ τ) ≥ 1− exp [−Cn].

D.3. Curvature and Lipschitz Constant

In this section, we illustrate the relationship between the coordinate curvature constant, coordinate gradient Lipschitz
conditions, and work out the typical size of the constants in Theorem 6. For the sake of discussion, we will focus on the
quadratic function f(x) = xTAx

2 + bTx. We start by showing that for quadratic function. The constant that one can get via
choosing a specific norm can actually match the curvature constant. To be completely explicit, we define gradient Lipschitz
constant L‖·‖ with respect to a norm ‖ · ‖, this requires that for any x, y,

‖∇f(y)−∇f(x)‖∗ ≤ L‖x− y‖.

where ‖ · ‖∗ is the dual norm.

Proposition 13. For quadratic functions with Hessian A � 0, there exists a norm ‖ · ‖ such that the curvature constant
Cf = [D‖·‖]

2L‖·‖.

Proof. We will show that this norm is simply theA-norm, ‖ ·‖A =
√

(·)TA(·). The upper bound Cf ≤ [D‖·‖A]2L‖·‖A is a
direct application of the result in Jaggi (2013, Appendix D). To show a lower bound it suffices to construct s, x ∈ M, γ ∈
[0, 1] and y = γs+ (1− γ)x such that

2

γ2
(f(y)− f(x)− 〈y − x,∇f(x)〉) = [D‖·‖A]2L‖·‖A .

For quadratic functions,

2

γ2
[f(y)− f(x)− 〈y − x,∇f(x)〉] =

1

2
(y − x)TA(y − x) =

1

γ2
‖y − x‖2A

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Take γ = 1 and y, x on the boundary ofM such that ‖y − x‖A = D‖·‖A , as a result, we get Cf ≥ D‖·‖A]2. It remains to
show that the gradient Lipschitz constant with respect to A-norm is 1, which directly follows from the Taylor expansion.

Similar arguments work for C(i)
f and C(S)

f under the same norm. Clearly, this means that the corresponding restriction of
the subset domain has Ai,i-norm or A(S)-norm.

We now consider the approximation constants due to the delays in Theorem 6, and work out more explicit bounds for
quadratic functions and carefully chosen norm. Recall that the simple bound (8) has constant δ in the order of

κτL1
‖·‖D

1
‖·‖D

τ
‖·‖

Cτf
.

Suppose we use the A-norm, then L1
‖·‖ = Lτ‖·‖ = 1, and Cτf = [Dτ

‖·‖]
2, the bound can be reduced to

δ = O(
τD1
‖·‖

Dτ
‖·‖

) = O(κ
√
τ).

where the last step requiresMi to be all equivalent and A to be block-diagonal with identical A(i).

Similarly the strong bound (9) has constant δ in the order of

δ = Õ

(
τL1
‖·‖D

1
‖·‖D

κτ
‖·‖

Cτf

)
= Õ

(
τD1
‖·‖D

κτ
‖·‖

[Dτ
‖·‖]

2

)
= Õ(

√
κτ)

Again, the last step requires a strong assumption thatMi to be all equivalent and A to be block-diagonal with identical
diagonal blocks. While these calculations only apply to specific case of a quadratic function with a lot of symmetry, we
conjecture that in general the flexibility of choosing the norm will allow the ratio of these boundedness constants and Cτf
to be a well-controlled constant and the typical dependence on the system parameter τ and κ should stay within the same
ball park.

D.4. Examples and illustrations

In this section, we now derive specific instances of the Theorem 4 for the structural SVM and Group Fused Lasso. For the
structural SVM, a simple generalization of Lacoste-Julien et al. (2013, Lemmas A.1, A.2) shows that in the worst case,
using τ > 1 offers no gain at all. Fortunately, if we consider more specific problems, using larger τ does yield faster
convergence. We provide two such examples below.
Example 1 (Structural SVM for multi-label classification (with random data)). We describe the application to struc-
tural SVMs in detail in Section C (please see this section for details on notation). Here, we describe the convergence
rate for this application. According to (Yu & Joachims, 2009), the compatibility function φ(x, y) for multiclass classi-
fication will be [0, ..., 0, xT , 0, ...0]T /λn where the only nonzero block that we fill with the feature vector is the (y)th
block. So ψi(xi, j) = φ(xi, yi) − φ(xi, j) looks like [0, ..., 0, xTi , 0 , ...0, −xTi , 0, ...0]T /λn. This already ensures that
B = 2

n2λ provided xi lie on a unit sphere. Suppose we have K classes and each class has a unique feature vector drawn
randomly from a unit sphere in Rd; furthermore, for simplicity assume we always draw τ < K data points with τ distinct

labels4µ ≤
√

c log d
d

2
n2λ , for some constant c. In addition, if d ≥ τ2

√
c log d, then with high probability

Cτf ≤
8τ + 8τ2

√
c log d
d

n2λ
= O

(cτ

n2λ

)
,

which yields a convergence rate O(R
2

λτk), where R :=
maxi∈[n],y∈Yi ‖ψi(y)‖2 using notation from Lemmas A.1 and A.2 of Lacoste-Julien et al. (2013).

This analysis suggests that a good rule-of-thumb is that we should choose τ to be at most the number of categories for the
classification. If each class is a mixture of random draws from the unit sphere, then we can choose τ to be the underlying
number of mixture components.

4This is an oversimplification but it offers a rough rule-of-thumb. In practice, Cτf should be in the same ballpark as our estimate here.

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

Example 2 (Group Fused Lasso). The Group Fused Lasso aims to solve (typically for q = 2)

min
X

1
2‖X − Y ‖

2
F + λ‖XD‖1,q, q > 1, (18)

whereX,Y ∈ Rd×n, and column yt of Y is an observed noisy d-dimensional feature vector at time 1 ≤ t ≤ n. The matrix
D ∈ Rn×(n−1) is the differencing matrix that takes the difference of feature vectors at adjacent time points (columns). The
formulation aims to filter the trend that has some piecewise constant structures. The dual to (18) is

max
U
− 1

2
‖UDT ‖2F + trUDTY T

s.t. ‖U:,t‖p ≤ λ, ∀t = 1, ..., n− 1,

where p is conjugate to q, i.e., 1/p+ 1/q = 1. This block-constrained problem fits our structure (1). For this problem, we
find that B ≤ 2λ2d and µ ≤ 2λ2d/(n− 1), which yields

Cτf ≤ 16τλ2d.

Consequently, the rate of convergence becomes O(n
2λ2d
τk). In this case, batch FW will have a better rate of convergence

than BCFW5.

Example 3 (Structural SVM worst-case bound). For structural SVM with arbitrary data (including even pathological/trivial
data), using notation from Lemmas A.1 and A.2 of Lacoste-Julien et al. (2013), defineR := maxi∈[n],y∈Yi ‖ψi(y)‖2. Then
we can provide an upper bound

B,µ ≤ R2

λn2
=⇒ Cτf ≤

4τ2R2

λn2
. (19)

In this case, for any τ = 1, ..., n, the rate of convergence will be the same O(R
2

λk).

An illustration for the group fused lasso Figure 7 shows a typically application for group fused lasso (filtering piecewise
constant multivariate signals whose change poitns are grouped together).

Figure 7. Illustration of the signal data used in the Fused Lasso experiments. We show the original signal (left), the noisy signal given to
the algorithm (middle), and the signal recovered after performing the fused lasso optimization (right).

5Observe that Cτf does not have an n2 term in the denominator to cancel out the numerator. This is because the objective function is
not appropriately scaled with n like it does in the structural SVM formulation.

Parallel and Distributed Block-Coordinate Frank-Wolfe Algorithms

D.5. Comparison to parallel block coordinate descent

With some understanding on Cτf , we can now explicitly compare the rate of convergence in Theorem 2 with parallel BCD
(Liu et al., 2014; Richtárik & Takáč, 2015) under the assumption of µ = O(B/τ) — a fair and equally favorable case to all
of these methods. We acknowledge that more general treatments of ESO property in more recent extensions of Richtárik
& Takáč (2015) in a similar flavor as our (7) (see e.g., Qu & Richtárik 2014) but similar results are not available for the
asynchronous version. To facilitate comparison, we will convert the constants in all three methods to block coordinate
gradient Lipschitz constant Li, which obeys

f(x+ s[i]) ≤ f(x) + 〈s[i],∇f(x)〉+ Li‖s[i]‖2, (20)

for any x ∈M, s(i) ∈Mi. Observe that Bi ≤ 4Lidiam(Mi)
2 = Li maxx∗i ,xi∈Mi

‖xi − x∗i ‖2, so

B ≤ 1

n

∑
i

Li max
xi,x∗i

‖xi − x∗i ‖ (21)

≤ 1

n

∑
i

Li max
x
‖x− x∗‖2 = Ei(Li)R2 (22)

whereR := maxx ‖x−x∗‖. The rate of convergence for the three methods (with τ oracle calls considered as one iteration)
are given below.

Method Rate

AP-BCFW (Ours) Op

(
nEi(Li)R2

τk

)
P-BCD6 Op

(
nEi(Li)R2

τk

)
AP-BCD7 Op

(
nmaxi LiR

2

τk

)

The comparison illustrates that these methods have the same O(1/k) rate and almost the same dependence on n and τ
despite the fact that we use a much simpler linear oracle. Nothing comes for free though: Nesterov acceleration does
not apply for Frank-Wolfe based methods in general, while a careful implementation of parallel coordinate descents can
achieve O(1/k2) rate without any full-vector interpolation in every iteration (Fercoq & Richtárik, 2015). Also, Frank-
Wolfe methods usually need additional restrictive conditions or algorithmic steps to get linear convergence for strongly
convex problems.

These facts somewhat limits the applicability of our method to cases when projection can be computed as efficiently as (2).
However, as is surveyed in (Jaggi, 2013), there are many interesting cases when (2) is much cheaper than projections, e.g.,
projection onto a nuclear norm ball takes O(n3) while (2) takes only O(n2).

Lastly, we note that in the fully asynchronous setting, we obtained an exponential improvement on the dependence of delay
comparing to that in (Liu et al., 2014). It is unclear whether this is a unique property of the block-coordinate Frank-Wolfe
algorithm or similar results can be obtained for projection based block-coordinate descent.

6In (Richtárik & Takáč, 2015, Theorem 19)
7In (Liu et al., 2014, Theorem 3)

