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Introduction and Objective
� Higher-order TV denoising

Underlying signal and data
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Laplacian smoothing, large λ Laplacian smoothing, small λ

TV denoising Graph trend filtering Kronecker trend filtering

Higher-order TV-denoising recovers a better estimate

θ̂ = argmin
θ
‖θ − y‖2 + λ‖Dθ‖1 — not a linear smoother

� Nonparametric Regression on Graphs (d-dim grids)

yi ∼ N(θ0,i, σ
2), i.i.d., for i = 1, . . . , n,

• y is observed on every vertex of a graph.

• Estimate θ0 using noisy observation y.

� Optimal rates (d-dim grids, kth order TV)

k = 0 k ≥ 1

d = 1 n−(2k+2)/(2k+3) (Trend Filter)
d > 1 Cn/n (TV-denoising) ??

� Questions of interest

1. What is the discrete analog of kth order TV on grids (d > 1)?

2. Theoretically quantifying the denoising performance
• How fast does MSE converge to 0 as we get more pixels?

3. Information-theoretic limit
• How fast does it get for any method?

Kronecker TF and Graph TF
� Kronecker Trend Filtering (KTF) Penalty is the sum of
univariate penalties along rows and columns

‖∆(k+1)
K θ‖1 =

N∑

j=1

‖D(k+1)
1d θ.j‖1 +

N∑

i=1

‖D(k+1)
1d θi.‖1

= +

� Graph Trend Filtering (GTF) (Wang et al., 2014):

∆
(1)
G ,∆

(2)
G ,∆

(3)
G ,∆

(4)
G , . . . = D,L,DL,L2, . . .

where L = DTD is the Laplacian of the grid. For k = 1,

GTF: | (θ1 − 2θ0 + θ2) + (θ3 − 2θ0 + θ4) |
KTF: |θ1 − 2θ0 + θ2|+ |θ3 − 2θ0 + θ4|

• null(∆(k+1)
K ): p⊗ q where p, q polynomials of degree ≤ k

• null(∆(k+1)
G ) is 1: constant function.

Function classes/Smoothness

GTF class KTF class Hölder class
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�
(1)
G ,�

(2)
G ,�

(3)
G ,�

(4)
G , . . . = D, L, DL, L2, . . .
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Function classes/Smoothness

KTF class: T k
d (Cn) =

�
✓ : k�(k+1)

K ✓k1  Cn

 
,

GTF class: eT k
d (Bn) =

�
✓ : k�(k+1)

G ✓k1  Bn

 
,

Holder class: Hk+1
d (L) =

�
f(i/N) : f 2 H(k + 1, L; [0, 1]d), i 2 [N ]d

 
.

• Holder class Hk+1
d (L) ✓ KTF class T k

d (Cn) if Cn = cn1�(k+1)/d

(canonical scaling). No such embedding for GTF class due to edges

Our results
⇧ Upper bounds: (d = 2, k � 1) if k�K✓0k1  Cn, k�G✓0k1  Bn

MSE(b✓K , ✓0) = OP
⇣Cn

p
log n

n

⌘2/(k+2)

MSE(b✓G, ✓0) = OP
⇣Bn

p
log n

n

⌘2/(k+2)

⇧ Lower bounds: For all d, k

Risk(eTd(Cn)) = ⌦
⇣
(Cn/n)

2d
2k+2+d

⌘
(KTF)

Risk(Td(Bn)) = ⌦
⇣
(Bn/n)

2d
2k+2+d

⌘
(GTF)

Matching rates for d = 2, k � 1 up to log factors

⇧ Minimax rates under canonical scaling:

Proof Ideas
⇧ Lower bounds:

• Holder class embedding delivers the lower bound for KTF class.

• For GTF class, embed an ellipsoid apply classic results from
Donoho, Liu & McGibbon (1990)

⇧ Upper bounds: Harder to prove. Ingredients are

• Kronecker product structure of �K,�G,

• near-sinusoidal structure of their left singular vectors,

• singular values do not decay too fast

Summary & Future work
Drop this and add illustration of 2D eigenvalues in forms of images
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• singular values do not decay too fast

Summary & Future work
Drop this and add illustration of 2D eigenvalues in forms of images
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Introduction and Objective
⇧ Higher-order TV denoising

Higher-order TV-denoising recovers a better estimate
b✓ = argmin

✓
k✓ � yk2 + �kD✓k1 — not a linear smoother

⇧ Nonparametric Regression on Graphs (d-dim grids)

yi ⇠ N(✓0,i, �
2), i.i.d., for i = 1, . . . , n,

• y is observed on every vertex of a graph.

• Estimate ✓0 using noisy observation y.

⇧ Optimal rates (d-dim grids, kth order TV)

k = 0 k � 1

d = 1 n�(2k+2)/(2k+3) (Trend Filter)
d > 1 Cn/n (TV-denoising) ??

⇧ Questions of interest

1. What is the discrete analog of kth order TV on grids (d > 1)?

2. Theoretically quantifying the denoising performance
• How fast does MSE converge to 0 as we get more pixels?

3. Information-theoretic limit
• How fast does it get for any method?

Kronecker TF and Graph TF
⇧ Kronecker Trend Filtering (KTF) Penalty is the sum of
univariate penalties along rows and columns

k�(k+1)
K ✓k1 =

NX

j=1

kD(k+1)
1d ✓.jk1 +

NX

i=1

kD(k+1)
1d ✓i.k1

= +

⇧ Graph Trend Filtering (GTF) (Wang et al., 2014):

�
(1)
G ,�

(2)
G ,�

(3)
G ,�

(4)
G , . . . = D, L, DL, L2, . . .

where L = DT D is the Laplacian of the grid. For k = 1,

GTF: | (✓1 � 2✓0 + ✓2) + (✓3 � 2✓0 + ✓4) |
KTF: |✓1 � 2✓0 + ✓2| + |✓3 � 2✓0 + ✓4|

• null(�(k+1)
K ): p ⌦ q where p, q polynomials of degree  k

• null(�(k+1)
G ) is

Function classes/Smoothness

KTF class: T k
d (Cn) =

�
✓ : k�(k+1)

K ✓k1  Cn

 
,

GTF class: eT k
d (Bn) =

�
✓ : k�(k+1)

G ✓k1  Bn

 
,

Holder class: Hk+1
d (L) =

�
f(i/N) : f 2 H(k + 1, L; [0, 1]d), i 2 [N ]d

 
.

• Holder class Hk+1
d (L) ✓ KTF class T k

d (Cn) if Cn = cn1�(k+1)/d

(canonical scaling). No such embedding for GTF class due to edges

Our results
⇧ Upper bounds: (d = 2, k � 1) if k�K✓0k1  Cn, k�G✓0k1  Bn

MSE(b✓K , ✓0) = OP
⇣Cn

p
log n

n

⌘2/(k+2)

MSE(b✓G, ✓0) = OP
⇣Bn

p
log n

n

⌘2/(k+2)

⇧ Lower bounds: For all d, k

Risk(eTd(Cn)) = ⌦
⇣
(Cn/n)

2d
2k+2+d

⌘
(KTF)

Risk(Td(Bn)) = ⌦
⇣
(Bn/n)

2d
2k+2+d

⌘
(GTF)

Matching rates for d = 2, k � 1 up to log factors

⇧ Minimax rates under canonical scaling:

Proof Ideas
⇧ Lower bounds:

• Holder class embedding delivers the lower bound for KTF class.

• For GTF class, embed an ellipsoid apply classic results from
Donoho, Liu & McGibbon (1990)

⇧ Upper bounds: Harder to prove. Ingredients are

• Kronecker product structure of �K,�G,

• near-sinusoidal structure of their left singular vectors,

• singular values do not decay too fast

Summary & Future work
Drop this and add illustration of 2D eigenvalues in forms of images
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• Holder class Hk+1
d (L) ⊆ KTF class T kd (Cn) if Cn = cn1−(k+1)/d

(canonical scaling). This delivers a lower bound for KTF class.

• No such embedding for GTF class due to boundary artifacts! Em-
bed an ellipsoid and apply classic results from Donoho, Liu &
McGibbon (1990)

Our results
� Upper bounds: (d = 2, k ≥ 1) if ‖∆Kθ0‖1 ≤ Cn, ‖∆Gθ0‖1 ≤ Bn

MSE(θ̂K , θ0) = ÕP
(Cn
n

)2/(k+2)

, MSE(θ̂G, θ0) = ÕP
(Bn
n

)2/(k+2)

� Lower bounds: For all d, k

Risk(T̃d(Cn)) = Ω
(

(Cn/n)
2d

2k+2+d

)
, Risk(Td(Bn)) = Ω

(
(Bn/n)

2d
2k+2+d

)

Matching rates for d = 2, k ≥ 1 up to log factors

� Minimax rates under canonical scaling:

d=1 d=2 d>2

k=0

k=1 ?

k>1 ?

n�2/3

n�4/5

n� 2k+2
2k+3

n�4/6

n�2/4

n� 2k+2
2k+4

n� 1
d

Univariate TF
(Tibshirani, 2014)
(Mammen&
Van De Geer, 2001)

(Sadhanala, Wang,
Tibshirani, 2016)

(This
paper!)

Open problem:
Minimax rate for d>2, k>1

� Upper bound proof ideas:

• Use Theorem 6 of (Wang, Sharpnack, Smola, Tibshirani, 2016).

• ∆K,∆G have Kronecker product structure

• Singular vectors are nearly-sinusoidal (challenging to prove!)
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• Singular values do not decay too fast
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