Higher-Order Total Variation Classes on Grids: Minimax
 Theory and Trend Filtering Methods

UCD ATMS dEPARTMENT OF STATISTICS

Introduction and Objective

\diamond Higher-order TV denoising

Higher-order TV-denoising recovers a better estimate

$$
\widehat{\theta}=\underset{\theta}{\operatorname{argmin}}\|\theta-y\|^{2}+\lambda\|D \theta\|_{1}-\text { not a linear smoother }
$$

\diamond Nonparametric Regression on Graphs (d-dim grids)

$$
y_{i} \sim N\left(\theta_{0, i}, \sigma^{2}\right), \quad \text { i.i.d., for } i=1, \ldots, n
$$

- y is observed on every vertex of a graph.
- Estimate θ_{0} using noisy observation y.
\diamond Optimal rates (d-dim grids, k th order TV)

$$
\begin{array}{c|c|c}
& k=0 & k \geq 1 \\
\hline d=1 & n^{-(2 k+2) /(2 k+3)} \text { (Trend Filter) } \\
\hline d>1 & C_{n} / n \text { (TV-denoising) } & ? ?
\end{array}
$$

\diamond Questions of interest

1. What is the discrete analog of k th order TV on grids $(d>1)$?
2. Theoretically quantifying the denoising performance

- How fast does MSE converge to 0 as we get more pixels?

3. Information-theoretic limit
[^0]
Kronecker TF and Graph TF

\diamond Kronecker Trend Filtering (KTF) Penalty is the sum of univariate penalties along rows and columns

$$
\left\|\Delta_{\mathrm{K}}^{(k+1)} \theta\right\|_{1}=\sum_{j=1}^{N}\left\|D_{1 d}^{(k+1)} \theta_{. j}\right\|_{1}+\sum_{i=1}^{N}\left\|D_{1 d}^{(k+1)} \theta_{i .}\right\|_{1}
$$

\diamond Graph Trend Filtering (GTF) (Wang et al., 2014):

$$
\Delta_{\mathrm{G}}^{(1)}, \Delta_{\mathrm{G}}^{(2)}, \Delta_{\mathrm{G}}^{(3)}, \Delta_{\mathrm{G}}^{(4)}, \ldots=D, L, D L, L^{2}
$$

where $L=D^{T} D$ is the Laplacian of the grid. For $k=1$,

$$
\cdots \quad \begin{aligned}
& \mathrm{GTF}:\left|\left(\theta_{1}-2 \theta_{0}+\theta_{2}\right)+\left(\theta_{3}-2 \theta_{0}+\theta_{4}\right)\right| \\
& \mathrm{KTF}:\left|\theta_{1}-2 \theta_{0}+\theta_{2}\right|+\left|\theta_{3}-2 \theta_{0}+\theta_{4}\right|
\end{aligned}
$$

- $\operatorname{null}\left(\Delta_{\mathrm{K}}^{(k+1)}\right): p \otimes q$ where p, q polynomials of degree $\leq k$
- $\operatorname{null}\left(\Delta_{\mathrm{G}}^{(k+1)}\right)$ is $\mathbb{1}$: constant function.

Function classes/Smoothness

- Holder class $\mathcal{H}_{d}^{k+1}(L) \subseteq \mathrm{KTF}$ class $\mathcal{T}_{d}^{k}\left(C_{n}\right)$ if $C_{n}=c n^{1-(k+1) / d}$ (canonical scaling). This delivers a lower bound for KTF class.
- No such embedding for GTF class due to boundary artifacts! Embed an ellipsoid and apply classic results from Donoho, Liu \& McGibbon (1990)

OUR RESULTS

\diamond Upper bounds: $(d=2, k \geq 1)$ if $\left\|\Delta_{\mathrm{K}} \theta_{0}\right\|_{1} \leq C_{n},\left\|\Delta_{\mathrm{G}} \theta_{0}\right\|_{1} \leq B_{n}$ $\operatorname{MSE}\left(\widehat{\theta}_{K}, \theta_{0}\right)=\tilde{O}_{\mathbb{P}}\left(\frac{C_{n}}{n}\right)^{2 /(k+2)}, \operatorname{MSE}\left(\widehat{\theta}_{G}, \theta_{0}\right)=\tilde{O}_{\mathbb{P}}\left(\frac{B_{n}}{n}\right)^{2 /(k+2)}$
\diamond Lower bounds: For all d, k
$\operatorname{Risk}\left(\widetilde{\mathcal{T}}_{d}\left(C_{n}\right)\right)=\Omega\left(\left(C_{n} / n\right)^{\frac{2 d}{2 k+2+d}}\right), \quad \operatorname{Risk}\left(\mathcal{T}_{d}\left(B_{n}\right)\right)=\Omega\left(\left(B_{n} / n\right)^{\frac{2 d}{2 k+2+d}}\right)$
Matching rates for $d=2, k \geq 1$ up to log factors
\diamond Minimax rates under canonical scaling:

Univariate TF (Tibshirani, 2014)		$\mathrm{d}=1$	$\mathrm{d}=2$	$d>2$	Sadhanala, Wang, Tibshirani, 2016)
(Mammen\% ${ }^{\text {Van De Geer, } 2001)}$	$\mathrm{k}=0$	$n^{-2 / 3}$	$n^{-2 / 4}$	$n^{-\frac{1}{d}}$	
(This paper!)	$\mathrm{k}=1$	$n^{-4 / 5}$	$n^{-4 / 6}$?	Open problem: Minimax rate for $\mathrm{d}>2, \mathrm{k}>1$
	k>1	$n^{-\frac{2 k+2}{2 k+3}}$	$n^{-\frac{2 k+2}{2 k+4}}$?	

\diamond Upper bound proof ideas:

- Use Theorem 6 of (Wang, Sharpnack, Smola, Tibshirani, 2016).
- $\Delta_{\mathrm{K}}, \Delta_{\mathrm{G}}$ have Kronecker product structure
- Singular vectors are nearly-sinusoidal (challenging to prove!)

- Singular values do not decay too fast

References

[1] Donoho, Liu, and MacGibbon. Minimax Risk Over Hyperrectangles, and Implications
Annals of Statistics, 18(3):1416-1437, 1990.
[2] Wang, Sharpanack, Smola, Tibshirani. Trend Filtering on Graphs. JMLR, 2016.
[3] Bogoya, Bottcher, Grudsky, and Maximenko. Eigenvectors of Hermitian Toeplitz ma-
trices with smooth simple-loop symbols. Linear Algebra and its Applications, 2016.

[^0]: - How fast does it get for any method?

