
Graph Sparsification Approaches for Laplacian Smoothing

Veeranjaneyulu Sadhanala1 Yu-Xiang Wang1,2 Ryan J. Tibshirani1,2
1 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA 15213

2 Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

Given a statistical estimation problem where
regularization is performed according to the
structure of a large, dense graph G, we con-
sider fitting the statistical estimate using a
sparsified surrogate graph G̃, which shares
the vertices of G but has far fewer edges, and
is thus more tractable to work with compu-
tationally. We examine three types of sparsi-
fication: spectral sparsification, which can be
seen as the result of sampling edges from the
graph with probabilities proportional to their
effective resistances, and two simpler sparsi-
fiers, which sample edges uniformly from the
graph, either globally or locally. We provide
strong theoretical and experimental results,
demonstrating that sparsification before es-
timation can give statistically sensible solu-
tions, with significant computational savings.

1 INTRODUCTION

We study efficient computation in large-scale graph-
based Gaussian and logistic smoothing problems. To
fix notation, let G = (V,E,w) be an undirected graph,
with vertex set V = {1, . . . n}, edge set E ⊆ {(i, j) :
i, j ∈ V } of size m = |E|, and weights wij , (i, j) ∈ E.
Recall that the Laplacian matrix L ∈ Rn×n of G is

Lij =

{∑
(i,`)∈E wi` if i = j

−wij if i 6= j
, i, j ∈ V.

Given observations y = (y1, . . . yn) ∈ Yn over nodes
of G, we consider a family of Laplacian-regularized
estimation problems

min
β∈Rn

f(β) + λβTLβ, (1)

Appearing in Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2016, Cadiz, Spain. JMLR: W&CP volume 51. Copyright
2016 by the authors.

where f is a smooth, convex loss, and λ ≥ 0 is a tun-
ing parameter. Of particular interest are the settings
with real-valued observations, Y = R, and (say) bi-
nary observations Y = {0, 1}. To set up the Gaussian
and logistic smoothing problems for these two settings,
we view y = (y1, . . . yn) as independent draws from a
model with parameters β∗ = (β∗1 , . . . β

∗
n), satisfying

E(yi) = β∗i , i ∈ V, or

log

(
P(yi = 1)

P(yi = 0)

)
= β∗i , i ∈ V,

respectively, and accordingly the natural choices of loss
functions are

f(β) = ‖y − β‖22, or (2)

f(β) =

n∑
i=1

[−yiβi + log(1 + exp(βi))], (3)

respectively. It is easy to see that that the penalty
term in (1) is βTLβ =

∑
(i,j)∈E wij(βi − βj)2, hence

the solution β̂ in this problem will have components
that vary smoothly over adjacent nodes in the graphG,
with a larger value of λ translating to a higher degree
of smoothness. Of course, an implicit assumption in
using such an estimate β̂ for β∗ is that the latter is
itself smooth over G. Some definitive references on
Laplacian-based methods are [4, 18, 28, 27, 6, 5].

1.1 Computational Considerations

In the Gaussian case (2), the solution in (1) is simple,

β̂ = (I + λL)−1y, (4)

the solution of a linear system in a symmetric diago-
nally dominant (SDD) matrix I+λL. Many recent ad-
vances have been made in solving SDD linear systems
(e.g., [20, 22, 12, 13, 14, 9, 15, 8]); but when G is large
and has many edges, i.e., L is large and dense, this
can still be a highly nontrivial computational problem.
For the logistic setting (3), the problem (1) does not
admit a closed-form solution, but Newton’s method
essentially reduces (1) to an iterative sequence of SDD
linear systems, and again, each iteration here can be
challenging when L is large and dense.

Graph Sparsification Approaches for Laplacian Smoothing

1.2 Sparsfication Before Laplace Smoothing

The motivating question for this paper is as follows.
Given a large graph G with many edges, and a desired
Laplacian-regularized estimate defined by (1), can G
be sparsified before we compute this estimate? That
is, can we instead solve

min
β∈Rn

f(β) + λ′βT L̃β, (5)

for a sparse matrix L̃—the Laplacian corresponding
to a graph G̃ that approximates G, but has far fewer
edges? Our work answers this in the affirmative. We
examine sparsification tactics that can provide drastic
computational speedups, and still result in Laplacian-
regularized solutions (5) that are provably close to the
original solutions (1) from the full graph G.

1.3 Two Illustrative Examples

We consider three types of sparsification in our work:
(i) spectral graph sparsification, (ii) uniform sampling
of edges from G, and (iii) k-neighbors (kN) sampling
of edges (basically a local uniform sampler). The high-
level messages are: the spectral sparsifier is the most
costly, but leads to a sparse graph and surrogate solu-
tion that are always close to G and the original solu-
tion; the uniform and kN samplers are faster, but do
not have the same universal guarantees; the uniform
sampler can fail for imbalanced graphs; and lastly, the
kN sampler is practically robust across various settings
and performs just as well as spectral sparsification.

In Figure 1, left and middle panels, we plot the mean
squared errors (MSEs, defined as ‖β̂ − β∗‖22/n) and
computation times for a simulated Gaussian smooth-
ing problem (1), (2), across 100 values of λ and 50 rep-
etitions. The graph G was a synthetic scale-free graph
with n = 1000 nodes and m = 130, 001 edges, gener-
ated using the Barbasi-Albert preferential attachment
model [1]. The underlying signal β∗ was taken to the
sum of the 20 (unit norm) eigenvectors of the graph
Laplacian L corresponding to the smallest eigenvalues
(these bottom 20 eigenvalues have components that
are relatively smooth over the graph). The observed
signal y was obtained by adding mean zero Gaussian
noise to β∗, componentwise, with variance equal to the
sample variance of the components of β∗.

We compare directly solving (1) with sparsifying first
and solving (5). The middle panel in the figure shows
the cumulative computation time, counting the time
to first construct a sparsified Laplacian L̃ (done only
once) and then to solve some number of problems (1),
(2): here, the first 100 problems are given by solving
(1), (2) for a single y and 100 values of λ, the next 100
are given by solving (1), (2) for a second simulated

y and the same 100 values of λ, and so on. We see
that the spectral sparsifier takes a nontrivial amount
of time to construct L̃, but then leads to more efficient
solutions, as the spectrally sparsified graph has only
7780 edges. The two alternative sparsifiers, based on
uniform and kN sampling, are much more efficient at
constructing L̃, and lead to just as efficient solutions,
as their graphs again have about 7800 edges. The left
panel in the figure shows that the estimates following
all three sparsifiers have MSE curves, averaged over 50
repetitions, that are very close to that of the original
solution computed over the original graph.

In the right panel of Figure 1, we plot the MSEs for
another simulation setup using a semi-synthetic graph
G with n = 1582 nodes and m = 321, 661 edges. This
graph was constructed using the airport graph from
Section 6, with 791 nodes and 9216 edges, and con-
necting it by a single edge to a complete graph over 791
nodes, therefore giving a final graph with a highly im-
balanced “dumbbell” structure. The underlying signal
β∗ was defined in two parts: over the airport graph, its
components were defined by summing of the bottom
20 eigenvectors of the airport graph Laplacian matrix,
and over the complete graph, its components were set
to 0. The observed signal y was generated around β∗

with componentwise Gaussian noise over the airport
graph (and no noise over the complete graph).

Though the computation times for the three sparsi-
fiers are very similar to those from the scale-free sim-
ulation (and thus are not shown), the MSE curves are
quite different. The key difference is that the solutions
obtained using the uniformly sparsified graph do not
provide a competitive MSE performance, as the uni-
form sampler fails to mimick the structure of the orig-
inal dense graph—it samples too many edges from the
complete graph part, and not enough from the airport
graph part. The kN sparsifier succeeds by sampling at
a more localized level, and its best MSE matches that
achieved in the dense case, which is also true of the
spectral sparsifier. As described later, kN sampling is
close to effective resistance sampling for many types
of graphs, and therefore produces sparse graphs sim-
ilar to that from the spectral sparsification method.
The take-away point is that uniform sampling can fail
when the graph at hand is imbalanced and/or the un-
derlying signal is not uniformly smooth across edges,
but kN sampling behaves favorably across nearly all
settings, even imbalanced and/or nonsmooth ones.

1.4 Summary of Results

Here is a summary of our contributions.

• When L̃ comes from a spectral sparsifier, we de-
rive strong stability bounds between the solutions
of (5) and (1).

Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J. Tibshirani

6
10 -4 10 -3 10 -2 10 -1 10 0

M
S
E

0.33

0.41

0.52

0.66

0.83

1.04

MSE

Sparse

kN

Unif

Dense

Number of problems
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(s

ec
o
n
d
s)

0

5

10

15

20

25

30

35

40

Time

Sparse

kN

Unif

Dense

6
10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1

M
S
E

0.1

0.15

0.24

0.37

MSE

Sparse

kN

Unif

Dense

Figure 1: Left: MSE curves from the scale-free graph simulation; middle: timing curves from this same simulation; right:
MSE curves from the dumbbell graph simulation (timing curves from this simulation are similar and hence not shown).

• When L̃ is built from the uniform and kN sam-
pling strategies, we derive multiplicative bounds
between quadratic forms in the original and spar-
sified Laplacians that hold with high probability,
but only over smooth inputs (not universally).

• We give experiments that demonstrate the stabil-
ity of solutions from spectral and kN sparsifica-
tion across all problems considered, and stability
of solutions from uniform sparsification in several
problems where the desired estimates are smooth.

• We show that spectral sparsifiers, and even more
so, the uniform and kN sparsifiers, lead to drastic
computational speedups in practice.

• We present extensions on sparsification for Carte-
sian product graphs, missing data problems, and
regression problems (with predictor variables).

2 SPECTRAL SPARSIFICATION

2.1 Review: Spectral Sparsifiers

Spectral sparsification is a relatively young area, but
one that has generated immense interest in the theo-
retical computer science community (e.g., [20, 21, 22,
19, 2, 11]). Here is an overview. Two Laplacians ma-
trices L, L̃ are said to be σ spectrally similar if

1

σ
xT L̃x ≤ xTLx ≤ σ · xT L̃x for all x. (6)

The nature of this relationship is clearly symmetric.
Still, for emphasis, we will call L̃ a σ spectral approx-
imation to L when (6) holds. Also, denoting by G, G̃
the underlying graphs of L, L̃, we will also use the same
terminology (spectral similarity, approximation) for
these graphs. As the Laplacian of a graph reflects its
edge structure, the above property—a uniform multi-
plicative bound between Laplacian quadratic forms—
provides a very strong tie between G, G̃. E.g., it im-
plies that all eigenvalues of L, L̃ are within a multi-
plicative factor of 1/σ to σ, and that all cuts between
G, G̃ obey the same multiplicative bounds as well.

Remarkably, [20, 21, 22] proved that any graph G with
n nodes and Laplacian matrix L has an approximation

G̃ with n nodes and Laplacian L̃ such that L, L̃ are
(1 + ε) spectrally similar, and G̃ has nearly O(n/ε2)
edges. [19] made this idea more concrete by giving a
simple algorithm for producing a (1 + ε) spectral ap-
proximation L̃, whose graph has O(n log n/ε2) edges.
[11] strengthened this result, giving faster algorithms
with the same or better guarantees. More will be said
about computation in Section 2.4.

Spectral graph sparsification has been successfully ap-
plied in numerous areas, e.g., in solving Laplacian and
SDD linear systems, approximating electrical flows
over a graph, computing max flows and min cuts, and
performing basic missing data imputation over a graph
(for references, see, e.g., the nice review article [3]). To
the best of our knowledge, its applications in machine
learning have not yet been thoroughly pursued.

2.2 Stability Bounds For Gaussian smoothing

Suppose that we have a (1+ ε) spectral approximation
L̃ to the original Laplacian L. The notion of spectral
similarity yields a strong stability bound between the
two solutions of Gaussian smoothing problems.

Theorem 1. Assume that the Laplacian matrices L, L̃
are (1 + ε) spectrally similar. Let β̂, θ̂ denote solutions
in problems (1), (5), respectively, under the Gaussian
loss (2). The following bounds hold, for any λ ≥ 0.

(a) If λ′ = λ, then

‖θ̂ − β̂‖22 ≤ λ(1 + 2ε)|θ̂T L̃θ̂ − β̂TLβ̂|+ 3λεβ̂TLβ̂.

(b) If λ′ = 2λ, then

‖θ̂ − β̂‖22 ≤ 2λ(1 + 2ε)β̂TLβ̂.

The proof (and all proofs in this paper) is in the sup-
plementary material. Several remarks are given below.

Remark 1. Both bounds above are non-asymptotic;
they assume nothing about the distribution of obser-
vations y in the smoothing problem, and nothing about
the original graph G to be sparsified. They are derived

Graph Sparsification Approaches for Laplacian Smoothing

using only the spectral property (6) relating L, L̃, and
optimality characterizations in the problems (1), (5).

Remark 2. The bound in part (a) of the theorem is
typically the sharper of the two, since the difference
in penalties |θ̂T L̃θ̂ − β̂TLβ̂| is typically much smaller
than either penalty term individually. Figure 2 shows
the average squared `2 norm ‖β̂ − θ̂‖22/n between so-
lutions β̂, θ̂, and the two bounds from the theorem (on
the correct scale, i.e., divided by n), for the scale-free
graph example in Section 1.3, as functions of λ.

6
10 -4 10 -3 10 -2 10 -1 10 0

A
v
er

a
g
e

` 2
n
o
rm

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1
Stability

Actual

Bound (a)

Actual (60=26)

Bound (b)

Figure 2: Average squared `2 metric between solutions for
the scale-free graph example.

Note that the bound in part (a) may be somewhat un-
satisfactory for theoretical analysis, as it depends on
the solution θ̂ of the sparsified problem itself, whose
properties are in question. Part (b) eliminates this de-
pendence by over-regularizing the sparsified problem,
delivering a weaker but more transparent final bound.

Remark 3. Though it is the weaker of the two, sta-
tistically speaking, the bound in part (b) is not actu-
ally weak in absolute terms. The standard statistical
analysis for regularized M -estimators (e.g., [25, 17, 7]),
applied to the problem (1) with the Gaussian loss (2),
prescribes a choice of λ that yields a bounded penalty
term as n increases. Such a choice dominates the “em-
pirical process term”, in the language of [25], and de-
pends on the properties of the graph G, resulting in
an estimation error rate

‖β̂ − β∗‖22
n

= OP

(λ
n

)
. (7)

As the bounds in Theorem 1 hold for any value of λ,
part (b) implies that if the solution β̂ over the original
graph achieves an error rate as in (7), per the standard
analysis, then so must θ̂, the solution over the sparse
graph. This follows by simply using β̂TLβ̂ = OP(1),
and the triangle inequality. In other words, under the
same conditions that are required in order for the orig-
inal solution β̂ to perform well, theoretically, we can
expect the sparsified solution θ̂ to perform just as well,
in terms of error rate. A formal analysis of an error
bound of the form (7) for β̂, and a proof that θ̂ obtains
the same rate, are given in the supplement.

2.3 Stability Bounds for Logistic Smoothing

Similar to Theorem 1 on the Gaussian loss, stability
bounds are possible between the solutions of spectrally
similar logistic smoothing problems. The next theo-
rem uses the notation π(b) = 1/(1+e−b) for the inverse
logistic link (i.e., sigmoid) function.

Theorem 2. Assume that the Laplacian matrices L, L̃
are (1+ ε) spectrally similar. Consider the logistic loss
(3), and let β̂ denote the solution in (1). Let δ > 0 be
such that 2δ ≤ π(β̂i) ≤ 1− 2δ, i = 1, . . . n. Consider
placing the constraint δ ≤ π(θi) ≤ 1− δ, i = 1, . . . n
on the problem (5), and let θ̂ denote the corresponding
solution. Then the same bounds hold as in parts (a)
and (b) of Theorem 1, except with the right-hand sides
multiplied by a constant C = 2/(δ(1− δ)).

Remark 4. We added the constraint δ ≤ π(θi) ≤ 1− δ,
i = 1, . . . n to problem (5) for technical reasons, and
often in practice this constraint is not tight. Note that
this is equivalent to a (convex) `∞ norm bound on θ.
An alternative would be to add a ridge penalty to the
criterion in (1), which would make it strongly convex
over its entire domain; see Theorem 3.

Remark 5. The above results are non-asymptotic as
written, but an asymptotic interpretation makes more
sense, given the large value of the constant C multiply-
ing the bounds. The theorem says that, for a sequence
of logistic smoothing problems where the fitted prob-
abilities are not degenerate (are bounded away from
0 and 1), the solutions from the original and sparse
graphs are O(λ) apart in the squared `2 metric. This
is statistically favorable, because the estimation error
for the original logistic smoothing problem, following
the typical analysis, is of the same order, as in (7).

Remark 6. Analogous results hold for the Poisson loss
(e.g., when estimating a smooth density from counts
over the graph), and for a general exponential family
loss as well. Details are omitted for brevity.

2.4 Computational Analysis

The topic of spectral graph sparsification has mostly
been of theoretical interest due to the fact that spec-
tral sparsification algorithms themselves can be costly
in practice. [2] proved that for any graph, there ex-
ists an (1 + ε) spectral sparsifier with only O(n/ε2)
edges, but finding this in practice is not easy. The most
commonly used algorithm is to samples O(n log n/ε2)
edges, with each edge being sample with probability
proportional to its effective resistance (ER), which,
while costly to compute exactly (based on L+), can
be approximated by solving O(log n) Laplacian linear
systems [19]. This scheme was sped up by [11], who
also described even faster methods that require more

Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J. Tibshirani

Algorithm Time complexity Number of edges

[19] O(m log3 n) O(n log n/ε2)
[11] (A) Õ(m log2 n) O(n log n/ε2)
[11] (B) Õ(m log n) Õ(n log3 n/ε2)
[11] (C) O(m log log n) Õ(n log5 n/ε2)

Table 1: Methods for (1 + ε) spectral approximations. The
Õ(·) notation hides poly(log logn) terms.

edges to compensate for a poorer approximation qual-
ity of ERs. See Table 1 for a summary of methods.

An approach that has weaker theoretical guarantees,
but works very well in practice, was developed by [10].
This author constructs a spectral sparsifier by itera-
tively computing weighted spanners (a specific type
of subgraph); though the theory requires O(log2 n/ε2)
spanners each with O(n log n) edges to obtain a (1+ε)
spectral sparsifier, we find that in practice O(log n/ε2)
spanners each with O(n) edges is often enough, and
in all of the experiments in this paper, we rely on this
spanner algorithm for spectral sparsification.

The pertinent question for our paper is: how does the
cost of sparsification weigh in, when comparing the
costs of problems (5) and (1)? It depends on the loss
function f , and the number of solutions in (5), (1)
to be found, e.g., solutions across multiple values of
the tuning parameter λ (as would be done in cross-
validation for choosing λ). In the Gaussian case (2),
if we want to compute a Laplacian-smoothed estimate
only once, then we may be better off just solving the
dense problem (1) directly, given the fast SDD linear
system solvers available for (4), as constructing L̃ will
likely itself be more costly. E.g., the SDD solver of [8]
runs in Õ(m

√
log n) time, which is already faster than

all but one of the sparsification times in Table 1. But
when we wish to solve (1) repeatedly (say, at multi-
ple tuning parameter values), forming L̃ and instead
solving (5) repeatedly can lead to tangible savings. A
rough calculation can be carried out as follows (ignor-
ing all constants and poly(log log n) terms). Assume
that we solve all linear systems with the method of
[8]. Computing N Laplacian-smoothed estimates over
the original graph, versus computing a spectral spar-
sification with (say) method (A) of [11] and then N
estimates over the sparse graph, costs

Nm
√

log n versus m log2 n+N
n log n

ε

√
log n

operations, respectively. Hence, spectral sparsification
becomes worth it once we solve at least

N ≈ m

m− n log n/ε
log3/2 n

smoothing problems, or, if we approximate the leading
factor by 1 (valid for m � n), at least N ≈ log3/2 n

smoothing problems. This calculation was very rough,
but we have found it to be in loose agreement with our
empirical experiments. E.g., as the scale-free graph
simulation in Section 1.3 increases in size, the crossing
points between the red and blue timing curves in the
middle panel of Figure 1 grows slowly with the number
of nodes n, roughly logarithmically.

Solving (1) with a logistic loss (3) is a more challeng-
ing problem, and the computational tradeoff sits even
more strongly in favor of spectral sparsification. Using,
e.g., Newton’s method on problem (1) means solving
SDD linear systems a few dozen times, rather than
just once; thus, even when an estimate is desired at a
single value of λ, the cost of constructing a spectral ap-
proximation L̃ is usually worth it. When solutions are
sought over a grid of λ values, sparsification before es-
timation is usually a clear win, computationally. The
examples throughout this paper provide concrete evi-
dence of the computational assertions here, especially
those in Sections 4 and 6.

3 ALTERNATIVE SPARSIFIERS

3.1 Simple Alternative Samplers

We examine two computationally cheap sparsification
methods which satisfy the spectral property (6), but
only with high probability, at points x ∈ Rn that have
smooth entries. Recalling that spectral sparsification
can be achieved by ER sampling, our two proposals
also use a sampling paradigm, but they rely on very
simple schemes that avoid computing expensive quan-
tities like ERs. They are easily explained below.

• Uniform sparsifier: we sample q edges from G
with probabilities proportional to edge weights,
and with replacement. We build G̃ from the sam-
pled edges Ẽ, with equal edge weights W/q where
W =

∑
e∈E we.

• k-neighbors (kN) sparsifier: at each node u,
we select min{k, du} edges, with du being its de-
gree, in the following manner. If du ≤ k, then we
add all edges to G̃ that are incident to u, with half
of their original edge weights. If du > k, then we
sample k edges from the neighbors N(u) of u with
probabilities proportional to edge weights, and
with replacement. We add them to G̃, with equal
edge weights Wu/(2k) where Wu =

∑
v∈N(u) wu,v.

Note that both schemes use independent sampling,
and if an edge is selected more than once, its weight is
simply summed up appropriately in G̃. It is clear that
computing the surrogate graph G̃ with either of these
methods is cheap, requiring only O(m) time.1

1In practice, to ensure connectivity in the sparsified
graph from either method, we can start with a random

Graph Sparsification Approaches for Laplacian Smoothing

3.2 Restricted Spectral-Type Properties

The experiments in the coming sections will show that
the graphs obtained by these simple sparsifiers often
lead to stable solutions in (5), when compared to (1).
Though the uniform and kN sparsifiers do not directly
lead to rigorous worst-case stability bounds as in The-
orems 1 and 2, they do give rise to a type of restricted
spectral property, occurring with high probability.

First, we remark that both samplers deliver an unbi-
ased Laplacian L̃, i.e., with E(L̃) = E(L). It suffices to
show that E(w̃e) = we for each fixed edge e ∈ E. For
uniform sampling, denote by Ne the number of times
e is sampled. We have E(w̃e) = E(NeW/q) = we, as
E(Ne) = qwe/W . For kN sampling, denote by Ne,u
the number of times the edge e = (u, v) is chosen
when sampling locally at node u; the contribution to
w̃e here is Ne,uWu/2k if du > k and we/2 otherwise.
As E(Ne,u) = kwe/Wu if du > k, the expected con-
tribution to w̃e while sampling at node u is we/2. By
symmetry, the same is true at node v, so E(w̃e) = we.
Thus for both methods, E(xT L̃x) = xTLx for all x.

Next, using this unbiased property and Hoeffding’s in-
equality, we derive multiplicative bounds as in (6), for
L̃ constructed by the uniform or kN samplers.

Lemma 1. Write the Laplacian matrix as L = DTD,
where D ∈ Rm×n is the edge incidence matrix. Denote
wmin = mine∈E we and Wmax = maxu∈V Wu. Assume
that for some s > 0, the point x satisfies

‖Dx‖2∞
‖Dx‖22

≤ swmin

W
. (8)

Then for ε > 0, the Laplacian L̃unif from uniform sam-
pling with q ≥ s2(1+1/ε)2/2 · log(2n) samples satisfies

1

1 + ε
xTLx ≤ xT L̃unifx ≤ (1 + ε)xTLx,

with probability at least 1−1/n. The same result holds
for the Laplacian L̃kN from kN sampling provided that
k ≥ n(sWmax/W)2/(4δ2) · log(2n).

Remark 7. The condition (8) is a type of smoothness
or incoherence condition on x ∈ Rn, with respect to G.
It says that the m-dimensional vector Dx has roughly
balanced entries, where we note that ‖Dx‖22 = xTLx.
This excludes Dx having “spiked” entries, i.e., x hav-
ing large differences over a small number of edges, but
not over most edges.

Remark 8. The bound on k for the kN sampler could
be tightened by defining “local” versions of the quan-
tities wmin,W, s, though this complicates notation and

spanning tree of G and then proceed with sampling on the
remaining edges. Construction of the random spanning
tree also is also O(m) time.

we do not pursue this. In fact, it is likely that sharper
theory could be given for the kN sampler, in which
a smoothness condition like (8) is not required. The
expected number of times an edge (u, v) is sampled in
kN sampling is proportional to wu,v(1/Wu + 1/Wv),
assuming all degrees are at least k, and [26] showed
that the quantity 1/Wu + 1/Wv is a simple but ac-
curate approximation to the ER of the edge (u, v) for
several types of graphs. We attribute the good perfor-
mance of kN sampling to this sound approximation of
ERs. This will be pursued further in future work.

4 SIMULATED DIFFUSION OVER
GOOGLE+ NETWORK

We demonstrate the benefits of graph sparsfication in
Gaussian and logistic Laplacian smoothing problems,
using the Google+ social network data set from the
Stanford Network Analysis Project [16]. This data set
contains 132 ego networks with a list of binary features
at each node. We combined the “ego” networks, and
worked on a connected subgraph having n = 49, 605
nodes and m = 2, 999, 962 edges.

We simulated a smoothed signal over the nodes, mim-
icking information diffusion across the network. We
picked 10 starter nodes uniformly at random, and drew
pi ∼ Unif(0, 0.5), i = 1, . . . 10 independently. For each
starter node i, we then spawned m/10 random walks
from this node, which proceed as follows: at each step,
toss a weighted coin with success probability 1−pi; if a
success, move to a neighboring node chosen uniformly
at random; if a failure, terminate the random walk. A
signal β∗ was defined by counting the number of visits
at each node in the graph over this entire process, and
then normalizing by the average count. In the sup-
plement, we analyze a Gaussian smoothing problem,
where i.i.d. Gaussian noise is added the components of
β∗ to form observations y. Here we examine a logistic
smoothing problem, where independent Bernoulli ran-
dom variables are sampled over the nodes, with prob-
abilities given by π(β∗ − β̄∗), where β̄∗ is the sample
mean of β∗, and recall π(b) = eb/(1 + eb) denotes the
inverse logistic link (i.e., sigmoid) function.

Figure 3 shows the results from directly fitting the
Laplacian-smoothed logistic model (1), (3), and the re-
sults from using spectral sparsification, uniform sam-
pling, and kN sampling, and then solving (5). The
sparsified graphs for spectral, uniform, and kN meth-
ods each produce graphs with about 380, 000 edges,
and order of magnitude reduction compared to the
dense graph. In terms of misclassification rate (MCR)
and mean squared error (MSE), the estimates after
spectral and kN sparsification match very closely with
those from the original dense graph, while the esti-

Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J. Tibshirani

6
10 -1 100 101 102

M
C
R

0.4

0.41

0.42

0.43

0.44

0.45

0.46

MCR

Sparse
kN
Unif
Dense

6
10 -1 100 101 102

M
S
E

29.2

29.4

29.6

29.8

30

30.2

MSE

Sparse
kN
Unif
Dense

Number of problems
1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

d
s)

0

200

400

600

800

1000

1200

1400

1600

1800

2000
Time

Sparse
kN
Unif
Dense

Figure 3: MCR, MSE, and timing results for a logistic smoothing problem with the Google+ data.

mates after naive uniform sparsification deviate some-
what. Computationally, all sparsifiers provide a big
savings, offering a 5-10 times speedup after 9 smooth-
ing problems (values of λ queried).2

5 EXTENSIONS

5.1 Sparsifying Partially Structured Graphs

Here we consider spectral sparsification for partially-
structured graphs, in particular, Cartesian products of
graphs. Recall that for graphs G,H, their Cartesian
product G ×H is defined to be a graph with vertices
V = VG × VH , the (usual) Cartesian product of sets
VG and VH , and edges

((u, v), (u′, v′)) ∈ E ⇐⇒
u = u′ and (v, v) ∈ EH , or v = v′ and (u, u′) ∈ EG.

The edge weights in G×H carry over from those in G
or H. That is, if (v, v′) ∈ H with edge weight wv,v′ ,
then ((u, v), (u′, v′)) is given weight wv,v′ in G × H;
and similarly for the flip case. The next result shows
that, to spectrally sparsify a Cartesian product of two
graphs, we must only sparsify each graph individually,
and then form their Cartesian product.

Lemma 2. Let G,H be graphs, and G̃, H̃ be spectral
approximations, respectively, with constants σG, σH >
0. Then G̃× H̃ is a σ spectral approximation of G×H,
where σ = max{σG, σH}.

The fact that spectral approximations can be “decom-
posed” across Cartesian products is interesting, but
in our experience, it is seldom in practice that one
encounters a Cartesian product of two dense graphs,
each worthy of being sparsified. Far more often, one
encounters the Cartesian product of a dense graph G
with an already sparse graph H. Lemma 2 also ap-
plies to this special case, with H̃ = H, and shows that
G̃×H is a proper spectral approximation of G×H.

2The apparent difference in costs for forming the uni-
form and kN sparsified graphs is not meaningful, it is only
due to the inefficiency of looping in MATLAB.

As a prime example, we consider the Cartesian prod-
uct of an arbitrary graph with a chain graph, a com-
bination that arises naturally in modeling data that
is recorded at regular timepoints over the nodes. Let
us call G × C, where C is the chain graph with ver-
tices V = {1, . . . T}, and edges E = {(t, t + 1) : t =
1, . . . T − 1}, the chain product of G of length T .

Corollary 1. Suppose that G̃ is a σ spectral approxi-
mation of G. Then the chain product of G̃ of length T
forms a σ spectral approximation of the chain product
of G of length T .

This corollary has major computational implications,
showing that chain product graph with O(mT) edges
can be sparsified at the same cost as a single graph
with O(m) edges. This is leveraged in Section 6, where
we model weekly flu trends across major US cities.

5.2 Missing Data and Regression Problems

In terms of Laplacian regularization, the focus of the
machine learning community has been semi-supervised
problems, where data is missing at some (or many)
nodes of the graph (e.g., [4, 28, 27, 6, 23, 24]).

Another interesting class of problems are regression
problems, where predictor variables x1, . . . xn ∈ Rp are
measured along with the responses y1, . . . yn ∈ Y, and
we model either the mean E(yi|xi) (in the linear re-
gression case) or the log odds log(P(yi = 1|xi)/P(yi =
0|xi)) (in the logistic regression case) as xTi β

∗, where
β∗ = (β∗1 , . . . β

∗
p) is believed to have smoothly varying

components over a graph G. Note that this generalizes
our setup so far, by taking p = n and xi = ei ∈ Rn
(the ith standard basis vector), for i = 1, . . . n.

We describe an extension of our framework to handle
both missing data and predictor variables. Let us write
the loss function, in the case of fully observed data, as
f(β) =

∑n
i=1 `(x

T
i β; yi). With missing data, let Ω ⊂

{1, . . . n} denote observed set of nodes. Then we solve

min
β∈Rn

∑
i∈Ω

`(xTi β; yi) + λβTLβ + µ‖β − v‖22. (9)

Graph Sparsification Approaches for Laplacian Smoothing

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

6
10 -4 10 -2 10 0 10 2

M
S
E

#10 5

5.1067

5.4194

5.7513

6.1035

MSE

Sparse

kN

Unif

Dense

Number of problems
5 10 15 20 25 30 35 40 45

T
im

e
(s

ec
o
n
d
s)

0

20

40

60

80

100

120

140

160

180

200

Time

Sparse

kN

Unif

Dense

Figure 4: Left plots: dense and spectrally sparsified airport graphs over major US cities (each has been downsampled to
10% edges, for visibility). Right plots: MSE and timing results for the US flu trends data set.

In principle, we could interpret µ > 0 above as a sec-
ond tuning parameter, but for simplicity we take it to
be small and fixed. The last term in the criterion in
(9) ensures that it is strongly convex, guaranteeing a
unique solution in a potentially ill-specified problem.
The shrinkage target v ∈ Rn is chosen in a simple fash-
ion, e.g., with constant entries ȳ = 1

|Ω|
∑
i∈Ω yi in the

Gaussian case, or log(ȳ/(1− ȳ)) in the logistic case.

Just as before, in cases where L is dense, we propose
to approximate L with a sparse matrix L̃, and solve

min
β∈Rn

∑
i∈Ω

`(xTi β; yi) + λ′βT L̃β + µ‖β − v‖22, (10)

instead of (9). Stability bounds relating (9), (10) fol-
low closely from those derived in Sections 2.2 and 2.3.

Theorem 3. Assume that the Laplacian matrices L, L̃
are (1 + ε) spectrally similar. Let β̂, θ̂ denote solutions
of (9), (10) respectively, where ` is an arbitrary convex
loss function. Then the same bounds hold as in parts
(a) and (b) of Theorem 1, but with the right-hand sides
multiplied by a constant C = 1/µ.

Remark 8. Above, ` is a general convex function (not
even necessarily smooth), which broadens the scope of
previous stability results, and covers, e.g., the hinge
loss for binary data. The bounds in Theorem 3 will be
weaker than those in Theorem 1 when µ is small (and
weaker than those in Theorem 2 when µ is small and
the fitted probabilities are far away from 0 and 1).

6 FLU TRENDS IN US CITIES

We now study flu incidence in major US cities across
time. We built a graph from of n = 791 cities and m =
9216 edges, where an edge was defined for each pair of
cities that had a regular flight in between them. Edge
weights were set according to the log total number
of passengers that travelled between cities in the year
2014.3 Until recently, Google published city-specific
weekly estimates of the percentage of influenza-like-
illness, based on the volume of related search queries it
received. We considered these estimates, called Google

3From http://www.rita.dot.gov/bts/.

Flu Trends (GFT), across a four year span starting in
July 2011, for a total of T = 209 timepoints.4

GFT was only available at 74 cities (of the 791 total in
our graph). In order to impute the GFT signal at the
remaining 717 cities, we constructed the chain prod-
uct of the US cities graph described above, of length
209. See the left two plots of Figure 4. After leaving
out 50% of the GFT observations, chosen at random
over cities and timepoints, we fit Laplacian-smoothed
estimates (1), (2) on the remaining GFT observations.
This allowed us to compute MSEs on the left-out data.
The right two plots of Figure 4 compares these re-
sults to those obtained by sparsifying the graph before
Laplacian smoothing. All sparsified graphs have about
30% of the 2,090,672 edges in the original graph. It
is important to note that the times for sparsification
here are extremely cheap, even for the spectral spar-
sifier, because, as described in Section 5.1, only the
US cities graph (not the full chain product graph over
space and time) needs to be sparsified. Furthermore,
all sparsifiers deliver sound performance in terms of
the MSEs of the subsequent solutions.

7 DISCUSSION

We studied the use of spectral graph sparsification in
Laplacian-regularized estimation problems. We gave
theory and empirical examples showing that sparsifi-
cation before Laplacian smoothing can lead to statisti-
cally sound estimates and tangible computational sav-
ings. We also considered two alternate sparsification
schemes, based on uniform and kN sampling of edges.
which do not provide the same worst-case guarantees
as spectral sparsification, but are much simpler and
much cheaper in practice. The kN sampler especially
showed consistently strong empirical performance.

Acknowledgements. YW was supported by the Sin-
gapore NRF under its International Research Centre
@ Singapore Funding Initiative and administered by
the IDM Programme Office. RT was supported by
NSF Grant DMS-1309174. We thank Alex Smola for
his general help and guidance, and Ioannis Koutis and
Shen Chen Xu for help with their sparsifier code.

4From http://www.google.org/flutrends/.

Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Ryan J. Tibshirani

References

[1] Albert, R. and Barabasi, A.-L. [2002], ‘Statisti-
cal mechanics of complex networks’, Reviews of
Modern Physics 75, 47–97.

[2] Batson, J., Spielman, D. and Srivastava, N.
[2008], ‘Twice-Ramanujan sparsifiers’, Proceed-
ings of the ACM Annual Symposium on Theory
of Computing 40, 255–262.

[3] Batson, J., Spielman, D., Srivastava, N., and
Teng, S.-H. [2013], ‘Spectral sparsification of
graphs: theory and algorithms’, Communications
of the ACM 56(8), 87–94.

[4] Belkin, M. and Niyogi, P. [2002], ‘Using manifold
structure for partially labelled classification’, Ad-
vances in Neural Information Processing Systems
15.

[5] Belkin, M. and Niyogi, P. [2005], ‘Towards a the-
oretical foundation for Laplacian-based manifold
methods’, Proceedings of the Annual Conference
on Learning Theory 18.

[6] Belkin, M., Niyogi, P. and Sindhwani, V. [2005],
‘On manifold regularization’, International Con-
ference on Artificial Intelligence and Statistics 8.

[7] Buhlmann, P. and van de Geer, S. [2011], Statis-
tics for High-Dimensional Data, Springer, Berlin.

[8] Cohen, M., Kyng, R., Miller, G., Pachocki, J.,
Peng, R., Rao, A. and Xu, S. C. [2014], ‘Solv-
ing SDD linear systems in nearly m log1/2 n time’,
Proceedings of the ACM Annual Symposium on
Theory of Computing 46, 343–352.

[9] Kelner, J., Orecchia, L., Sidford, A. and Zhu,
Z. A. [2013], ‘A simple, combinatorial algorithm
for solving SDD systems in nearly-linear time’,
Proceedings of the ACM Annual Symposium on
Theory of Computing 45, 911–920.

[10] Koutis, I. [2014], ‘Simple parallel and distributed
algorithms for spectral graph sparsification’, Pro-
ceedings of the ACM symposium on Parallelism
in Algorithms and Architectures 26, 61–66.

[11] Koutis, I., Levin, A. and Peng, R. [2012], ‘Im-
proved spectral sparsification and numerical algo-
rithms for SDD matrices’, International Sympo-
sium on Theoretical Aspects of Computer Science
29, 266–277.

[12] Koutis, I., Miller, G. and Peng, R. [2010], ‘Ap-
proaching optimality for solving SDD linear sys-
tems’, Proceedings of the IEEE Annual Sym-
posium on Foundations of Computer Science
51, 235–244.

[13] Koutis, I., Miller, G. and Peng, R. [2011], ‘A
nearly-m log n time solver for SDD linear sys-

tems’, Proceedings of the IEEE Annual Sym-
posium on Foundations of Computer Science
52, 590–598.

[14] Koutis, I., Miller, G. and Peng, R. [2012], ‘A fast
solver for a class of linear systems’, Communica-
tions of the ACM 55(10), 99–107.

[15] Lee, Y. T. and Sidford, A. [2013], ‘Efficient ac-
celerated coordinate descent methods and faster
algorithms for solving linear systems’, Proceedings
of the IEEE Annual Symposium on Foundations
of Computer Science 54, 147–156.

[16] McAuley, J. and Leskovec, J. [2012], ‘Learning to
discover social circles in ego networks’, Advances
in Neural Information Processing Systems 25.

[17] Negahban, S., Ravikumar, P., Wainwright, M.
and Yu, B. [2012], ‘A unified framework for high-
dimensional analysis of M -estimators with de-
composable regularizers’, 27(4), 538–557. Statis-
tical Science.

[18] Smola, A. and Kondor, R. [2003], ‘Kernels and
regularization on graphs’, Proceedings of the An-
nual Conference on Learning Theory 16.

[19] Spielman, D. and Srivastava, N. [2008], ‘Graph
sparsification by effective resistances’, Proceed-
ings of the ACM Annual Symposium on Theory
of Computing 40, 563–568.

[20] Spielman, D. and Teng, S.-H. [2004], ‘Nearly-
linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems’,
Proceedings of the ACM Annual Symposium on
Theory of Computing 36, 81–90.

[21] Spielman, D. and Teng, S.-H. [2011], ‘Spectral
sparsification of graphs’, SIAM Journal on Com-
puting 40(4), 981–1025.

[22] Spielman, D. and Teng, S.-H. [2014], ‘Nearly-
linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear
systems’, SIAM Journal on Matrix Analysis and
Applications 35(5), 835–885.

[23] Talukdar, P. P. and Crammer, K. [2009], New
regularized algorithms for transductive learning,
in ‘Machine Learning and Knowledge Discovery
in Databases’, Springer, pp. 442–457.

[24] Talukdar, P. P. and Pereira, F. [2010], ‘Exper-
iments in graph-based semi-supervised learning
methods for class-instance acquisition’, Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics 48.

[25] van de Geer, S. [2000], Empirical Processes in M -
Estimation, Cambridge University Press, Cam-
bridge.

Graph Sparsification Approaches for Laplacian Smoothing

[26] von Luxburg, U., Radl, A. and Hein, M. [2014],
‘Hitting and commute times in large random
neighborhood graphs’, Journal of Machine Learn-
ing Research 15, 1751–1798.

[27] Zhou, D., Huang, J. and Scholkopf, B. [2005],
‘Learning from labeled and unlabeled data on a
directed graph’, Proceedings of the International
Conference on Machine Learning 22.

[28] Zhu, X., Ghahramani, Z. and Lafferty, J. [2003],
‘Semi-supervised learning using Gaussian fields
and harmonic functions’, Proceedings of the In-
ternational Conference on Machine Learning 20.

