

Attributing Hacks

Yu-Xiang Wang

Joint work with

Ziqi Liu,

Alex Smola, Kyle Soska, Qinghua Zheng

1

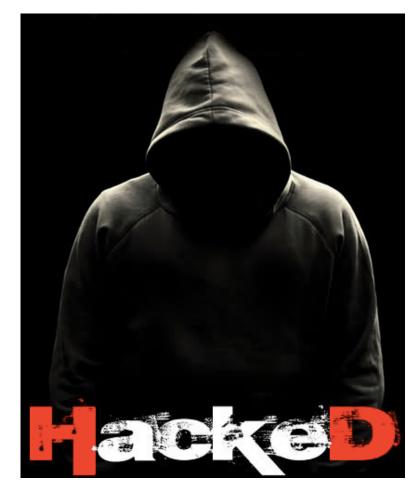
Amazon Al

• Making machine learning and AI technologies accessible to all developers.

- We are hiring!
 - PhD Internship positions all year round.
 - Full-time positions also available.
 - Contact me, Anima, Alex or any other folks there.

Background

- There are 1,000,000,000 websites on the internet as of Sep 2014.
- About 1% of them are currently hacked or infected (source: securi.net)
- That's about 10 million malicious websites!



What can we do about it?

- Typically focus on detection and remediation.
 - Using small iFrames (Mavrommatis & Monrose, 08)
 - Norton Safe Web, McAfee Site Advisor.

- Forensics / Attribution of hacks
 - much harder problems
 - What? How? When?
 - This paper: use statistics, ML tools!

Outline

- 1. Challenges
- 2. Put ourselves in the hackers' shoes
- 3. Our solution: survival analysis + trend filtering
- 4. Results on real data

Challenge 1: hidden hacking procedure

Websites get hacked...

Whenever

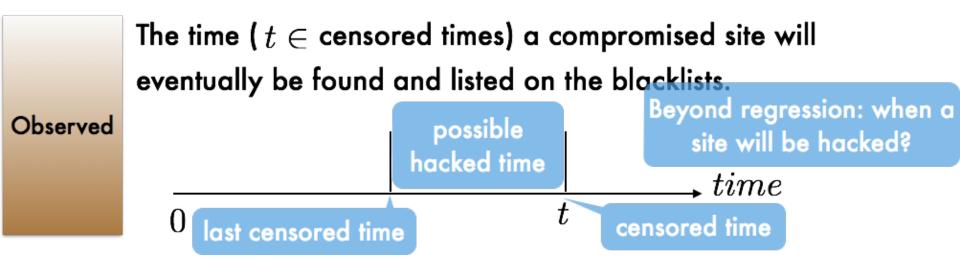
- they are subject to a vulnerability (known to the attacker)
- they can be discovered efficiently
- the attacker has efficient tools

Knowledge

None of the three is known to us!

Challenge 2: Unknown hacking time

Uncertainty Do not know the exact time a site was hacked.



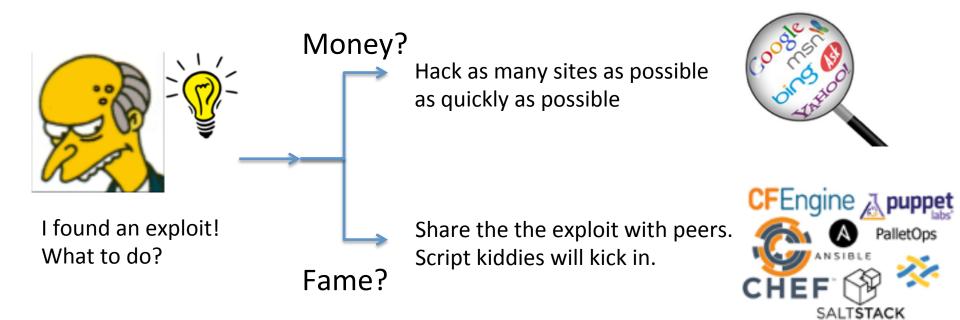
No explicit labels for supervised learner.

Challenge 3: time varying risk

- Security risk is time sensitive.
 - Hackers keep discovering new exploits.
 - Websites keep patching bugs/vulnerability.
 - New versions of software are being installed.

Sharp changes triggered by events!

From a hacker's point of view



What can we learn from this?

- Searchable string snippets are indicative features (Soska & Christin 2014)
 e.g., HTML tags <meta>WordPress 2.9.2</meta>
- Change points in hacking volume reveal hidden events/activities. (This paper!)

Outline

1. Challenges

2. Put ourselves in the hackers' shoes

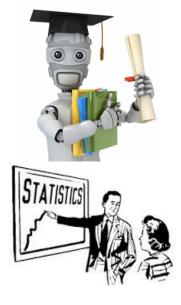
- 3. Our solution: survival analysis + trend filtering
- 4. Results on real data

Recall the input and output

• Task: estimate the risk of getting hacked.

- Input:
 - Censored hack time.
 - features of websites.
- This is survival analysis!

Survival analysis

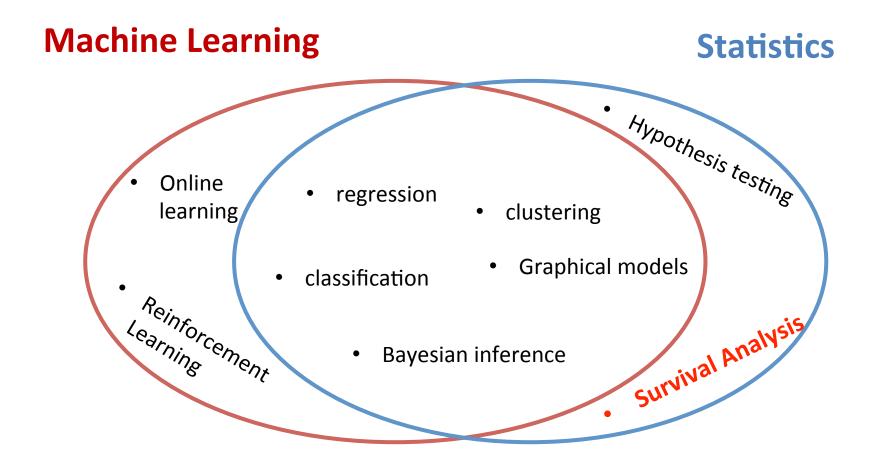


What the heck is that?

It's our bread and butter.

- Dates back to late 1600s, in studying
- smallpox and life expectancy.
- Still an active research area today.

Modern formulation: (Kaplan & Meier, 1958; Cox, 1972) - A density estimation problem for r.v. T: time of death.



Hacking as a survival problem

- A website got hacked
- Vulnerable features
- Relay checkpoint
- Blacklisted

- ⇔ A patient had a heart attack.
- ⇔ Genes assc. with heart disease
- ⇔ A regular physical checkup.
- ⇔ Diagnosed with heart failure
- Inferential tasks of interest:
 - Prob(Heart attack before age 40 | DNA sequence x, healthy until 30)
 - Prob(hacked before May 1 | feature vector x, not hacked yet today)

Survival probability
$$F(T|x) = \exp\left(-\int_0^T \lambda(x,t)dt\right)$$
 given x

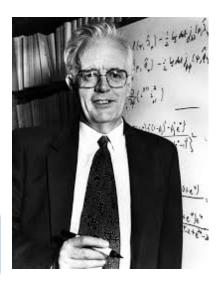
hazard rate: governs the probability of dying at time t if survive until t

The Cox model

Cox (1972). "Regression models and Life-tables". Journal of the Royal Statistics Society.

$$\lambda(x,t;w) = \lambda_0(t) \exp{\langle w,x
angle}$$
 Parametric

Nonparametric, need to specify a parametric model



Sir David Cox

- A semi-parametric model.
- The "default" survival analysis model...
- Cited 44903 times (Google Scholar)!

From Cox model to our model

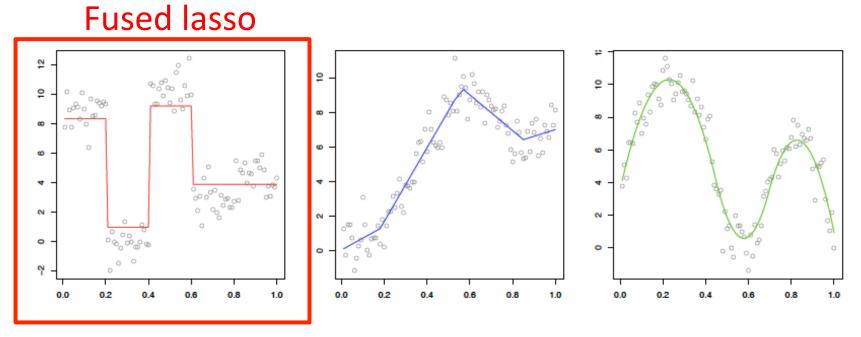
• Cox model: $\lambda(x, t; w) = \lambda_0(t) \exp \langle w, x \rangle$ - Low dimensional generalized linear model

- Our model: $\lambda(x,t) = \langle x(t), w(t) \rangle$
 - Time varying, additive hazard function.
 - High dimensional. w is a vector of functions in t.
 - Fully nonparametric for each feature.

Comparing to existing time-varying survival models

- Kernel, smoothing splines (Kooperberg'94; Sauerbrei' 07)
 - Curse of dimensionality.
 - Require homogeneous smoothness.
- How we are doing differently?
 - Additive in each dimension.
 - Use trend filtering (Kim et. al.,, 2009; Tibshirani, 2013) to handle heterogeneous smoothness / sharp changes.

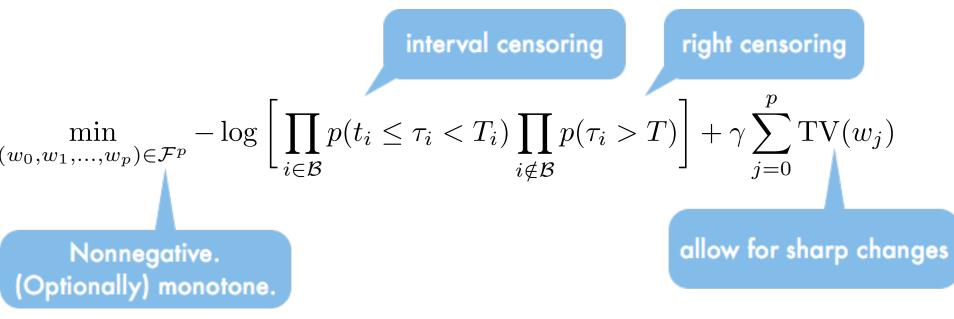
Locally adaptive nonparametric regression via trend filtering



- For functions with bounded variation:
 - Trend Filtering: n^(-2/3) minimax rate
 - All linear smoothers: n^(-1/2) suboptimal rate

(Kim et. al. 2009, SIAM Review), (Tibshirani, AoS 2013), (W., Smola and Tibshirani, ICML'14)

Learning by regularized MLE



- Technical challenges:
 - This is optimizing over functions!
 - Interval censoring loss is non-convex
 - TV operator is non-smooth.

Our contributions

- Functions => Vectors in Euclidean space
 - The solution is parameterized by a small number of stepfunctions. (a cute re-parameterization and use of Mammen & Van De Geer, 1997)
- Handling non-smoothness via proximal SVRG.
 - Combine linear time proximal map using dynamic programming (Johnson, 2013) with results in (Yu, 2014)
 - Convergence rate despite non-convexity (Reddi et. al., 2016)
- Efficient implementation.
 - Represents only active sets.
 - Highly scalable, up millions of features and data points.

Key step of the prox-SVRG algorithm

(a) Pick a random minibatch $\mathcal{S} \subset [n]$:

- Doubly robust estimation
- Control variate.

$$w_j^{\text{tmp}} = w_j^{(t)} - \eta \left(\sum_{i \in \mathcal{S}} \nabla g_i(w_j^{(t)}) - \sum_{i \in \mathcal{S}} \nabla g_i(\tilde{w}_j) + \tilde{\mu}_j \right)$$

(b) Solve the proximal map:

$$w_j^{(t+1)} = \begin{cases} \operatorname{argmin}_{w \in \mathbb{R}^{|\mathcal{T}|}} \frac{1}{2} \|w - w_j^{\operatorname{tmp}}\|^2 + \gamma \|Dw\|_1 + \delta(w \ge 0), & \text{for standard model.} \\ \operatorname{argmin}_{w \in \mathbb{R}^{|\mathcal{T}|}} \frac{1}{2} \|w - w_j^{\operatorname{tmp}}\|^2 + \gamma \|Dw\|_1 + \delta(w \ge 0) + \delta(Dw \ge 0), & \text{for monotone model} \end{cases}$$

Stationarity convergence rate:

 $O(n + n^{2/3}/\varepsilon)$ (Reddi et. al., 2016. Allen-Zhu, 2016.)

Proximal decomposition

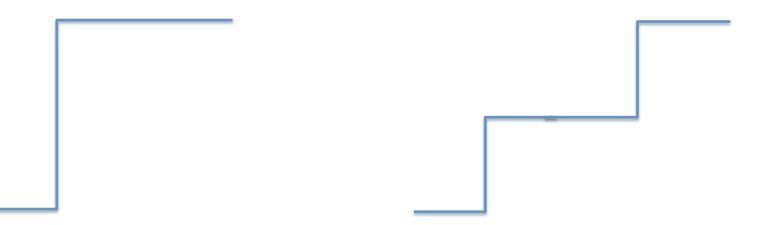
• Johnson (2013)'s DP algorithm solves:

$$w_j^{(t+1)} = \underset{w}{\operatorname{argmin}} \|w^{tmp2} - w\|_2^2 + \gamma \|Dw\|_1$$

- But how to deal with the non-negativity?
 - Using Yaoliang Yu (2015)'s general characterization, we show that it decomposes!

TV penalty is not sensitive to sparsity.

• Do not distinguish between:



More sparsity (less bias) with TV-log

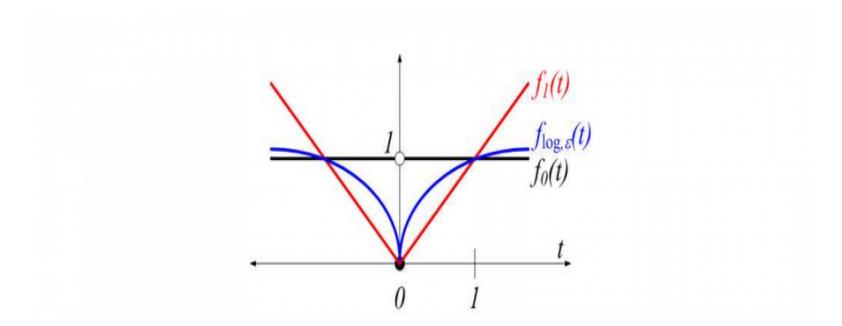


Figure 3: At the origin, the canonical ℓ_0 sparsity count $f_0(t)$ is better approximated by the log-sum penalty function $f_{\log,\epsilon}(t)$ than by the traditional convex ℓ_1 relaxation $f_1(t)$.

More sparsity (less bias) with TV-log

$$TV(f) = \sup_{\substack{\mathcal{P} \in \{P = \{t_0, \dots, t_{n_P}\} \mid P \text{ is a partition of } [a, b]\}}} \sum_{i=1}^{n_P - 1} |f(t_{i+1}) - f(t_i)|.$$

$$TV_{\log}(f) := \sup_{\substack{\mathcal{P} \in \{P = \{t_0, \dots, t_{n_P}\} \mid P \text{ is a partition of } [a, b]\}}} \sum_{i=1}^{n_P - 1} \log(\epsilon + |f(t_{i+1}) - f(t_i)|).$$

Lemma 2. For any function f we have that $TV_{log}(f) \leq TV(f)$. Moreover, if f is Lipschitz continuous it follows that $TV_{log}(f) = TV(f)$.

For piecewise constant functions, TV_log is strictly smaller!

A novel variational definition.

How do we optimize it?

• Discrete TV_log = Discrete TV + Concave

• The concave part can be shown to be continuously differentiable.

• Combine the concave part with the loss functions. The same proximal SVRG!

Outline

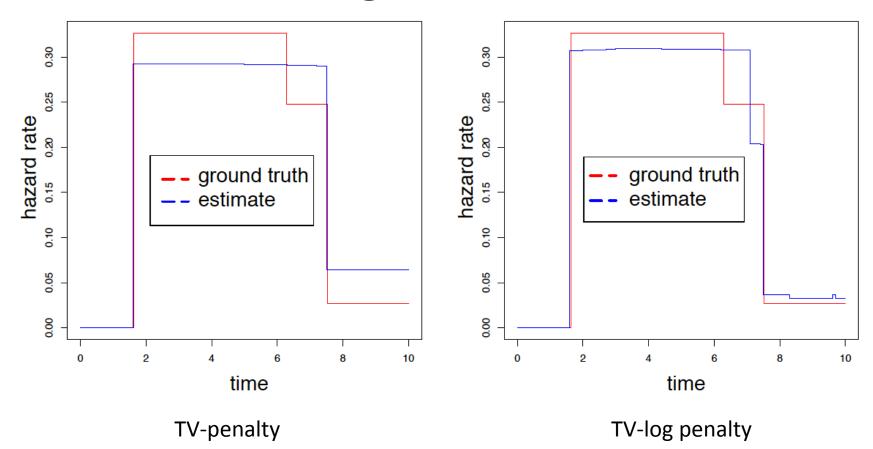
1. Challenges

2. Put ourselves in the hackers' shoes

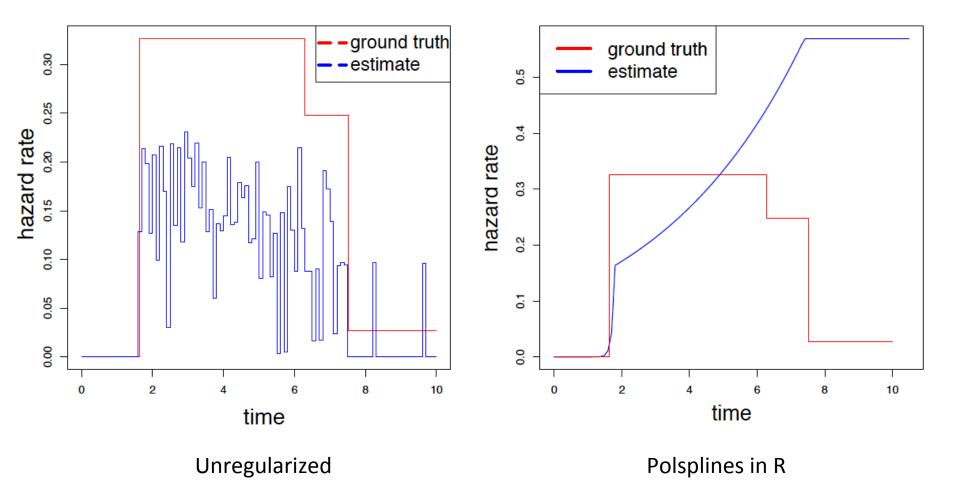
3. Our solution: survival analysis + trend filtering

4. Results on simulation and real data

Simulated example: recovery against the ground truth



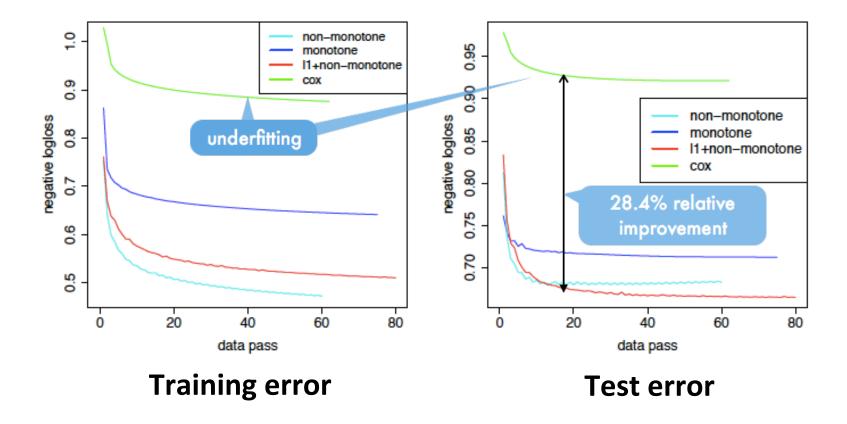
Simulated example: recovery against the ground truth



Experiments on millions of sites and millions of features, from 2010-2014.

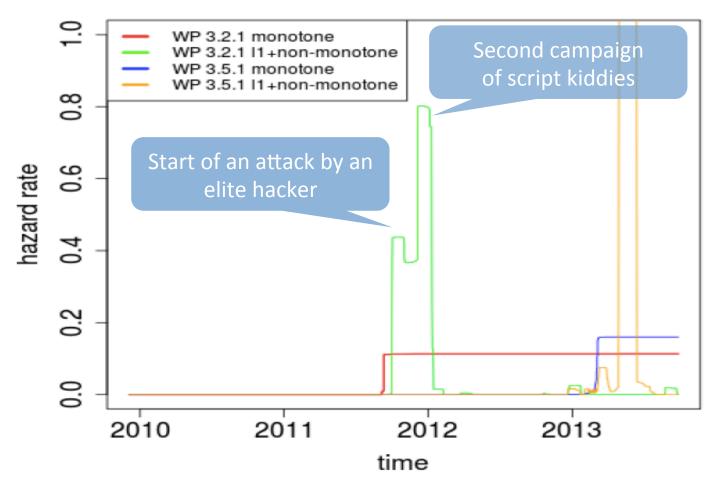
	non-monotone	monotone	11+nonmonotone	Cox
Parameter Size	$2\cdot 10^6$	$4.04 \cdot 10^5$	$5.16\cdot 10^5$	$1.59\cdot 10^5$
Table 1: Empirical model size estimated by different statistic models				

 Table 1: Empirical model size estimated by different statistic models.

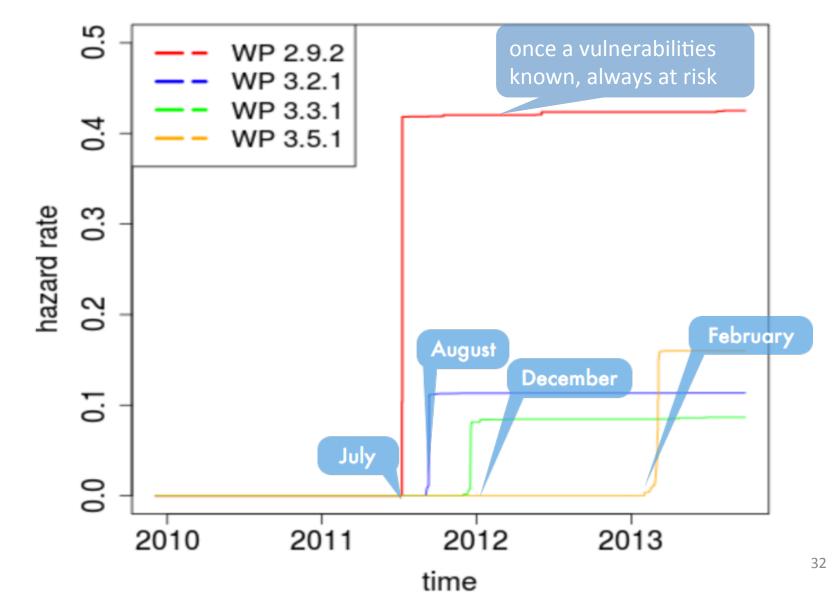


Case study: Worldpress features

Attackers tend to work in batches



Interpreting the monotone model



Other applications?

• User dropout rate estimation

Check responses of groups of people to certain promotions.

- Alipay.com data from Ant Financial.
 - Active user if log in for 7 days in a row.
 - Otherwise considered dropped out.
 - Data of 4 million users (1% of the Alipay users)

Results on the Alipay Data Set

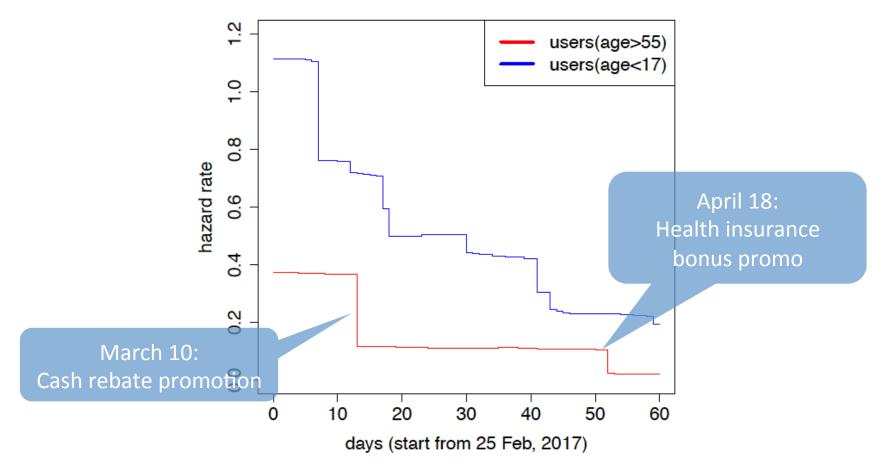


FIGURE 9. Hazard rate on different features related to the ages of users.

Conclusion

- Using 3x effective parameters, our model significantly outperforms the classic Cox model in prediction accuracy.
- Interpretability: Allows us to attribute hacks to features, and specific exploits.
- Scalability: faster and more locally adaptive than existing time-varying models.

Open problems

- Statistical properties:
 - Consistency and sample complexity of the model.
 - Implicit sparsity regularization? Sublinear dependence in d?
- Computational properties:
 - Nonconvex, but convergence to near global minima under statistical assumptions?
- Application:
 - Use higher order trend filtering on other survival analysis problems, e.g., marriage, divorce...

Thank you for your attention!

Ziqi

Alex

Kyle

Qinghua

Code/demo available at: https://github.com/ziqilau/Experimental-HazardRegression