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Background

* There are 1,000,000,000
websites on the internet as
of Sep 2014.

* About 1% of them are
currently hacked or infected
(source: securi.net)

e That’s about 10 million
malicious websites!




What can we do about it?

e Typically focus on detection and remediation.

— Using small iFrames (Mavrommatis & Monrose, 08)
— Norton Safe Web, McAfee Site Advisor.

* Forensics / Attribution of hacks

— much harder problems
— What? How? When?
— This paper: use statistics, ML tools!



Outline

1. Challenges

2. Put ourselves in the hackers’ shoes

3. Our solution: survival analysis + trend
filtering

4. Results on real data



Challenge 1: hidden hacking procedure

Websites get hacked...

Whenever
+ they are subject to a vulnerability (known to the attacker)
+ they can be discovered efficiently

+ the attacker has efficient tools

None of the three is known to us!



Challenge 2: Unknown hacking time

Uncertainty Do not know the exact time a site was hacked.
S —

The time (¢ € censored times) a compromised site will
eventually be found and listed on the blacklists,
Observed

\ ‘ , time

—— ) t

No explicit labels for supervised learner.



Challenge 3: time varying risk

e Security risk is time sensitive.
— Hackers keep discovering new exploits.
— Websites keep patching bugs/vulnerability.
— New versions of software are being installed.

Sharp changes triggered by events!



From a hacker’s point of view

Money?
—=>» Hack as many sites as possible
as quickly as possible

>
CFEngine A puppet
| found an exploit! . Share the the exploit with peers. @ PalletOps
What to do? Script kiddies will kick in. JAnSIBLE
Fame? c HE F
SALTSTACK

What can we learn from this?
- Searchable string snippets are indicative features (Soska & Christin 2014)
e.g., HTML tags <meta>WordPress 2.9.2</meta>
- Change points in hacking volume reveal hidden events/activities. (This paper!)
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3. Our solution: survival analysis + trend
filtering

4. Results on real data



Recall the input and output

* Task: estimate the risk of getting hacked.

* |nput:
— Censored hack time.
— features of websites.

* This is survival analysis!



Survival analysis

HaIIey Bernoulli

What the heck is that?

It’s our bread and butter.

- Dates back to late 1600s, in studymg
smallpox and life expectancy.

- Still an active research area today.

Modern formulation: (Kaplan & Meier, 1958; Cox, 1972)
- A density estimation problem for r.v. T: time of death.
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Machine Learning Statistics

regression .
* clustering

e classification * Graphical models

e Bayesian inference




Hacking as a survival problem

A website got hacked <> A patient had a heart attack.

Vulnerable features < Genes assc. with heart disease

Relay checkpoint < A regular physical checkup.
Blacklisted < Diagnosed with heart failure

Inferential tasks of interest:
— Prob( Heart attack before age 40| DNA sequence x, healthy until 30)
— Prob( hacked before May 1 | feature vector x, not hacked yet today)

F(T|z) = exp <—/o A(x,t)dt)



The Cox model

Cox (1972). “Regression models and Life-tables”.
Journal of the Royal Statistics Society.

A, t;w) = Ao(t) exp (w, x)

Sir David Cox

* A semi-parametric model.
* The “default” survival analysis model...
e Cited 44903 times (Google Scholar)!
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From Cox model to our model

* Cox model: \(z,t;w) = A\g(t) exp (w, x)
— Low dimensional generalized linear model

 Qur model: Az, t) = (x(t), w(t))

— Time varying, additive hazard function.
— High dimensional. w is a vector of functions in t.
— Fully nonparametric for each feature.
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Comparing to existing time-varying
survival models

* Kernel, smoothing splines (Kooperberg’94; Sauerbrei’ 07)
— Curse of dimensionality.
— Require homogeneous smoothness.

* How we are doing differently?

— Additive in each dimension.

— Use trend filtering (Kim et. al.,, 2009; Tibshirani, 2013) to
handle heterogeneous smoothness / sharp changes.



Locally adaptive nonparametric

regression via trend filtering
Fused lasso

* For functions with bounded variation:
— Trend Filtering: n*(-2/3) minimax rate
— All linear smoothers: n*(-1/2) suboptimal rate

(Kim et. al. 2009, SIAM Review), (Tibshirani, AoS 2013), (W., Smola and Tibshirani, ICML’14)
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Learning by regularized MLE

* Technical challenges:
— This is optimizing over functions!
— Interval censoring loss is non-convex
— TV operator is non-smooth.



Our contributions

* Functions => Vectors in Euclidean space

— The solution is parameterized by a small number of step-
functions. (a cute re-parameterization and use of Mammen &
Van De Geer, 1997)

* Handling non-smoothness via proximal SVRG.

— Combine linear time proximal map using dynamic programming
(Johnson, 2013) with results in (Yu, 2014)

— Convergence rate despite non-convexity (Reddi et. al., 2016)

e Efficient implementation.
— Represents only active sets.
— Highly scalable, up millions of features and data points.



Key step of the prox-SVRG algorithm

- Doubly robust estimation

(a) Pick a random minibatch & C [n]: - Control variate.

w;mp = wgt) -7 (Z Vgi(w§t)) - ZVgi(ﬁ’j) + ﬁJ) '

1€S =)

(b) Solve the proximal map:

w(.t+1) =

{argminweR]T| 3w — w;:.mpH2 + || Dw||y + 6(w > 0), for standard model.
j

argmin,, _p 7| 3||w — w;?mpH2 +v||Dwl||y + 6(w > 0) + 6(Dw > 0), for monotone model.

Stationarity convergence rate:

O(n +n?/3/e) (Reddiet.al., 2016. Allen-Zhu, 2016.)
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Proximal decomposition

* Johnson (2013)’s DP algorithm solves:

;) = argmin [[w*™P* —w||3 + v Dw]|;

w

 But how to deal with the non-negativity?

— Using Yaoliang Yu (2015)’s general characterization,
we show that it decomposes!



TV penalty is not sensitive to sparsity.

* Do not distinguish between:



More sparsity (less bias) with TV-log

fit)

/ llog, f‘(r )
()

Figure 3: At the origin, the canonical {y sparsity count fy(t) is better approximated by the
log-sum penalty function fiog ((t) than by the traditional convex {; relaxation fi(t).
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More sparsity (less bias) with TV-log

np—1

TV(f) = sup 3 1 (tigr) — £(E).

PE{P={t0, . ’"P}|P is a partition of [a, b]} i—=1
np—1
TVieg(f) = sup Z log(e + | f(tit1) — f(%:)])-

'PE{P={tO ..... "P}lp is a partition of [a, b]} 1=1

Lemma 2. For any function f we have that TV, (f) < TV(f). Moreover, if f is Lipschitz
continuous it follows that TVi.e(f) = TV(f).

For piecewise constant functions, TV _log is strictly smaller!

A novel variational definition.
25



How do we optimize it?

* Discrete TV log = Discrete TV + Concave

* The concave part can be shown to be
continuously differentiable.

 Combine the concave part with the loss
functions. The same proximal SVRG!
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Outline

4. Results on simulation and real data



hazard rate
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hazard rate
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Experiments on millions of sites and
millions of features, from 2010-2014.

non-monotone

monotone

l14+nonmonotone

Cox

Parameter Size

2.10°

4.04 - 10°

5.16 - 10°

1.59 - 10°

Table 1: Empirical model size estimated by different statistic models.
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Case study: Worldpress features

Attackers tend to work in batches
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Interpreting the monotone model

once a vulnerabilities
known, always at risk
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Other applications?

* User dropout rate estimation

— Check responses of groups of people to certain
promotions.

e Alipay.com data from Ant Financial.
— Active user if log in for 7 days in a row.
— Otherwise considered dropped out.
— Data of 4 million users (1% of the Alipay users)



Results on the Alipay Data Set
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Ficure 9. Hazard rate on different features related to the ages of users.
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Conclusion

* Using 3x effective parameters, our model
significantly outperforms the classic Cox

model in prediction accuracy.

* Interpretability: Allows us to attribute hacks to
features, and specific exploits.

* Scalability: faster and more locally adaptive
than existing time-varying models.
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Open problems

e Statistical properties:
— Consistency and sample complexity of the model.

— Implicit sparsity regularization? Sublinear dependence in
d?

 Computational properties:

— Nonconvex, but convergence to near global minima under
statistical assumptions?

* Application:
— Use higher order trend filtering on other survival analysis
problems, e.g., marriage, divorce...



Thank you for your attention!

Ziqi Alex Kyle Qinghua

Code/demo available at:
https://github.com/zigilau/Experimental-HazardRegression
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