Carnegcie :
Mellor? .'

_ _ugus
l}llamazon g?%gyigﬁ
University \ webservices ANCIAL

Attributing Hacks
Yu-Xiang Wang

Joint work with
Ziqi Liu, Alex Smola,  Kyle Soska, Qinghua Zheng




Amazon Al

Amazon Al
* Making machine learning and Al technologies

accessible to all developers.

 We are hiring!
— PhD Internship positions all year round.
— Full-time positions also available.
— Contact me, Anima, Alex or any other folks there.



Background

* There are 1,000,000,000
websites on the internet as
of Sep 2014.

* About 1% of them are
currently hacked or infected
(source: securi.net)

e That’s about 10 million
malicious websites!




What can we do about it?

e Typically focus on detection and remediation.

— Using small iFrames (Mavrommatis & Monrose, 08)
— Norton Safe Web, McAfee Site Advisor.

* Forensics / Attribution of hacks

— much harder problems
— What? How? When?
— This paper: use statistics, ML tools!



Outline

1. Challenges

2. Put ourselves in the hackers’ shoes

3. Our solution: survival analysis + trend
filtering

4. Results on real data



Challenge 1: hidden hacking procedure

Websites get hacked...

Whenever
+ they are subject to a vulnerability (known to the attacker)
+ they can be discovered efficiently

+ the attacker has efficient tools

None of the three is known to us!



Challenge 2: Unknown hacking time

Uncertainty Do not know the exact time a site was hacked.
S —

The time (¢ € censored times) a compromised site will
eventually be found and listed on the blacklists,
Observed

\ ‘ , time

—— ) t

No explicit labels for supervised learner.



Challenge 3: time varying risk

e Security risk is time sensitive.
— Hackers keep discovering new exploits.
— Websites keep patching bugs/vulnerability.
— New versions of software are being installed.

Sharp changes triggered by events!



From a hacker’s point of view

Money?
—=>» Hack as many sites as possible
as quickly as possible

>
CFEngine A puppet
| found an exploit! . Share the the exploit with peers. @ PalletOps
What to do? Script kiddies will kick in. JAnSIBLE
Fame? c HE F
SALTSTACK

What can we learn from this?
- Searchable string snippets are indicative features (Soska & Christin 2014)
e.g., HTML tags <meta>WordPress 2.9.2</meta>
- Change points in hacking volume reveal hidden events/activities. (This paper!)

9



Outline

3. Our solution: survival analysis + trend
filtering

4. Results on real data



Recall the input and output

* Task: estimate the risk of getting hacked.

* |nput:
— Censored hack time.
— features of websites.

* This is survival analysis!



Survival analysis

HaIIey Bernoulli

What the heck is that?

It’s our bread and butter.

- Dates back to late 1600s, in studymg
smallpox and life expectancy.

- Still an active research area today.

Modern formulation: (Kaplan & Meier, 1958; Cox, 1972)
- A density estimation problem for r.v. T: time of death.

12



Machine Learning Statistics

regression .
* clustering

e classification * Graphical models

e Bayesian inference




Hacking as a survival problem

A website got hacked <> A patient had a heart attack.

Vulnerable features < Genes assc. with heart disease

Relay checkpoint < A regular physical checkup.
Blacklisted < Diagnosed with heart failure

Inferential tasks of interest:
— Prob( Heart attack before age 40| DNA sequence x, healthy until 30)
— Prob( hacked before May 1 | feature vector x, not hacked yet today)

F(T|z) = exp <—/o A(x,t)dt)



The Cox model

Cox (1972). “Regression models and Life-tables”.
Journal of the Royal Statistics Society.

A, t;w) = Ao(t) exp (w, x)

Sir David Cox

* A semi-parametric model.
* The “default” survival analysis model...
e Cited 44903 times (Google Scholar)!

15



From Cox model to our model

* Cox model: \(z,t;w) = A\g(t) exp (w, x)
— Low dimensional generalized linear model

 Qur model: Az, t) = (x(t), w(t))

— Time varying, additive hazard function.
— High dimensional. w is a vector of functions in t.
— Fully nonparametric for each feature.

16



Comparing to existing time-varying
survival models

* Kernel, smoothing splines (Kooperberg’94; Sauerbrei’ 07)
— Curse of dimensionality.
— Require homogeneous smoothness.

* How we are doing differently?

— Additive in each dimension.

— Use trend filtering (Kim et. al.,, 2009; Tibshirani, 2013) to
handle heterogeneous smoothness / sharp changes.



Locally adaptive nonparametric

regression via trend filtering
Fused lasso

* For functions with bounded variation:
— Trend Filtering: n*(-2/3) minimax rate
— All linear smoothers: n*(-1/2) suboptimal rate

(Kim et. al. 2009, SIAM Review), (Tibshirani, AoS 2013), (W., Smola and Tibshirani, ICML’14)
18



Learning by regularized MLE

* Technical challenges:
— This is optimizing over functions!
— Interval censoring loss is non-convex
— TV operator is non-smooth.



Our contributions

* Functions => Vectors in Euclidean space

— The solution is parameterized by a small number of step-
functions. (a cute re-parameterization and use of Mammen &
Van De Geer, 1997)

* Handling non-smoothness via proximal SVRG.

— Combine linear time proximal map using dynamic programming
(Johnson, 2013) with results in (Yu, 2014)

— Convergence rate despite non-convexity (Reddi et. al., 2016)

e Efficient implementation.
— Represents only active sets.
— Highly scalable, up millions of features and data points.



Key step of the prox-SVRG algorithm

- Doubly robust estimation

(a) Pick a random minibatch & C [n]: - Control variate.

w;mp = wgt) -7 (Z Vgi(w§t)) - ZVgi(ﬁ’j) + ﬁJ) '

1€S =)

(b) Solve the proximal map:

w(.t+1) =

{argminweR]T| 3w — w;:.mpH2 + || Dw||y + 6(w > 0), for standard model.
j

argmin,, _p 7| 3||w — w;?mpH2 +v||Dwl||y + 6(w > 0) + 6(Dw > 0), for monotone model.

Stationarity convergence rate:

O(n +n?/3/e) (Reddiet.al., 2016. Allen-Zhu, 2016.)

21



Proximal decomposition

* Johnson (2013)’s DP algorithm solves:

;) = argmin [[w*™P* —w||3 + v Dw]|;

w

 But how to deal with the non-negativity?

— Using Yaoliang Yu (2015)’s general characterization,
we show that it decomposes!



TV penalty is not sensitive to sparsity.

* Do not distinguish between:



More sparsity (less bias) with TV-log

fit)

/ llog, f‘(r )
()

Figure 3: At the origin, the canonical {y sparsity count fy(t) is better approximated by the
log-sum penalty function fiog ((t) than by the traditional convex {; relaxation fi(t).

24



More sparsity (less bias) with TV-log

np—1

TV(f) = sup 3 1 (tigr) — £(E).

PE{P={t0, . ’"P}|P is a partition of [a, b]} i—=1
np—1
TVieg(f) = sup Z log(e + | f(tit1) — f(%:)])-

'PE{P={tO ..... "P}lp is a partition of [a, b]} 1=1

Lemma 2. For any function f we have that TV, (f) < TV(f). Moreover, if f is Lipschitz
continuous it follows that TVi.e(f) = TV(f).

For piecewise constant functions, TV _log is strictly smaller!

A novel variational definition.
25



How do we optimize it?

* Discrete TV log = Discrete TV + Concave

* The concave part can be shown to be
continuously differentiable.

 Combine the concave part with the loss
functions. The same proximal SVRG!

26



Outline

4. Results on simulation and real data



hazard rate

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Simulated example: recovery against
the ground truth

‘(L) =]
T g n
_E o
— - ground truth T . — = ground truth
— - estimate _cc'%’ 5 — - estimate
8
I I I I I I c I I I I T I
0 2 4 6 8 10 0 2 4 6 8 10
time time
TV-penalty TV-log penalty

28



hazard rate

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Simulated example: recovery against
the ground truth

— —ground truth —— ground truth
— =gstimate 0 | — estimate
9 o
1 :
h H ]
' ©
N
m N
L S - -
[ I
0 2 4 6 8 10 0 2 4 6 8 10
time time
Unregularized Polsplines in R

29



Experiments on millions of sites and
millions of features, from 2010-2014.

non-monotone

monotone

l14+nonmonotone

Cox

Parameter Size

2.10°

4.04 - 10°

5.16 - 10°

1.59 - 10°

Table 1: Empirical model size estimated by different statistic models.

negative logloss

1.0

1

0.9

1

08

1

0.7

06

05

1

1

1

non—-monotone
-~ monotone
= [1+non-monotone
COoX
|
| I DI o T L
l unaerniring |
‘,\‘l —_—_—_——
\
\~‘~,
T T T T
0 20 40 60 80

data pass

Training error

negative logloss
070 075 080 085 090 095
1 1 | 1 1 1

monotone

cox

non—-monotone

I1+non-monotone

o, T

I I I

data pass

Test error

30




Case study: Worldpress features

Attackers tend to work in batches

hazard rate
0.4

o]

—
p—
o

-
o

0.2

0.0

monotone

monotone

2222
TOTT
Wwww

2.1
2.1 '1+non-monotone
51
5.1

11 +non-monotone

2010

2011

2012
time

31



Interpreting the monotone model

once a vulnerabilities
known, always at risk

hazard rate

0.2

wn
o

-
o

0.3

0.1

0.0

—

— = WP 2.9.2
— = WP 3.2.1
- = WP 3.3.1

— = WP 3.5.1

|

February

December

2010 2011

2012
time

2013

32



Other applications?

* User dropout rate estimation

— Check responses of groups of people to certain
promotions.

e Alipay.com data from Ant Financial.
— Active user if log in for 7 days in a row.
— Otherwise considered dropped out.
— Data of 4 million users (1% of the Alipay users)



Results on the Alipay Data Set

[aV]
- — users(age>55)
™ - users(age<17)

o

@

o
(0]
©
T ©_ April 18:
c © :
N Health insurance
< bonus promo

March 10:
Cash rebate promotion

0 10 20 30 40 50 60
days (start from 25 Feb, 2017)

Ficure 9. Hazard rate on different features related to the ages of users.

34



Conclusion

* Using 3x effective parameters, our model
significantly outperforms the classic Cox

model in prediction accuracy.

* Interpretability: Allows us to attribute hacks to
features, and specific exploits.

* Scalability: faster and more locally adaptive
than existing time-varying models.

35



Open problems

e Statistical properties:
— Consistency and sample complexity of the model.

— Implicit sparsity regularization? Sublinear dependence in
d?

 Computational properties:

— Nonconvex, but convergence to near global minima under
statistical assumptions?

* Application:
— Use higher order trend filtering on other survival analysis
problems, e.g., marriage, divorce...



Thank you for your attention!

Ziqi Alex Kyle Qinghua

Code/demo available at:
https://github.com/zigilau/Experimental-HazardRegression

37



