

Microsoft[®] **Research**

Optimal and **Adaptive** Off-Policy Evaluation in Contextual Bandits

Yu-Xiang Wang Joint work with Alekh Agarwal, Miro Dudik

Off-Policy Evaluation: Answering the **"what-if"** question

- Targeted advertisement
 - A "policy" decides which ad to show based on "context"
 - Then the user may click or not click
 - The click-through rate measures how good the policy is
- What if I ran a different policy instead?
 - a.k.a., Counterfactual reasoning

Many applications

- For safe policy deployment
- For policy optimization

Contextual bandits

- Contexts:
 - $x_1,...,x_n\sim\lambda$ drawn iid, possibly infinite domain
- Actions:

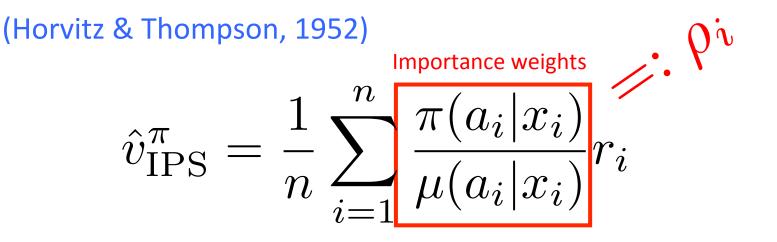
• $a_i \sim \mu(a|x_i)$ Taken by a randomized "Logging" policy

- Reward:
 - $r_i \sim D(r|x_i,a_i)$ Revealed only for the action taken
- Value:

$$v^{\mu} = \mathbb{E}_{x \sim \lambda} \mathbb{E}_{a \sim \mu(\cdot|x)} \mathbb{E}_D[r|x, a]$$

- We collect data $(x_i, a_i, r_i)_{i=1}^n$ by the above processes.
- What if we use a different policy π (the "Target" policy)?
 - How do we estimate its value?

Importance sampling/Inverse propensity scoring



Pros:

- No assumption on rewards
- Unbiased
- Computationally efficient

Cons:

 High variance when the weight is large

Model-based approach

• Fit a regression model of the reward

 $\hat{r}(x,a) \, \approx \mathbb{E}(r|x,a) \,$ $\,$ using the data

Then for any target policy

$$\hat{v}_{\mathrm{DM}}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \sum_{a \in \mathcal{A}} \hat{r}(x_i, a) \pi(a | x_i)$$
cos:
Cons:

Pros:

- Low-variance.
- Can evaluate on unseen contexts

• Often high bias

 The model can be wrong/ hard to learn

Variants and combinations

- Modifying importance weights:
 - Trimmed IPS (Bottou et. al. 2013)
 - Truncated/Reweighted IPS (Bembom and van der Laan, 2008)
- Doubly Robust estimators:
 - A systematic way of incorporating DM into IPS
 - Originated in statistics (see e.g., Robins and Rotnitzky, 1995; Bang and Robins, 2005)
 - Used for off-policy evaluation (Dudík et al., 2014)

Many estimators are proposed. Are they optimal? How good is good enough?

In this work, we formally address these problems.

- 1. Minimax lower bound: IPS is optimal in the general case.
- 2. A new estimator --- SWITCH --- that can be even better than IPS in some cases.

What do we mean by "optimal"?

- Minimax theory
 - Find an estimator that works well for ALL problem within a class of problems.
 - An estimator $\hat{v}: (\mathcal{X} imes \mathcal{A} imes \mathbb{R})^n o \mathbb{R}$
 - Minimax risk / rate:

$$\inf_{\hat{v}} \sup_{\text{a class of problems Taken over data} \sim \mu} \mathbb{E}(\hat{v}(\text{Data}) - v^{\pi})^2$$

- Fix context distribution and policies (λ,μ,π)
- A class of problems = a class of reward distributions.

What do we mean by "optimal"?

• The class of problems: (generalizing Li et. al. 2015)

 $\mathcal{R}(\sigma, R_{\max}) \coloneqq \left\{ D(r|x, a) : 0 \le \mathbb{E}_D[r|x, a] \le R_{\max}(x, a) \text{ and} \right.$ $\operatorname{Var}_D[r|x, a] \le \sigma^2(x, a) \text{ for all } x, a \right\}.$

• The minimax risk

$$\inf_{\hat{v}} \sup_{D(r|a,x)\in\mathcal{R}(\sigma^2,R_{\max})} \mathbb{E}(\hat{v}-v^{\pi})^2$$

Lower bounding the minimax risk

Our main theorem: under mild conditions

$$\inf_{\hat{v}} \sup_{\substack{D(r|a,x) \in \mathcal{R}(\sigma^{2}, R_{\max})}} \mathbb{E}(\hat{v} - v^{\pi})^{2}$$

$$= \Omega \left[\frac{1}{n} \left(\underbrace{\mathbb{E}_{\mu}[\rho^{2}\sigma^{2}]}_{\text{Randomness}} + \underbrace{\mathbb{E}_{\mu}[\rho^{2}R_{\max}^{2}]}_{\text{Randomness due to}} (1 - \tilde{O}(n\lambda_{0})) \right) \right]_{\substack{\text{Max prob.} \\ \text{of a single x}}}$$

Subsumes lower bound for multi-arm bandit.

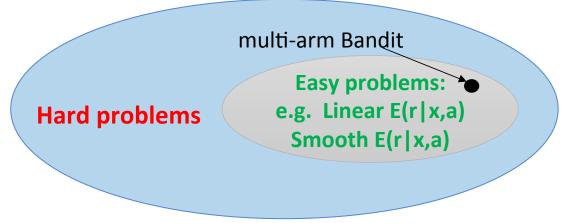
Li, Lihong, Rémi Munos, and Csaba Szepesvári. "Toward Minimax Off-policy Value Estimation." *AISTATS*. 2015.

This implies that IPS is optimal!

- The high variance is required.
 - In contextual bandits with large context spaces and nondegenerate context distribution.
 - Model-free approach is fundamentally limited.

- Different from multi-arm bandit
 - Li et. al. (2015) showed that in k-arm bandit, IPS is strictly suboptimal.

The pursuit of adaptive estimators



- Minimaxity: perform optimally on hard problems.
- Adaptivity: perform better on easier problems.

Suppose we are given an oracle

- Could be very good, or completely off.
- How to make the best use of the predictions?

Why not just use **doubly robust**?

- Originated in statistics (see e.g.: Robins and Rotnitzky, 1995; Bang and Robins, 2005)
- Proposed for off-policy evaluation previously:

Dudık, Langford and Li. "Doubly Robust Policy Evaluation and Learning." *ICML*-11. Jiang and Li. "Doubly Robust Off-policy Value Evaluation for Reinforcement Learning." *ICML*-2016.

- We show that: DR can be as bad as IPS
- Does not adapt even with perfect oracle:

$$\hat{r}(x,a) = \mathbb{E}(r|x,a)$$
$$MSE(\hat{v}_{DR}) \leq \frac{1}{n} (\mathbb{E}_{\mu}(\rho^{2}\sigma^{2}) + \mathbb{E}_{\pi}(R_{\max}^{2}))$$

DR can suffer from high variance just like IPS!

SWITCH estimator

• Recall that IPS is bad because:

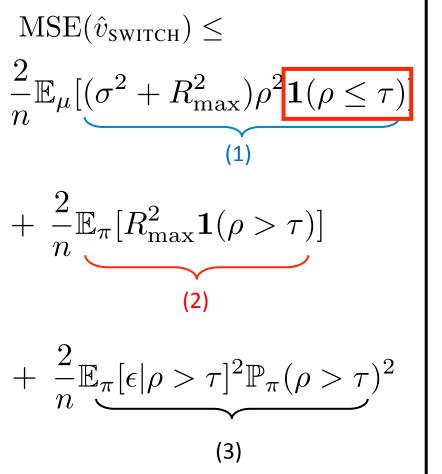
$$\hat{v}_{\text{IPS}}^{\pi} = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(a_i | x_i)}{\mu(a_i | x_i)} r_i$$

• SWITCH estimator:

For each i = 1, ..., n, for each action $a \in \mathcal{A}$: if $\pi(a|x_i)/\mu(a|x_i) \leq \tau$: Use IPS (or DR). else: Use the oracle estimator.

The approach is related to MAGIC estimator (Thomas & Brunskill, 2016), but with important difference.

Error bounds for SWITCH



1) Variance from IPS (reduced truncation)

2) Variance due to sampling x. Required even with perfect oracle

3) Bias from the oracle.

Error bounds for SWITCH

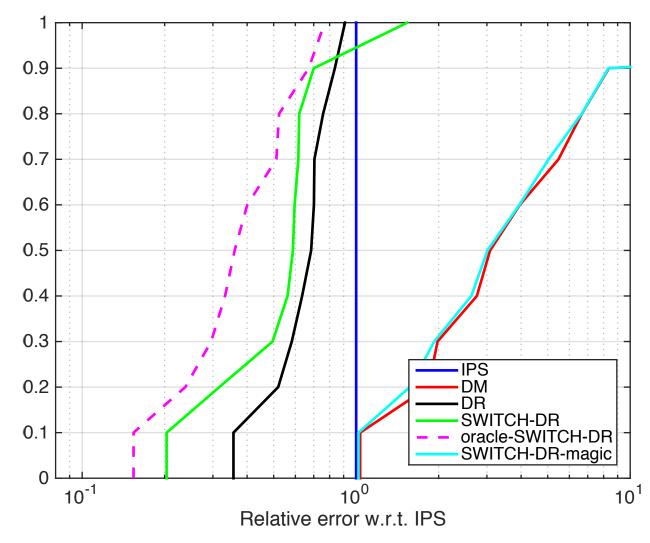
- For appropriately tuned ``threshold" parameter, SWITCH is
 - Independent to ρ when oracle is perfect.
 - Minimax when oracle is horrible.
 - Robust to large importance weight.

- Data dependent tuning of parameter? Check out our paper!
- Different from MAGIC (Thomas and Brunskill, 2016)

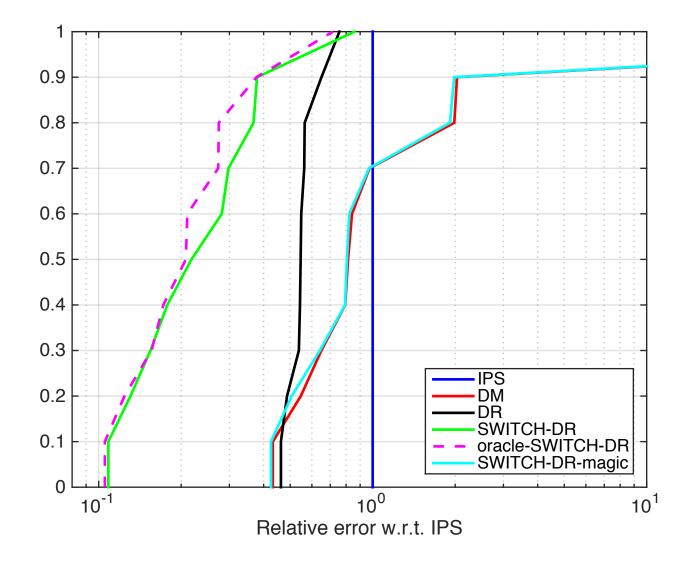
Experiment setup

- 10 UCI Classification data sets converted to bandits.
 - Action is to predict labels.
 - Reward is {0,1}, depending on whether the action is correct.
- Follow standard setup in
 - (Beygelzimer & Langford, 2009)
 - (Gretton et. al. 2008)
 - (Dudik et. al. 2011)

CDF of relative MSE over 10 UCI multiclass classification data sets.



With additional label noise



Conclusion

- IPS is optimal.
 - Need to go beyond the model-free approach.
- DR is unsatisfactory.
- We propose an new estimator: SWITCH
 - that has good theoretical properties.
 - performs quite well in practice.

Thank you! Any questions?

Connections and future work

- Extension to reinforcement learning
 - Lower bound directly applies in some sense.
 - SWITCH-DR for reinforcement learning?

- Lower bound directly applies to "mean effect" estimation.
 - Basically it corresponds to a different "target policy".

The conditions for the main Theorem $\mathbb{E}_{\mu}[(\rho\sigma)^{2+\epsilon}] < \infty$

Moment conditions:

$$\mathbb{E}_{\mu}[(\rho\sigma)^{2+\epsilon}] \leq \infty$$
$$\mathbb{E}_{\mu}[(\rho R_{\max})^{2+\epsilon}] \leq \infty$$
$$\mathbb{E}_{\mu}[\sigma^2/R_{\max}^2] < \infty$$

• If n is sufficiently large

 $\inf_{\hat{v}} \sup_{D(r|a,x)\in\mathcal{R}(\sigma^2,R_{\max})} \mathbb{E}(\hat{v}-v^{\pi})^2$ $= \Omega \left[\frac{1}{n} \left(\mathbb{E}_{\mu} \left[\rho^2 \sigma^2 \right] + \mathbb{E}_{\mu} \left[\rho^2 R_{\max}^2 \right] \left(1 - 110\lambda_0 \log(4/\lambda_0) \right) \right) \right]$

Automatic parameter tuning

• Conservative approximate MSE minimizing.

$$\widehat{\tau} = \operatorname*{argmin}_{\tau} \widehat{\operatorname{Var}}_{\tau} + \widehat{\operatorname{Bias}}_{\tau}^{2}.$$
ils:

• Details:

$$Y_{i}(\tau) := r_{i}\rho_{i}\mathbf{1}(\rho_{i} \leq \tau) + \sum_{a \in \mathcal{A}} \hat{r}(x_{i}, a)\pi(a|x_{i})\mathbf{1}(\rho(x_{i}, a) > \tau) \text{ and } \bar{Y}(\tau) = \frac{1}{n}\sum_{i=1}^{n} Y_{i}(\tau),$$

$$\operatorname{Var}(\hat{v}_{\mathrm{SWITCH}-\tau}) = \frac{1}{n} \operatorname{Var}(\hat{v}_{\mathrm{SWITCH}-\tau}(x_1)) \approx \frac{1}{n^2} \sum_{i=1}^n (Y_i(\tau) - \bar{Y}(\tau))^2 =: \widehat{\operatorname{Var}}_{\tau},$$

$$\begin{aligned} \operatorname{Bias}^{2}(\hat{v}_{\mathrm{SWITCH}}) &\leq \mathbb{E}_{\mu}[\rho\epsilon^{2}|\rho > \tau]\pi(\rho > \tau)^{2} \leq \mathbb{E}_{\mu}[\rho R_{\max}^{2}|\rho > \tau]\pi(\rho > \tau)^{2} \\ &\approx \left[\frac{1}{n}\sum_{i=1}^{n} \mathbb{E}_{\pi}\left(R_{\max}^{2}|\rho > \tau, x_{i}\right)\right] \left[\frac{1}{n}\sum_{i=1}^{n}\pi(\rho > \tau|x_{i})\right]^{2} =: \widehat{\operatorname{Bias}}_{\tau}^{2}. \end{aligned}$$

Experiment setup

- 10 UCI Classification data sets converted to bandits.
 - Action is to predict labels.
 - Reward is {0,1}, depending on whether the action is correct.
 - Target policy is prediction of logistic regression.
 - Logging policy obtained by the label probability of a logistic regression learned from covariate shifted data.
- We sample data of size n = [100, 200,500,1000,...], from discrete distribution of of length N.