INSTRUCTIONS

• *Before* you answer any questions, print your name and perm number.

• Read each question carefully. Make sure that you clearly understand each question before answering it.

• Put your answer to each question on its own page.

• You may wish to work out an answer on scratch paper before writing it on your answer page; answers that are difficult to read may lose points for that reason.

• You may not leave the room during the examination, even to go to the bathroom.

• You may not use any personal devices, such as calculators, PDAs, or cell phones.
1. (15 points) Prove or disprove the following statement: If $M = (Q, \Sigma, \delta, q_0, F)$ is a minimal DFA for a regular language L, then $\overline{M} = (Q, \Sigma, \delta, q_0, Q - F)$ is a minimal DFA for \overline{L}.

Answer

(a) Assume M is a a minimal DFA for L and \overline{M} is not a minimal DFA for \overline{L}.

(b) Let $M' = (Q', \Sigma, \delta', q'_0, F')$ be a minimal DFA for \overline{L}.

(c) $|Q'| < |Q|$.

(d) Let $M'' = (Q', \Sigma, \delta', q'_0, Q' - F')$.

(e) $L(M'') = L$, contradicting the assumption that M was a minimal DFA accepting L.

2
2. (10 points) The symmetric difference of 2 sets S_1 and S_2 is defined as

$$S_1 \triangle S_2 = \{ x : x \in S_1 \text{ or } x \in S_2, \text{ and } x \text{ is not in both } S_1 \text{ and } S_2 \}.$$

Prove that the family of regular languages is closed under symmetric difference or give a counterexample.

Answer

It is closed under symmetric difference.

(a) Let S_1 and S_2 be regular sets.

(b) Then

$$(S_1 \text{ or } S_2) \text{ and } (\text{ not } (S_1 \text{ and } S_2)) = (S_1 \cup S_2) \cap (\overline{S_1 \cap S_2}) = S_1 \triangle S_2$$

is regular, since regular sets are closed under union, intersection, and complement.
3. (15 points) Is there an algorithm for determining if $L_1 \subseteq L_2$, for any regular languages L_1 and L_2? Prove your answer.

Answer

Yes, there is. If $L_1 \subseteq L_2$ then $L_1 - L_2 = \emptyset$. An algorithm follows.

(a) Construct regular set $L_1 - L_2 = L_1 \cap \overline{L_2} = L$. This can be done since there are constructive proofs that regular sets are closed under intersection and complement.

(b) Apply the algorithm for determining if $L = \emptyset$.

4. (15 points) Is the language \(L = \{w \in \{a, b\}^* : n_a(w) = n_b(w)\} \) regular? Prove your answer.

Answer

Since

- regular languages are closed under intersection
- \(L \cap a^*b^* = \{a^n b^n : n \geq 0\} \) is irregular

\(L \) is irregular.

An alternate proof that uses the Pumping Lemma follows.

(a) Assume \(L \) is regular. Then, by the Pumping Lemma, there is a natural number \(m \) such that any \(w \in L \) with \(|w| \geq m \) can be factored as \(w = xyz \) with \(|xy| \leq m \) and \(|y| > 0 \), and \(xy^iz \in L \), for \(i = 0, 1, \ldots \).

(b) Pick \(w = a^m b^m \).

(c) Then, \(a^m b^m = xyz \), where \(y = a^k \), for \(k > 0 \).

(d) By the Pumping Lemma, \(xz \in L \).

(e) But, \(n_a(xz) \neq n_b(xz) \).

(f) The assumption that \(L \) is regular thus is false.
5. (15 points) Prove that the following statement is true or prove that it is false.

If \(L_1 \) and \(L_1 \cup L_2 \) are regular languages, then \(L_2 \) is a regular language.

Answer

The statement is false.

Let \(L_1 = \{a, b\}^* \) and \(L_2 = \{a^n b^n : n \geq 0\} \).

Then \(L_1 \) and \(L_1 \cup L_2 \) are regular, but \(L_2 \) is irregular.
6. (10 points) Let \(L = \{ a^n b^n : n \geq 0 \} \). Is \(L^2 \) context-free? Prove your answer.

Answer

Yes, it is.

A CFG that recognizes \(L^2 \) is \(G_2 = (\{S_2, S\}, \{a, b\}, S_2, P) \), where \(P \) has the following productions:

\[
\begin{align*}
S_2 & \rightarrow SS, \\
S & \rightarrow aSb | \lambda.
\end{align*}
\]
7. (10 points) Is the following grammar ambiguous? Prove your answer.

\[
S \rightarrow AB \mid aaB, \\
A \rightarrow a \mid Aa, \\
B \rightarrow b.
\]

Answer

Yes, it is.

The word \textit{aab} has 2 different leftmost derivations:

\[
S \Rightarrow AB \Rightarrow AaB \Rightarrow aaB \Rightarrow aab \\
S \Rightarrow aaB \Rightarrow aab
\]
8. (10 points) Construct a NPDA that accepts \(\{a^n b^{2n} : n \geq 0\} \) over input alphabet \(\{a, b, c\} \).

Answer

\(M = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{z\}, \delta, q_0, \{q_2\}) \), where \(\delta \) is given by the following diagram.

![Diagram of NPDA](image-url)