Chapter 10: Nonregular Languages *

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

- The corresponding textbook chapter should be read before attending this lecture.

- These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

*Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.
THE PUMPING LEMMA

Definition: A language that cannot be defined by a regular expression is a **nonregular language** or an **irregular language**.
Theorem: For all regular languages, \(L \), with infinitely many words, there exists a constant \(n \) (which depends on \(L \)) such that for all strings \(w \in L \), where \(|w| \geq n\), there exists a factoring of \(w = xyz \), such that:

- \(y \neq \Lambda \).
- \(|xy| \leq n \).
- For all \(k \geq 0 \), \(xy^kz \in L \).

Proof:

1. Since \(L \) is regular, there is an FA \(A \) that accepts \(L \).
2. Let \(|Q_A| = n \).
3. Since \(|L| = \infty\), there exists a word \(w = a_0a_1\cdots a_m \in L \), for \(m \geq n \).
4. Let \(p_0, p_1, \ldots, p_m \) be the sequence of states visited by \(w \) as it is accepted by \(A \).

Since \(m \geq n \), at least 1 of these states appears previously in the sequence: There exists \(i < j \) such that \(p_i = p_j \).

Draw a picture of this situation.

5. Factor \(w \) into 3 strings as follows:
 - \(x = a_0a_1 \cdots a_i \).
 - \(y = a_{i+1}a_{i+2} \cdots a_j \).
 - \(z = a_{j+1}a_{j+2} \cdots a_m \).

6. Although either \(x \) or \(z \) may be \(\Lambda \), \(|y| \geq 1 \); the smallest loop in \(A \) is a self-loop, which consumes 1 symbol.

7. For any \(k \geq 0 \), \(xy^kz \in L \).
The Pumping Lemma as a 2-Person Game

1. You pick the language L to be proved nonregular.

2. Your adversary picks n, but does not reveal to you what n is. You must devise a move for all possible n’s.

3. You pick w, which may depend on n. $|w| \geq n$.

4. Your adversary picks a factoring of $w = xyz$. Your adversary does not reveal what the factors are, only that they satisfy the constraints of the theorem: $|y| > 0$ and $|xy| \leq n$.

5. You “win” by picking k, which may be a function of n, x, y, and z, such that $xy^kz \notin L$.

\{a^n b^n \mid n = 0, 1, 2, \ldots\} \text{ is nonregular}

\textbf{Proof}

1. Assume that the adversary has chosen a particular \(n \).
2. Pick \(w = a^n b^n \).
3. Since \(|xy| \leq n \), \(y = a^i \), for some \(i > 0 \).
4. Then, \(xy^2 z \notin L \), since it has at least 1 more \(a \) than \(b \).
\{w \mid w \text{ has an equal number of } a’s \& b’s \} \text{ is Nonregular}

Proof

1. We refer to the language under consideration as \textit{EQUALS}.
 \[
 \{a^n b^n \mid n \geq 0\} = a^* b^* \cap \textit{EQUAL}.
 \]
2. If \textit{EQUALS} is regular, then \{a^n b^n \mid n \geq 0\} is regular.
3. \{a^n b^n \mid n \geq 0\} is nonregular.
4. \textit{EQUALS} is nonregular.

Study the applications of the pumping lemma given in the textbook.
The Myhill-Nerode Theorem

Given a language L, define a binary relation, E, on strings in Σ^*, where xEy when for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$.

1. E is an equivalence relation.
2. If L is regular, E partitions L into finitely many equivalence classes.
3. If E partitions L into finitely many equivalence classes, L is regular.

Proof

1. For part 1:
 - E is reflexive: xEx, for all $x \in \Sigma^*$.
 - E is symmetric: If xEy then yEx.
• E is transitive: If xEy and yEz then xEz.

 (a) Let xEy and yEz, and $w \in \Sigma^*$.
 (b) Since xEy, $xw \in L \iff yw \in L$.
 (c) Since yEz, $yw \in L \iff zw \in L$.
 (d) Therefore, $xw \in L \iff zw \in L$: xEz.

2. Since L is regular, there is an FA A that accepts it.

 Associate with each string, w, the state, q of A that w ends in.

 If x and y are associated with the same state, they are in the same equivalence class.

 Since A has a finite number of states, there is only a finite number of distinct equivalence classes.

 (It may be fewer than $|Q_A|$.)

3. Let C_0, C_1, \ldots, C_n be the finite equivalence classes. Let $\Lambda \in C_0$.

9
Claim: For all C_i, $C_i \subseteq L$ or $C_i \cap L = \emptyset$.

(a) Let $x, y \in C_i$ and $x \in L$.
(b) Then, $x\Lambda \in L \iff y\Lambda \in L$.
(c) Thus, $y \in L$.
(d) By analogous reasoning, if $x \notin L$, then $y \notin L$.

We build an FA E that accepts L.

Q_E: The C_i are E’s states.

C_0 is E’s start state.

If $C_i \subseteq L$, then $C_i \in F_E$.

For the δ function, consider the following.

(a) Let $a \in \Sigma$ and $z \in \Sigma^*$.

If $x, y \in C_i$, then $x(az) \in L \iff y(az) \in L$.
(b) Then, $(xa)z \in L \iff (ya)z \in L$. Thus, $xa, ya \in C_j$ for some j.

(c) Define $\delta(C_i, a) = C_j$.

4. Clearly, the language accepted by E is L.

5. Therefore, L is regular.
Applications of Myhill-Nerode

$a^n b^n$ is nonregular

Proof

Each a^i is not equivalent to a^j, when $i \neq j$;
$a^i b^j \in L$ but $a^j b^i \notin L$.
There thus are infinitely many equivalence classes.

Please see other applications in the textbook.
Quotient Languages

Definition: \(\text{Pref}(Q \text{ in } R) = \{ p \mid \text{there exists } q \in Q \text{ such that } pq \in R \} \).

Example:
Let \(Q = \{aa, abaaabb, bbaaaaa, bbbbbbbbb\} \)
\(R = \{b, bbbb, bbbaaa, bbaaaaa\} \).
\(\text{Pref}(Q \text{ in } R) = \{b, bba, bbbaa\} \).

Theorem: If \(R \) is regular and \(L \) is a language, then \(\text{Pref}(L \text{ in } R) \) is regular.

Proof

Since \(R \) is regular, there is an FA that accepts it.
Let \(A \) be such an FA.

Construct an FA \(P \) that accepts \(\text{Pref}(L \text{ in } R) \) as follows:

1. \(Q_P = Q_A \).
2. The start state of \(P \) is \(q_0 \), the start state of \(A \).
3. \(q \in F_P \) if there exists a \(w \in L \) such that starting \(w \) in \(q \) leads to an accepting state in \(A \).
4. \(\delta_P = \delta_A \)

\(P \) accepts all words \(p \) such that \(pw \in R \) for some \(w \in L \).