CHAPTER 11: DECIDABILITY *

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

• The corresponding textbook chapter should be read before attending this lecture.

• These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

*Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.
DEFINITIONS

• A problem is **effectively solvable** if there is an *algorithm* for solving it (a procedure that completes after finitely many steps, the maximum of which is known in advance, but may depend on the size of the input).

• A problem whose solution is “yes” or “no” is a **decision problem**.

• An effective solution to a decision problem is a **decision procedure**.

• A decision problem that has a decision procedure is **decidable**.
Theorem: Let A be an FA. The question “Is $L(A) = \emptyset$?” is decidable.

Proof:

1. $L(A) \neq \emptyset$ if and only if there is a path from A’s start state to some final state.

2. The following algorithm returns true if and only if there is a path from A’s start state to some final state.
boolean isEmpty(FA A) {
 paint q_0 blue;
 set.put(q_0);
 while (! set.isEmpty()) {
 $p = set.remove();$
 For each $a \in \Sigma$,
 if ($p' = \delta(p, a)$ is not blue) {
 paint p' blue;
 set.put(p');
 }
 }
 return (there is a blue final state) ? false : true;
}
Theorem: Let A be an FA with n states. If $L(A) \neq \emptyset$, A accepts a word w, $|w| < n$.

Proof:

1. The shortest path from A’s start state to some final state, if any, can be no longer than $n - 1$: It cannot involve a circuit.
2. The concatenation of arc labels consists of less than n letters.

Thus, “Is $L(A) = \emptyset$?” also can be answered by running A on no more than

$$m^{n-1} + m^{n-2} + \cdots + m^0$$

words, where $m = |\Sigma|$.
Theorem: Let A and B be FA accepting L_A and L_B, respectively, and E and F be regular expressions. The following questions are decidable:

1. Is $L_A = \emptyset$?
2. Is $L_A = L_B$?
3. Is E equivalent to F (i.e., do they denote the same language)?

Proof:

1. This follows from our previous theorem.
2. $L_A = L_B \iff (L_A \cap \overline{L_B}) \cup (L_B \cap \overline{L_A}) = \emptyset$.
3. For each regular expression, construct an equivalent FA, using Kleene’s theorem. Use part 2 above to see if these 2 FA accept the same language.
Finiteness

Theorem: Let R be a regular expression. $|L(R)| = \infty \iff R$ has a Kleene star that applies to something other than Λ.

Proof:

1. If R has no Kleene star operator, it denotes a finite set.
2. $\Lambda^* = \Lambda$.
3. If the Kleene star operator is applied to something not equivalent to Λ, the resulting set is infinite.
Theorem: Let A be an FA with n states.

$L(A) = \infty \iff \exists w \in L(A), n \leq |w| < 2n.$

Proof:

1. If $\exists w \in L(A), n \leq |w| < 2n$, then $L(A) = \infty$.

 This follows from the pumping lemma: If there is any word w, $|w| \geq n$, then $w = xyz$, such that $xy^kz \in L(A), \forall k > 0$.

2. If $L(A) = \infty$ then $\exists w \in L(A), n \leq |w| < 2n$.

 (a) By the pumping lemma, $\exists w \in L(A), w = xyz$, and $|xy| \leq n$.
 (b) Thus, $|y| \leq n$.
 (c) Assume without loss of generality that the part of the accepting path associated with x and z do not contain any loops.
 (d) $xz \in L(A)$, and $|xz| < n$.
 (e) Let k be the *smallest* exponent that makes $|xy^kz| \geq n$.

 Then, $|xy^kz| < 2n$.

8
Theorem: Given FA A, the question “Is $L(A) = \infty$?” is decidable.

Proof:

1. Check each word w, $n \leq |w| < 2n$.
2. If any are accepted, $L(A) = \infty$; otherwise, $L(A) < \infty$.

When you study DFS, you should conceive of faster ways to test for finiteness.

However, the proof above, requires only that:

- you know how many states the FA has;
- you know if $w \in L(A)$, for any word w.

You do not need to be able to *examine* the FA.