Chapter 3: Recursive Definitions *

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

- The corresponding textbook chapter should be read before attending this lecture.
- These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

*Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.
A NEW METHOD FOR DEFINING LANGUAGES

- A precise and useful way to define sets is by recursive definition.
- A recursive definition of set S has 2 kinds of rules:
 - An enumeration of S’s base elements;
 - Rules for making new elements in S from S’s existing elements.
Example 1

Set S is defined by the following rules:

- $0, 1 \in S$
- $a, b \in S \Rightarrow a + b \in S$.

Can you characterize S using English words?
Example 2

Set S is defined by the following rules:

- $0, 1 \in S$
- $a, b \in S \Rightarrow a + b, a - b \in S$.

Can you characterize S using English words?
Example 3

Set S is defined by the following rules:

- $0, 1 \in S$
- $a, b \in S \Rightarrow a + b, a - b \in S$.
- $a, b \in S \Rightarrow \frac{a}{b} \in S$, for $b \neq 0$.

Can you characterize S using English words?
Example 4

Set S is defined by the following rules:

- $0, 1 \in S$
- $a, b \in S \Rightarrow a + b, a - b \in S$.
- $a, b \in S \Rightarrow a/b \in S$, for $b \neq 0$.
- $a, b \in S \Rightarrow a\sqrt{b} \in S$.

Can you prove that $\sqrt[5]{3} \sqrt[3]{5} \in S$?
Observation: \(\sqrt{3} \sqrt{5} \in S \)

Definition of \(S \)

1. \(0, 1 \in S \)

2. \(a, b \in S \Rightarrow a + b, \sqrt[3]{b} \in S. \)

Proof of observation

1. \(1 \in S \) (Rule 1)

2. \(2 = 1 + 1 \in S \) (Step 1, Rule 2)

3. \(3 = 2 + 1 \in S \) (Step 2, Rule 2)

4. \(\sqrt{3} \in S \) (Step 3, Rule 2)

5. \(5 = 3 + 2 \in S \) (Steps 2, 3, Rule 2)

6. \(\sqrt{3} \sqrt{5} \in S \) (Steps 4, 5, Rule 2)

Can you think of an alternate proof?
Example 5

Function f is defined by the following rules:

- $f(0) = 0$, $f(1) = 1$
- $f(n) = f(n - 1) + f(n - 2)$.

Have you seen this function before?
Example 6: Kleene closure revisited

Let S be a language. Define S’s Kleene closure, denoted S^*, as follows:

- $\Lambda \in S^*$
- $w \in S \Rightarrow w \in S^*$
- $x, w \in S^* \Rightarrow xw \in S^*$.
The Language of Arithmetic Expressions

Let \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,) \} \).

Define arithmetic expressions, denoted \(\text{AE} \), as follows.

1. Any number (positive, negative, or zero) is in \(\text{AE} \)

2. \(x, y \in \text{AE} \Rightarrow: \)

 (a) \((x) \in \text{AE} \)

 (b) \(-x \in \text{AE}\) (provided that \(x \) does not already start with \(-\))

 (c) \(x + y \in \text{AE}\) (if the first symbol of \(y \) is not + or -)

 (d) \(x - y \in \text{AE}\) (if the first symbol of \(y \) is not + or -)

 (e) \(x \times y \in \text{AE} \)
(f) \(x/y \in AE \)

(g) \(x \ast \ast y \in AE \) (our notation for exponentiation)

This definition says nothing about the value or meaning of such an expression.

What do we want \(3 \ast \ast 3 \ast \ast 3 \) to mean?
Example 6: Java Identifiers

- Let $\text{Letter} = \{a, A, b, B, \ldots, z, Z\}$.
- Let $\text{Digit} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- Let $\Sigma = \text{Letter} \cup \text{Digit} \cup \{_ , \$\}$.
- Define $\text{Identifier} = \text{Letter} \ \Sigma^*$.