CHAPTER 4: REGULAR EXPRESSIONS

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

• The corresponding textbook chapter should be read before attending this lecture.

• These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

*Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.

1
Defining Languages More Precisely

- We now focus on a more precise language to define a class of languages. This language, or meta-language, is called regular expressions.
- Regular expressions are a simple *declarative* programming language.
- Regular expressions are used in various places, including:
 - Search commands, such as UNIX grep, or what one finds in Web browsers.
 - Lexical analyzer generators, such as Lex.
 - These define the language’s *tokens* (e.g., keywords, identifiers, operators, numbers).
 - The lexical analyzer generator produces code that, when executed, returns the next token in its input stream.
Regular Expression Operators

We first remind ourselves what union, concatenation, and Kleene closure mean in the context of languages. Given languages L and M:

- Their **union**, denoted $L \cup M$, is \{ w | $w \in L$ or $w \in M$ \}.

- The **concatenation** of L and M, denoted LM, is \{ xy | $x \in L$, $y \in M$ \}.

- The **Kleene closure** of L, denoted L^*, is

$$
\bigcup_{i \geq 0} L^i = L^0 \cup L^1 \cup L^2 \cup \cdots,
$$

where $L^0 = \{ \Lambda \}$, $L^1 = L$, and $L^i = LL^{i-1}$.
If $L = \{0\}$ and $M = \{11\}$. Then:

- $L \cup M = \{0, 11\}$
- $LM = \{011\}$
- $ML = \{110\}$
- $L^* = \{\Lambda, 0, 00, \ldots\}$.

What is \emptyset^*?
What is $\{\Lambda\}^*$?
How many strings are in $(L \cup M)^3$?
A Recursive Definition Regular Expressions

Let Σ be a set of symbols.

Basis rules

1. The constants ϵ and \emptyset are regular expressions. $L(\epsilon) = \{\Lambda\}$; $L(\emptyset) = \emptyset$.
2. For each $a \in \Sigma$, a is a regular expression. $L(a) = \{a\}$.
Recursive rules

1. If E and F are regular expressions, $E + F$ is a regular expression. $L(E + F) = L(E) \cup L(F)$.

2. If E and F are regular expressions, EF is a regular expression. $L(EF) = L(E)L(F)$.

3. If E is a regular expression, E^* is a regular expression. $L(E^*) = (L(E))^*$.

4. If E is a regular expression, (E) is a regular expression. $L((E)) = L(E)$.

- If e is a regular expression, $L(e)$ is a regular language
- We refer to $L(e)$ as the language denoted by e.
Example 1

Can we define the language whose words consist of alternating 0s and 1s using regular expressions?

- 01^* denotes the language whose strings begin with one 0, followed by zero or more 1s.
- $(01)^*$ denotes the language whose strings are the concatenation of zero or more occurrences of 01.
- $(1 + \epsilon)(01)^*$ denotes the set of strings consisting of alternating 0s and 1s that end in 1.
- $(1 + \epsilon)(01)^*(0 + \epsilon)$ denotes the desired language.
Regular Expression Operator Precedence

- Regular expression operator precedence: $* > \text{concatenation} > +$.
- Use parentheses to override these operator precedences.
- E.g., $01^* + 1 = (0(1)^*) + 1$.
- What language is denoted by the regular expression above?
- What language is denoted by $0(1^* + 1)$?
Example 2

Give a regular expression for the language L over $\Sigma = \{a, b\}$ of words that contain exactly 2 or exactly 3 b’s.

- The set of all strings over Σ that contain exactly 1 b is denoted by the regular expression a^*ba^*.
- The set of all strings over Σ that contain exactly 2 b’s is denoted by the regular expression $a^*ba^*ba^*$.
- The set of all strings over Σ that contain exactly 3 b’s is denoted by the regular expression $a^*ba^*ba^*ba^*$.
- L is denoted by the regular expression $a^*ba^*ba^* + a^*ba^*ba^*ba^*$.

We implement “or” with union, the $+$ operator.
Example 3

Give a regular expression for the language L over $\Sigma = \{a, b\}$ of words that contain a number of b’s that is evenly divisible by 3.

- The set of all strings over Σ that contain exactly 3 b’s is denoted by the regular expression $a^*ba^*ba^*ba^*$.
- L is denoted by $(a^*ba^*ba^*b)^*a^*$.
A Distributive Law for Regular Expressions

Theorem Let r_1, r_2, and r_3 be regular expressions. $L((r_1 + r_2)r_3) = L(r_1r_3 + r_2r_3)$.

Proof

$L((r_1 + r_2)r_3) = \{wx|w \in L(r_1 + r_2), x \in L(r_3)\}$

$= \{wx|w \in L(r_1) \cup L(r_2), x \in L(r_3)\}$

$= \{wx|w \in L(r_1) \text{ or } w \in L(r_2), x \in L(r_3)\}$

$= \{w|w \in L(r_1)L(r_3) \text{ or } w \in L(r_2)L(r_3)\}$

$= \{w|w \in L(r_1r_3) \text{ or } w \in L(r_2r_3)\}$

$= \{w|w \in L(r_1r_3) \cup L(r_2r_3)\}$

$= L(r_1r_3 + r_2r_3)$.

11
Questions to ponder

• Given regular expression e, is $\overline{L(e)} = \Sigma^* - L(e)$ a regular language?
• If so, is there a mechanical way of generating a regular expression for it, given e?
• Given regular expressions e and f, is $L(e) \cap L(f)$ a regular language?
• If so, is there a mechanical way of generating a regular expression for it, given e and f?