Chapter 9: Regular Languages *

Peter Cappello
Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
cappello@cs.ucsb.edu

• The corresponding textbook chapter should be read before attending this lecture.

• These notes are not intended to be complete. They are supplemented with figures, and other material that arises during the lecture period in response to questions.

*Based on Theory of Computing, 2nd Ed., D. Cohen, John Wiley & Sons, Inc.
CLOSURE PROPERTIES

Definition: The language denoted by a regular expression is a **regular language.**
Theorem: If L_1 and L_2 are regular languages, then $L_1 \cup L_2$, $L_1 L_2$, and L_1^* are regular languages.

Proof (by regular expression):

1. Since L_1 and L_2 are regular languages, each is denoted by some regular expression, say r_1 and r_2, respectively.
2. Given regular expressions r_1 and r_2, $r_1 + r_2$, $r_1 r_2$, and r_1^* are regular expressions, by the inductive rules for forming regular expressions.
3. The languages denoted by these regular expressions are $L_1 \cup L_2$, $L_1 L_2$, and L_1^*, respectively.
4. Thus, these languages are regular.
Proof (by machine):

1. Since L_1 and L_2 are regular languages, there exist TGs that accept them, say TG_1 and TG_2, respectively.

2. Assume, without loss of generality, that each has a single initial state and a single final state.

3. Given these TGs, it is easy to construct TGs that accept $L_1 \cup L_2$, L_1L_2, and L_1^*. Produce on blackboard.

4. Thus, these languages are regular.
Example

Let $\Sigma = \{a, b\}$.

- Let $L_1 = a(a + b)^*a + b(a + b)^*b = \{\text{the set of all strings of length } \geq 2 \text{ that begin and end with the same letter.}\}$
- Let $L_2 = (a + b)^*aba(a + b)^* = \{\text{the set of all strings that contain "aba" as a substring.}\}$

Then:

- $L_1 \cup L_2 = (a(a + b)^*a + b(a + b)^*b) + ((a + b)^*aba(a + b)^*)$.
- $L_1L_2 = (a(a + b)^*a + b(a + b)^*b)((a + b)^*aba(a + b)^*)$.
- $L_1^* = (a(a + b)^*a + b(a + b)^*b)^*$.

Produce machine compositions on the blackboard.
Complements and Intersections

Theorem: If L is a regular language, \overline{L} is regular.

Proof:

1. Since L is regular, there is an FA, A, that accepts it.
2. Create a new FA, \overline{A}, which is the same as A, except $F_{\overline{A}} = Q_A - F_A$.
3. Word w is accepted by A if and only if it is rejected by \overline{A}.
4. Since \overline{A} is an FA, $L(\overline{A})$ is regular.

Apply the construction on even − odd, the set of strings with an even number of a’s and an odd number of b’s.
Theorem: If L_1 and L_2 are regular languages, $L_1 \cap L_2$ is regular.

Proof: By DeMorgan’s law, $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$, a regular language.

Illustrate DeMorgan’s law with a Venn Diagram.
Proof: (machine-based)

Replicate the FA construction for the union of 2 regular languages, but final states are those where *both* component states are final in the given machines.

Thus, a word is accepted by the constructed FA if and only if it is accepted by both given finite automata.

Illustrate on the set of words that begin with *a* and end with *b*.