TA: Sahar Sajadieh

Email: sahar@umail.ucsb.edu

or Class Email: cs181b@cs.ucsb.edu

Office Hours: Wednesday 10AM-12PM------------------------CSIL

Thursday 9AM-11AM-------------------------------CSIL
Edge Detection: Marr–Hildreth Algorithm

- 1. Convert RGB picture to Gray Scale
- 2. Smoothing: using Gaussian filter
- 3. Second order derivative: using Laplacian filter
- 4. Zero crossing
1. Convert RGB picture to Gray Scale

- imgGry=Rgb2gray(img)
How to apply a filter on an image

- Use Convolution Operation

- **Convolution notations:** \(R = H * F = H \otimes F \)

- `outputImg = conv2(H, F);` %H is the filter, and F is the image

 figure;

 imshow(outputImg);
For every pixel (i,j):
- Line up the image at (i,j) with the filter kernel
- Flip the kernel in both directions (vertical and horizontal)
- Multiply and sum (dot product) to get output value $R(i,j)$
$R_{4,4} = H_{0,0}F_{4,4} + H_{0,1}F_{4,3} + H_{0,2}F_{4,2} + H_{1,0}F_{3,4} + H_{1,1}F_{3,3} + H_{1,2}F_{3,2} + H_{2,0}F_{2,4} + H_{2,1}F_{2,3} + H_{2,2}F_{2,2}$
2. Gaussian Filter

- What is Gaussian?
 - A Low Pass Filter: to get rid of high-frequency noise
 - Smoothing by Averaging
 - Rotationally symmetric
 - Weights of nearby pixels are more than distant ones
2. Gaussian Filter

Sigma=3

Sigma=12

Sigma=48
2. Gaussian Filter

- How does a Gaussian Kernel looks like?
2. Gaussian Filter

How does a Gaussian Kernel look like?

The filter looks something like this:
2. Gaussian Filter

- Formula:

\[G(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(\frac{-(x^2+y^2)}{\sigma^2}\right) \]

- In Matlab: 1\(\leq\) x, y\(\leq\)n
 (n is the dimension of the filter)

- What is n?

- Don’t forget to normalize the filter
2. Gaussian Filter

Please Note: Even though the Gaussian equation in the previous page is correct, to do this HW in Matlab, you need to use a modified version of that equation:

\[
G(x, y) = \frac{1}{2\pi\sigma^2} \exp \frac{-(i^2 + j^2)}{\sigma^2}
\]

- \(i=x-1-\text{floor}(n/2), \ j=y-1-\text{floor}(n/2)\)
- \(x, y\) are the indices of the Gaussian Kernel matrix in Matlab \(1 \leq x, y \leq n\)
- \(-\text{floor}(n/2) < i, j < +\text{floor}(n/2)\) (so that the Gaussian filter is centered at zero, with the max value at \(i, j=0\)
2. Gaussian Filter

- What is n?
2. Gaussian Filter

- What is n?

n is based on your choice, but:
2. Gaussian Filter

- What is n?

n is based on your choice, but:
 - Should contain at least one sigma (in each side)
 - Should be an odd number, since the Gaussian filter is symmetric and we want to have a center point to do the averaging for.
 - For example $n = (6\times \text{sigma}) + 1$
 (With $6\times \text{sigma}$, we can get most of the Gaussian energy inside of the window.)
2. Gaussian Filter

- How to normalize the filter?
2. Gaussian Filter

- How to normalize the filter?
3. Laplacian Filter

- 2nd order Edge detection filter:

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

Laplacian is the sum of second partial derivatives of the function.
3. Laplacian Filter

- What is a gradient of an image:

\[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

- How do you approximate it (in a discrete space/grid with finite elements): “Discrete Gradient”

\[\frac{\partial f}{\partial x}[x, y] \approx f[x + 1, y] - f[x, y] \]
3. Laplacian Filter

- What is a Laplacian of an image:

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

- How do you approximate it (in a discrete space/grid with finite elements):

“Discrete Laplacian”

\[
\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 4 & -1 \\
0 & -1 & 0 \\
\end{array}
\]
3. Laplacian Filter

- How to make a Matrix:
 \[A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \]

- You can use either of these filters:

 ![Laplacian kernels](image)

Most Commonly-used Laplacian kernel
LoG filter (Mexican Hat)

- What is LoG?
LoG filter (Mexican Hat)

- What is LoG? Convolution of Laplacian and Gaussian
LoG filter (Mexican Hat)

- What is LoG? Convolution of Laplacian and Gaussian

\[G = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}} \]
\[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]
\[\nabla^2 G = \frac{1}{\pi\sigma^4} (1 - \frac{x^2 + y^2}{2\sigma^2}) e^{-\frac{x^2 + y^2}{2\sigma^2}} \]
LoG filter (Mexican Hat)

- What is LoG? Convolution of Laplacian and Gaussian
 or “The Mexican Hat”

LoG = conv2(Gaus, Lap)
LoG filter (Mexican Hat)

- Why does it work?
LoG filter (Mexican Hat)

- Why does it work?
 - Convolution is commutative:
 \[
 \text{conv2}(A, B) = \text{conv2}(B, A)
 \]
 - Convolution is associative:
 \[
 \text{conv2}(\text{conv2}(\text{img}, A), B) = \text{conv2}(\text{img}, \text{conv2}(A, B))
 \]
4. Zero Crossing

- Why do we need to get the zero crossing of the Laplacian of Gaussian of the image to find the edges?
4. Zero Crossing

- Why do we need to get the zero crossing of the Laplacian of Gaussian of the image to find the edges?
- What happens to the first order derivative of f, at the zero crossing of the second derivative of f?
4. Zero Crossing

- Why do we need to get the zero crossing of the Laplacian of Gaussian of the image to find the edges?
- What happens to the first order derivative of \(f \), at the zero crossing of the second derivative of \(f \)?
- What happens to \(f \), at the zero crossing of the second derivative of \(f \)?
4. Zero Crossing

- How to do Zero Crossing?
4. Zero Crossing

- How to do Zero Crossing?

 img(x, y) is a zero crossing if:
 - img(x, y)*img(x+1, y)<0
 Or:
 - img(x, y)*img(x, y+1)<0

 If img(x, y) is zero crossing, set the corresponding pixel (imgEdge(x,y)) in the edge image to 1, otherwise to 0.

 * Finding the exact 0s are hard, due to precision and discretization.
Functions to use; Functions not to use

- Matlab Functions that are OK to be used:
 - Basic Functions such as: Conv2, imfilter, imread, imwrite, rgb2gray, size, figure, imshow, ...

- Matlab Functions that are NOT OK to be used:
 - Complex functions such as: Mexihat, edgeDetector, fspecial functions (ie. Of Gaussian, or Laplacian type), ...
Functions to use; Functions not to use

- Matlab Functions that are OK to be used:
 - Basic Functions such as: Conv2, imfilter, imread, imwrite, rgb2gray, size, figure, imshow, ...

- Matlab Functions that are NOT OK to be used:
 - Complex functions such as: Mexihat, edgeDetector, fspecial functions (ie. Of Gaussian, or Laplacian type), ...

Basically you need to construct Laplacian and Gaussian filters, and use convolution operation (conv2) to apply them to the image: As simple as that!
Questions?