CS24 Week 6 Lecture 2

Kyle Dewey
Overview

- More complexity analysis
- Recursion
More Complexity Analysis
Measuring Efficiency

• How might we determine the efficiency of a program?
 • Benchmarks tend to be too specific (new hardware? How big of inputs do we test?)
 • Better approach: define a formula in terms of the input size
Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```
Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```

Constant time, done once. Call this C_1.

Tuesday, July 29, 14
Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```

Constant time, done once. Call this C_2.

Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```

Constant time, done \text{length} times. Call this c_3.
Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```

Constant time, done length times. Call this c_4.

Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```

Constant time, done length *times. Call this* c_5.

Tuesday, July 29, 14
Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```

Constant time, done length * length times. Call this c_6.
Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```

Constant time, done \(\text{length} \times \text{length} \) times. Call this \(c_7 \).
Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }
    }
    return s;
}
```

Constant time, done length * length times.

Call this c_8.
Another Example

```c
int sum2(int* arr, int length) {
    int s = 0, x, y;
    for (x = 0; x < length; x++) {
        for (y = 0; y < length; y++) {
            s += arr[x] + arr[y];
        }  
    }
    return s;
}
```

Constant time, done once. Call this C_9.
Putting it Together

- We are left with the following formula:

\[c_1 + c_2 + (\text{length} \times c_3) + (\text{length} \times c_4) + (\text{length} \times c_5) + (\text{length} \times \text{length} \times c_6) + (\text{length} \times \text{length} \times c_7) + (\text{length} \times \text{length} \times c_8) + c_9 \]
Putting it Together

• The specific values of constants are unimportant as long as they are positive

• We can replace all these with the value 1 as far as Big O notation is concerned

\[c_1 + c_2 + (\text{length} \times c_3) + (\text{length} \times c_4) + (\text{length} \times c_5) + (\text{length} \times \text{length} \times c_6) + (\text{length} \times \text{length} \times c_7) + (\text{length} \times \text{length} \times c_8) + c_9 \]
Putting it Together

• The specific values of constants are unimportant as long as they are positive

• We can replace all these with the value 1 as far as Big O notation is concerned

\[1 + 1 + (\text{length} \times 1) + (\text{length} \times 1) + (\text{length} \times 1) + (\text{length} \times \text{length} \times 1) + (\text{length} \times \text{length} \times 1) + (\text{length} \times \text{length} \times 1) + 1 \]
Putting it Together

• The specific values of constants are unimportant as long as they are positive

• We can replace all these with the value 1 as far as Big O notation is concerned

$$3 + length + length + length + (length \times length) + (length \times length) + (length \times length)$$
Putting it Together

• The specific values of constants are unimportant as long as they are positive

• We can replace all these with the value 1 as far as Big O notation is concerned

$$3 + 3(length) + 3(length \times length)$$
Putting it Together

- The specific values of constants are unimportant as long as they are positive.
- We can replace all these with the value 1 as far as Big O notation is concerned.

\[1 + \text{length} + (\text{length} \times \text{length}) \]
Putting it Together

- The specific values of constants are unimportant as long as they are positive.
- We can replace all these with the value 1 as far as Big O notation is concerned.

$1 + \text{length} + \text{length}^2$
Putting it Together

• With sums, we always choose the larger sum
• A variable is always larger than a constant

\[1 + \text{length} + \text{length}^2 \]
Putting it Together

- With sums, we always choose the larger sum
- A variable is always larger than a constant

\[\text{length} + \text{length}^2 \]
Putting it Together

• With sums, we always choose the larger sum

• A variable is always larger than a constant

\[\text{length}^2 \]
Putting it Together

• Observe that length is really N, the input size

• For this example, we are done

\[\text{length}^2 \]
Putting it Together

• Observe that \texttt{length} is really \(N \), the input size

• For this example, we are done

\(O(N^2) \)
Big O Heuristics

- A non-loop is often $O(1)$
- A single loop is often $O(N)$
- A singly nested loop is often $O(N^2)$
- Not always true though - we will see exceptions later in this class
 - Determining time complexity can be quite difficult in general
Recursion
Motivation

- A lot of problems are defined in terms of themselves (recursive)
- You’re already familiar with a lot!
- These demand solutions which are themselves recursive
Recursion

- Defining a problem in terms of:
 - Some simple trivial case
 - A more complex case which ultimately leads to the trivial case
 - A way to define a problem in terms of itself
Trivial Case

• Often called the “base” case
• It represents a simple form of the problem
Recursive Case

- Defines problem in terms of itself
- Recursive cases should ultimately lead to base cases
My Two Cents on Recursion

- Phrased as a problem strictly with numbers, this seems magical and unintuitive
- Phrased as a problem over data structures, this makes more sense
- Data structures themselves can have recursive structure
- You’re been familiar with recursive data structures, for many, many years
Example: Arithmetic Expressions

1 + 1

1 * 1

1 + (1 + 1)

(1 * 1) + 1

(1 * (1 + 1)) - 1
Example: Arithmetic Expressions

n is an Integer

\[e \text{ is an Expression} \]

\[\text{op is an Operator} \]

\[op ::= + \mid - \mid * \mid / \]

\[e ::= n \mid e_1 \text{ op } e_2 \]

\[
(1 + 1) + (1 \times 1)
\]
Example: Arithmetic Expressions

n is an Integer
e is an Expression
op is an Operator

\[\text{op ::= } + \mid - \mid * \mid / \]
\[\text{e ::= } n \mid e_1 \text{ op } e_2 \]

Base case?
Recursive case?

\[1 \]
\[1 + 1 \]
\[(1 + 1) + (1 * 1) \]
Example: Arithmetic Expressions

n is an Integer

e is an Expression

op is an Operator

\[
\begin{align*}
\text{op} & ::= + | - | \ast | / \\
\text{e} & ::= n \mid e_1 \ op \ e_2
\end{align*}
\]

Base

\[
1 + 1
\]

Recursive

\[
(1 + 1) + (1 \ast 1)
\]
Example: Arithmetic
Expression Evaluation

• A number evaluates to itself
• To evaluate an operation \((e_1 \text{ op } e_2)\):
 • Evaluate \(e_1\) to a number \(n_1\)
 • Evaluate \(e_2\) to a number \(n_2\)
 • Evaluate \(n_1 \text{ op } n_2\)
Example: Natural Language

- It is possible to take the majority of most natural languages and express them in a way that is similar to our arithmetic expression representation

- A clause containing another clause...
Example: Programming Languages

- Most programming languages work this way, too
- Ifs can be nested in ifs...
- At some point, we have to stop nesting the if's, or else we won’t have a program
Example: Linked Lists

- A linked list is either:
 - An empty list
 - A node holding an item (int below) and a pointer to another list

\texttt{List = Empty \mid int List}
Relationship to Operations

• The recursive structure of applicable data structures often mirrors the recursive structure of operations on those data structures

• Which cases might be interesting for a linked list?
Relationship to Operations

• The recursive structure of applicable data structures often mirrors the recursive structure of operations on those data structures

• Which cases might be interesting for a linked list?

 • Empty list (e.g., NULL)
 • Non-empty list (a node)
Example Problem

• Say we want to calculate the length of a linked list recursively

• A list is represented as a Node*

• Base case?

• Length of list besides first element?

• Recursive case?

```c
int length(Node* list);
```
Example Problem

```c
int length(Node* list) {
    if (list == NULL) {
        return 0;  // base case
    } else {
        return (1 +  // this node’s length
                // length of the rest of
                // the list
            length(list->getNext()));
    }
}
```
Revised Problem

• Say we want to determine the length of a list, but with a tweak: we also take the length of the list so far

• Base case?

• Length of list besides first element?

• Recursive case?

• What does the initial call look like?

```c
int firstCall(Node* list);
int length2(Node* list, int soFar);
```
int length2(Node* list, int soFar) {
 if (list == NULL) {
 return soFar; // base case
 } else {
 // get the length of the rest of the list, and say that the
 // length so far is + 1
 return length2(list->getNext(), soFar + 1);
 }
}

int firstCall(Node* list) {
 return length2(list, 0);
}
Relationship to Loops

- \texttt{length2} is more similar to an iterative implementation than it may seem at first.
- \texttt{while} dynamically inserts \texttt{ifs} as many times as needed.
- Recursion dynamically inserts the body of a function as many times as needed.
- After doing these expansions, they basically look the same!
Recursion With Arrays
Recursion With Arrays

- If we look at arrays in a similar way as linked lists, operations become more clear.
- The index acts like a pointer to a particular node.
 - What is the base case?
 - Recursive case?
Recursion With Arrays

• If we look at arrays in a similar way as linked lists, operations become more clear

• The index acts like a pointer to a particular node
 • What is the base case?
 • Index out of array
 • Recursive case?
 • Index in array
Example

- Determine the sum of an array of integers, starting from a particular index. An array containing no elements has a sum of 0.

- Base case?

- Recursive case?

```c
int sumFromIndex(int* array, int length, int index);
```
Example

- Determine the sum of an array of integers, starting from a particular index. An array containing no elements has a sum of 0.
- Base case? - index out of bounds (0)
- Recursive case? - index in bounds (current element + sum of rest)

```c
int sumFromIndex(int* array, int length, int index);
```
int sumFromIndex(int* array, int length, int index) {
 if (index >= length) return 0;
 else {
 int restSum = sumFromIndex(array, length, index + 1);
 return restSum + array[index];
 }
}
Recursion Pros

- If your recursive case is always guaranteed to reach a base case, infinite recursion is impossible (appeals to induction)
- No more infinite loops!
- Vital for more complex recursive data structures (e.g., trees)
- Easier to understand :)
Recursion Cons

- If you’re not careful, you can run out of stack space (a stack overflow)
- Not written in a tail-recursive way
- Compiler is too stupid to notice it’s tail-recursive
- Very large input